Current Hypertension Reports

, Volume 14, Issue 5, pp 421–431 | Cite as

Blood Pressure Variability, Cardiovascular Risk, and Risk for Renal Disease Progression

Antihypertensive Therapy: Renal Injury (MR Weir and GL Bakris, Section Editors)

Abstract

The adverse cardiovascular consequences of high blood pressure (BP) not only depend on absolute BP values, but also on BP variability (BPV). Evidence has been provided that independently of mean BP levels, BP variations in the short- and long-term are associated with the development, progression and severity of cardiac, vascular and renal organ damage, and with an increased risk of CV events and mortality. Alterations in BPV have also been shown to be predictive of the development and progression of renal damage, which is of relevance if considering that impaired renal function in a hypertensive patient constitutes a very potent predictor of future CV events and mortality even in treated subjects. This review will address whether antihypertensive treatment should target alterations in BPV, in addition to reducing absolute BP levels, in order to achieve the highest CV and renal protection in hypertensive and renal patients.

Keywords

Hypertension Blood pressure BP Short- and long-term BP variability Cardiovascular risk Cardiovascular morbidity and mortality Renal disease progression End-stage renal disease ESRD Chronic kidney disease CKD Arterial hypertension Ambulatory BP monitoring Home BP monitoring Antihypertensive treatment 

References

  1. 1.
    Parati G, Pomidossi G, Albini F, Malaspina D, Mancia G. Relationship of 24-hour blood pressure mean and variability to severity of target-organ damage in hypertension. J Hypertens. 1987;5(1):93–8.PubMedCrossRefGoogle Scholar
  2. 2.
    Mancia G, Parati G. The role of blood pressure variability in end-organ damage. J Hyper Supp Official J Intern Soc Hyperten. 2003;21(6):S17–23.Google Scholar
  3. 3.
    Frattola A, Parati G, Cuspidi C, Albini F, Mancia G. Prognostic value of 24-hour blood pressure variability. J Hypertens. 1993;11(10):1133–7.PubMedCrossRefGoogle Scholar
  4. 4.
    Sander D, Kukla C, Klingelhofer J, Winbeck K, Conrad B. Relationship between circadian blood pressure patterns and progression of early carotid atherosclerosis: a 3-year follow-up study. Circulation. 2000;102(13):1536–41.PubMedCrossRefGoogle Scholar
  5. 5.
    Sega R, Corrao G, Bombelli M, Beltrame L, Facchetti R, Grassi G, Ferrario M, Mancia G. Blood pressure variability and organ damage in a general population: results from the PAMELA study (Pressioni Arteriose Monitorate E Loro Associazioni). Hypertension. 2002;39(2 Pt 2):710–4.PubMedCrossRefGoogle Scholar
  6. 6.
    Tatasciore A, Renda G, Zimarino M, Soccio M, Bilo G, Parati G, Schillaci G, De Caterina R. Awake systolic blood pressure variability correlates with target-organ damage in hypertensive subjects. Hypertension. 2007;50(2):325–32.PubMedCrossRefGoogle Scholar
  7. 7.
    Kikuya M, Hozawa A, Ohokubo T, Tsuji I, Michimata M, Matsubara M, Ota M, Nagai K, Araki T, Satoh H, et al. Prognostic significance of blood pressure and heart rate variabilities: the Ohasama study. Hypertension. 2000;36(5):901–6.PubMedCrossRefGoogle Scholar
  8. 8.
    Pringle E, Phillips C, Thijs L, Davidson C, Staessen JA, de Leeuw PW, Jaaskivi M, Nachev C, Parati G, O'Brien ET, et al. Systolic blood pressure variability as a risk factor for stroke and cardiovascular mortality in the elderly hypertensive population. J Hypertens. 2003;21(12):2251–7.PubMedCrossRefGoogle Scholar
  9. 9.
    Kario K, Pickering TG, Umeda Y, Hoshide S, Hoshide Y, Morinari M, Murata M, Kuroda T, Schwartz JE, Shimada K. Morning surge in blood pressure as a predictor of silent and clinical cerebrovascular disease in elderly hypertensives: a prospective study. Circulation. 2003;107(10):1401–6.PubMedCrossRefGoogle Scholar
  10. 10.
    Kario K, Ishikawa J, Pickering TG, Hoshide S, Eguchi K, Morinari M, Hoshide Y, Kuroda T, Shimada K. Morning hypertension: the strongest independent risk factor for stroke in elderly hypertensive patients. Hypertens Res Official J Japanes Soc Hyperten. 2006;29(8):581–7.CrossRefGoogle Scholar
  11. 11.
    Stolarz-Skrzypek K, Thijs L, Richart T, Li Y, Hansen TW, Boggia J, Kuznetsova T, Kikuya M, Kawecka-Jaszcz K, Staessen JA. Blood pressure variability in relation to outcome in the International Database of Ambulatory blood pressure in relation to Cardiovascular Outcome. Hypertens Res Official J Japanes Soc Hyperten. 2010;33(8):757–66.CrossRefGoogle Scholar
  12. 12.
    Hansen TW, Thijs L, Li Y, Boggia J, Kikuya M, Bjorklund-Bodegard K, Richart T, Ohkubo T, Jeppesen J, Torp-Pedersen C, et al. Prognostic value of reading-to-reading blood pressure variability over 24 hours in 8938 subjects from 11 populations. Hypertension. 2010;55(4):1049–57.PubMedCrossRefGoogle Scholar
  13. 13.
    Kikuya M, Ohkubo T, Metoki H, Asayama K, Hara A, Obara T, Inoue R, Hoshi H, Hashimoto J, Totsune K, et al. Day-by-day variability of blood pressure and heart rate at home as a novel predictor of prognosis: the Ohasama study. Hypertension. 2008;52(6):1045–50.PubMedCrossRefGoogle Scholar
  14. 14.
    Rothwell PM, Howard SC, Dolan E, O'Brien E, Dobson JE, Dahlof B, Sever PS, Poulter NR. Prognostic significance of visit-to-visit variability, maximum systolic blood pressure, and episodic hypertension. Lancet. 2010;375(9718):895–905.PubMedCrossRefGoogle Scholar
  15. 15.
    Muntner P, Shimbo D, Tonelli M, Reynolds K, Arnett DK, Oparil S. The relationship between visit-to-visit variability in systolic blood pressure and all-cause mortality in the general population: findings from NHANES III, 1988 to 1994. Hypertension. 2011;57(2):160–6.PubMedCrossRefGoogle Scholar
  16. 16.
    Ruilope LM, Salvetti A, Jamerson K, Hansson L, Warnold I, Wedel H, Zanchetti A. Renal function and intensive lowering of blood pressure in hypertensive participants of the hypertension optimal treatment (HOT) study. J Am Soc Nephrol. 2001;12(2):218–25.PubMedGoogle Scholar
  17. 17.
    De Leeuw PW, Thijs L, Birkenhager WH, Voyaki SM, Efstratopoulos AD, Fagard RH, Leonetti G, Nachev C, Petrie JC, Rodicio JL, et al. Prognostic significance of renal function in elderly patients with isolated systolic hypertension: results from the Syst-Eur trial. J Am Soc Nephrol. 2002;13(9):2213–22.PubMedCrossRefGoogle Scholar
  18. 18.
    Segura J, Ruilope LM, Zanchetti A. On the importance of estimating renal function for cardiovascular risk assessment. J Hypertens. 2004;22(9):1635–9.PubMedCrossRefGoogle Scholar
  19. 19.
    Rahman M, Pressel S, Davis BR, Nwachuku C, Wright Jr JT, Whelton PK, Barzilay J, Batuman V, Eckfeldt JH, Farber MA, et al. Cardiovascular outcomes in high-risk hypertensive patients stratified by baseline glomerular filtration rate. Ann Intern Med. 2006;144(3):172–80.PubMedGoogle Scholar
  20. 20.
    Mancia G, De Backer G, Dominiczak A, Cifkova R, Fagard R, Germano G, Grassi G, Heagerty AM, Kjeldsen SE, Laurent S, et al. 2007 Guidelines for the Management of Arterial Hypertension: the Task Force for the Management of Arterial Hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). J Hypertens. 2007;25(6):1105–87.PubMedCrossRefGoogle Scholar
  21. 21.
    Mancia G, Grassi G. Mechanisms and clinical implications of blood pressure variability. J Cardiovasc Pharmacol. 2000;35(7 Suppl 4):S15–9.PubMedCrossRefGoogle Scholar
  22. 22.
    Mancia G, Omboni S, Ravogli A, Parati G, Zanchetti A. Ambulatory blood pressure monitoring in the evaluation of antihypertensive treatment: additional information from a large data base. Blood Press. 1995;4(3):148–56.PubMedCrossRefGoogle Scholar
  23. 23.
    Parati G, Faini A, Valentini M. Blood pressure variability: its measurement and significance in hypertension. Curr Hypertens Rep. 2006;8(3):199–204.PubMedCrossRefGoogle Scholar
  24. 24.
    Mancia G, Parati G, Pomidossi G, Casadei R, Di Rienzo M, Zanchetti A. Arterial baroreflexes and blood pressure and heart rate variabilities in humans. Hypertension. 1986;8(2):147–53.PubMedCrossRefGoogle Scholar
  25. 25.
    Parati G, Saul JP, Di Rienzo M, Mancia G. Spectral analysis of blood pressure and heart rate variability in evaluating cardiovascular regulation. A critical appraisal. Hypertension. 1995;25(6):1276–86.PubMedCrossRefGoogle Scholar
  26. 26.
    Conway J, Boon N, Davies C, Jones JV, Sleight P. Neural and humoral mechanisms involved in blood pressure variability. J Hypertens. 1984;2(2):203–8.PubMedCrossRefGoogle Scholar
  27. 27.
    Kotsis V, Stabouli S, Karafillis I, Papakatsika S, Rizos Z, Miyakis S, Goulopoulou S, Parati G, Nilsson P. Arterial stiffness and 24 h ambulatory blood pressure monitoring in young healthy volunteers: the early vascular ageing Aristotle University Thessaloniki Study (EVA-ARIS Study). Atherosclerosis. 2011;219(1):194–9.PubMedCrossRefGoogle Scholar
  28. 28.
    Pickering TG, Hall JE, Appel LJ, Falkner BE, Graves J, Hill MN, Jones DW, Kurtz T, Sheps SG, Roccella EJ. Recommendations for blood pressure measurement in humans and experimental animals: Part 1: blood pressure measurement in humans: a statement for professionals from the Subcommittee of Professional and Public Education of the American Heart Association Council on High Blood Pressure Research. Hypertension. 2005;45(1):142–61.PubMedGoogle Scholar
  29. 29.
    Narkiewicz K, Winnicki M, Schroeder K, Phillips BG, Kato M, Cwalina E, Somers VK. Relationship between muscle sympathetic nerve activity and diurnal blood pressure profile. Hypertension. 2002;39(1):168–72.PubMedCrossRefGoogle Scholar
  30. 30.
    Fujii T, Uzu T, Nishimura M, Takeji M, Kuroda S, Nakamura S, Inenaga T, Kimura G. Circadian rhythm of natriuresis is disturbed in nondipper type of essential hypertension. Am J Kidney Dis. 1999;33(1):29–35.PubMedCrossRefGoogle Scholar
  31. 31.
    Verdecchia P, Schillaci G, Gatteschi C, Zampi I, Battistelli M, Bartoccini C, Porcellati C. Blunted nocturnal fall in blood pressure in hypertensive women with future cardiovascular morbid events. Circulation. 1993;88(3):986–92.PubMedCrossRefGoogle Scholar
  32. 32.
    Haynes WG. Role of leptin in obesity-related hypertension. Exp Physiol. 2005;90(5):683–8.PubMedCrossRefGoogle Scholar
  33. 33.
    Muntner P, Joyce C, Levitan EB, Holt E, Shimbo D, Webber LS, Oparil S, Re R, Krousel-Wood M. Reproducibility of visit-to-visit variability of blood pressure measured as part of routine clinical care. J Hypertens. 2011;29(12):2332–8.PubMedCrossRefGoogle Scholar
  34. 34.
    Parati G, Bilo G. Calcium antagonist added to angiotensin receptor blocker: a recipe for reducing blood pressure variability?: evidence from day-by-day home blood pressure monitoring. Hypertension. 2012;59(6):1091–3.PubMedCrossRefGoogle Scholar
  35. 35.
    Sega R, Cesana G, Bombelli M, Grassi G, Stella ML, Zanchetti A, Mancia G. Seasonal variations in home and ambulatory blood pressure in the PAMELA population. Pressione Arteriose Monitorate E Loro Associazioni. J Hypertens. 1998;16(11):1585–92.PubMedCrossRefGoogle Scholar
  36. 36.
    Modesti PA, Morabito M, Bertolozzi I, Massetti L, Panci G, Lumachi C, Giglio A, Bilo G, Caldara G, Lonati L, et al. Weather-related changes in 24-hour blood pressure profile: effects of age and implications for hypertension management. Hypertension. 2006;47(2):155–61.PubMedCrossRefGoogle Scholar
  37. 37.
    Mancia G, Ferrari A, Gregorini L, Parati G, Pomidossi G, Bertinieri G, Grassi G, di Rienzo M, Pedotti A, Zanchetti A. Blood pressure and heart rate variabilities in normotensive and hypertensive human beings. Circ Res. 1983;53(1):96–104.PubMedCrossRefGoogle Scholar
  38. 38.
    Mancia G, Di Rienzo M, Parati G. Ambulatory blood pressure monitoring use in hypertension research and clinical practice. Hypertension. 1993;21(4):510–24.PubMedCrossRefGoogle Scholar
  39. 39.
    di Rienzo M, Grassi G, Pedotti A, Mancia G. Continuous vs intermittent blood pressure measurements in estimating 24-hour average blood pressure. Hypertension. 1983;5(2):264–9.PubMedCrossRefGoogle Scholar
  40. 40.
    Parati G, Vrijens B, Vincze G. Analysis and interpretation of 24-h blood pressure profiles: appropriate mathematical models may yield deeper understanding. Am J Hypertens. 2008;21(2):123–5; discussion 127–129.PubMedCrossRefGoogle Scholar
  41. 41.
    Bilo G, Giglio A, Styczkiewicz K, Caldara G, Maronati A, Kawecka-Jaszcz K, Mancia G, Parati G. A new method for assessing 24-h blood pressure variability after excluding the contribution of nocturnal blood pressure fall. J Hypertens. 2007;25(10):2058–66.PubMedCrossRefGoogle Scholar
  42. 42.
    Mancia G, Bombelli M, Facchetti R, Madotto F, Corrao G, Trevano FQ, Grassi G, Sega R. Long-term prognostic value of blood pressure variability in the general population: results of the Pressioni Arteriose Monitorate e Loro Associazioni Study. Hypertension. 2007;49(6):1265–70.PubMedCrossRefGoogle Scholar
  43. 43.
    Mena L, Pintos S, Queipo NV, Aizpurua JA, Maestre G, Sulbaran T. A reliable index for the prognostic significance of blood pressure variability. J Hypertens. 2005;23(3):505–11.PubMedCrossRefGoogle Scholar
  44. 44.
    Stergiou GS, Nasothimiou EG. Home monitoring is the optimal method for assessing blood pressure variability. Hypertens Res Official J Japanes Soc Hyperten. 2011;34(12):1246–8.CrossRefGoogle Scholar
  45. 45.
    Timio M, Lolli S, Verdura C, Monarca C, Merante F, Guerrini E. Circadian blood pressure changes in patients with chronic renal insufficiency: a prospective study. Ren Fail. 1993;15(2):231–7.PubMedCrossRefGoogle Scholar
  46. 46.
    Farmer CK, Goldsmith DJ, Cox J, Dallyn P, Kingswood JC, Sharpstone P. An investigation of the effect of advancing uraemia, renal replacement therapy and renal transplantation on blood pressure diurnal variability. Nephrol Dial Transplant Official Public Eur Dial Trans Assoc Eur Renal Assoc. 1997;12(11):2301–7.Google Scholar
  47. 47.
    Andersen KF, Enevoldsen LH. Sympathetic overactivity in uremia detected by 123I-MIBG scintigraphy. Clin Nucl Med. 2008;33(11):790–1.PubMedCrossRefGoogle Scholar
  48. 48.
    Covic A, Goldsmith DJ. Ambulatory blood pressure monitoring in nephrology: focus on BP variability. J Nephrol. 1999;12(4):220–9.PubMedGoogle Scholar
  49. 49.
    Narita I, Okada M, Omori S, Nagai M, Sawanaka N, Kondo D, Goto S, Shimada H, Shimotori T, Arakawa M, et al. The circadian blood pressure rhythm in non-diabetic hemodialysis patients. Hypertens Res Official J Japanes Soc Hyperten. 2001;24(2):111–7.CrossRefGoogle Scholar
  50. 50.
    Kursat S, Ozgur B, Alici T. Effect of ultrafiltration on blood pressure variability in hemodialysis patients. Clin Nephrol. 2003;59(4):289–92.PubMedGoogle Scholar
  51. 51.
    Manios E, Tsagalis G, Tsivgoulis G, Barlas G, Koroboki E, Michas F, Alexaki E, Vemmos K, Zakopoulos N. Time rate of blood pressure variation is associated with impaired renal function in hypertensive patients. J Hypertens. 2009;27(11):2244–8.PubMedCrossRefGoogle Scholar
  52. 52.
    Miao CY, Xie HH, Zhan LS, Su DF. Blood pressure variability is more important than blood pressure level in determination of end-organ damage in rats. J Hypertens. 2006;24(6):1125–35.PubMedCrossRefGoogle Scholar
  53. 53.
    Staessen JA, Thijs L, Fagard R, O'Brien ET, Clement D, de Leeuw PW, Mancia G, Nachev C, Palatini P, Parati G, et al. Predicting cardiovascular risk using conventional vs ambulatory blood pressure in older patients with systolic hypertension. Systolic Hypertension in Europe Trial Investigators. JAMA. 1999;282(6):539–46.PubMedCrossRefGoogle Scholar
  54. 54.
    Sega R, Facchetti R, Bombelli M, Cesana G, Corrao G, Grassi G, Mancia G. Prognostic value of ambulatory and home blood pressures compared with office blood pressure in the general population: follow-up results from the Pressioni Arteriose Monitorate e Loro Associazioni (PAMELA) study. Circulation. 2005;111(14):1777–83.PubMedCrossRefGoogle Scholar
  55. 55.
    Kikuya M, Ohkubo T, Asayama K, Metoki H, Obara T, Saito S, Hashimoto J, Totsune K, Hoshi H, Satoh H, et al. Ambulatory blood pressure and 10-year risk of cardiovascular and noncardiovascular mortality: the Ohasama study. Hypertension. 2005;45(2):240–5.PubMedCrossRefGoogle Scholar
  56. 56.
    Fagard RH, Celis H, Thijs L, Staessen JA, Clement DL, De Buyzere ML, De Bacquer DA. Daytime and nighttime blood pressure as predictors of death and cause-specific cardiovascular events in hypertension. Hypertension. 2008;51(1):55–61.PubMedCrossRefGoogle Scholar
  57. 57.
    Boggia J, Li Y, Thijs L, Hansen TW, Kikuya M, Bjorklund-Bodegard K, Richart T, Ohkubo T, Kuznetsova T, Torp-Pedersen C, et al. Prognostic accuracy of day versus night ambulatory blood pressure: a cohort study. Lancet. 2007;370(9594):1219–29.PubMedCrossRefGoogle Scholar
  58. 58.
    Hansen TW, Li Y, Boggia J, Thijs L, Richart T, Staessen JA. Predictive role of the nighttime blood pressure. Hypertension. 2011;57(1):3–10.PubMedCrossRefGoogle Scholar
  59. 59.
    Clement DL, De Buyzere ML, De Bacquer DA, de Leeuw PW, Duprez DA, Fagard RH, Gheeraert PJ, Missault LH, Braun JJ, Six RO, et al. Prognostic value of ambulatory blood-pressure recordings in patients with treated hypertension. N Engl J Med. 2003;348(24):2407–15.PubMedCrossRefGoogle Scholar
  60. 60.
    Fagard RH, Van Den Broeke C, De Cort P. Prognostic significance of blood pressure measured in the office, at home and during ambulatory monitoring in older patients in general practice. J Hum Hypertens. 2005;19(10):801–7.PubMedCrossRefGoogle Scholar
  61. 61.
    Redon J, Campos C, Narciso ML, Rodicio JL, Pascual JM, Ruilope LM. Prognostic value of ambulatory blood pressure monitoring in refractory hypertension: a prospective study. Hypertension. 1998;31(2):712–8.PubMedCrossRefGoogle Scholar
  62. 62.
    Dolan E, Stanton A, Thijs L, Hinedi K, Atkins N, McClory S, Den Hond E, McCormack P, Staessen JA, O'Brien E. Superiority of ambulatory over clinic blood pressure measurement in predicting mortality: the Dublin outcome study. Hypertension. 2005;46(1):156–61.PubMedCrossRefGoogle Scholar
  63. 63.
    Hansen TW, Jeppesen J, Rasmussen S, Ibsen H, Torp-Pedersen C. Ambulatory blood pressure and mortality: a population-based study. Hypertension. 2005;45(4):499–504.PubMedCrossRefGoogle Scholar
  64. 64.
    Redon J, Plancha E, Swift PA, Pons S, Munoz J, Martinez F. Nocturnal blood pressure and progression to end-stage renal disease or death in nondiabetic chronic kidney disease stages 3 and 4. J Hypertens. 2010;28(3):602–7.PubMedCrossRefGoogle Scholar
  65. 65.
    Amar J, Vernier I, Rossignol E, Bongard V, Arnaud C, Conte JJ, Salvador M, Chamontin B. Nocturnal blood pressure and 24-hour pulse pressure are potent indicators of mortality in hemodialysis patients. Kidney Int. 2000;57(6):2485–91.PubMedCrossRefGoogle Scholar
  66. 66.
    Minutolo R, Agarwal R, Borrelli S, Chiodini P, Bellizzi V, Nappi F, Cianciaruso B, Zamboli P, Conte G, Gabbai FB, et al. Prognostic role of ambulatory blood pressure measurement in patients with nondialysis chronic kidney disease. Arch Intern Med. 2011;171(12):1090–8.PubMedCrossRefGoogle Scholar
  67. 67.
    Agarwal R, Andersen MJ. Blood pressure recordings within and outside the clinic and cardiovascular events in chronic kidney disease. Am J Nephrol. 2006;26(5):503–10.PubMedCrossRefGoogle Scholar
  68. 68.
    Lurbe E, Redon J, Kesani A, Pascual JM, Tacons J, Alvarez V, Batlle D. Increase in nocturnal blood pressure and progression to microalbuminuria in type 1 diabetes. N Engl J Med. 2002;347(11):797–805.PubMedCrossRefGoogle Scholar
  69. 69.
    Marcovecchio ML, Dalton RN, Schwarze CP, Prevost AT, Neil HA, Acerini CL, Barrett T, Cooper JD, Edge J, Shield J, et al. Ambulatory blood pressure measurements are related to albumin excretion and are predictive for risk of microalbuminuria in young people with type 1 diabetes. Diabetologia. 2009;52(6):1173–81.PubMedCrossRefGoogle Scholar
  70. 70.
    Felicio JS, de Souza AC, Kohlmann N, Kohlmann Jr O, Ribeiro AB, Zanella MT. Nocturnal blood pressure fall as predictor of diabetic nephropathy in hypertensive patients with type 2 diabetes. Cardiovasc Diabetol. 2010;9:36.PubMedCrossRefGoogle Scholar
  71. 71.
    Palmas W, Moran A, Pickering T, Eimicke JP, Teresi J, Schwartz JE, Field L, Weinstock RS, Shea S. Ambulatory pulse pressure and progression of urinary albumin excretion in older patients with type 2 diabetes mellitus. Hypertension. 2006;48(2):301–8.PubMedCrossRefGoogle Scholar
  72. 72.
    Metoki H, Ohkubo T, Kikuya M, Asayama K, Obara T, Hashimoto J, Totsune K, Hoshi H, Satoh H, Imai Y. Prognostic significance for stroke of a morning pressor surge and a nocturnal blood pressure decline: the Ohasama study. Hypertension. 2006;47(2):149–54.PubMedCrossRefGoogle Scholar
  73. 73.
    Lengyel Z, Rosivall L, Nemeth C, Toth LK, Nagy V, Mihaly M, Kammerer L, Voros P. Diurnal blood pressure pattern may predict the increase of urinary albumin excretion in normotensive normoalbuminuric type 1 diabetes mellitus patients. Diabetes Res Clin Pract. 2003;62(3):159–67.PubMedCrossRefGoogle Scholar
  74. 74.
    Palmas W, Pickering TG, Teresi J, Schwartz JE, Field L, Weinstock RS, Shea S. Telemedicine home blood pressure measurements and progression of albuminuria in elderly people with diabetes. Hypertension. 2008;51(5):1282–8.PubMedCrossRefGoogle Scholar
  75. 75.
    Palmas W, Pickering T, Teresi J, Schwartz JE, Eguchi K, Field L, Weinstock RS, Shea S. Nocturnal blood pressure elevation predicts progression of albuminuria in elderly people with type 2 diabetes. J Clin Hypertens. 2008;10(1):12–20.CrossRefGoogle Scholar
  76. 76.
    Minutolo R, Gabbai FB, Borrelli S, Scigliano R, Trucillo P, Baldanza D, Laurino S, Mascia S, Conte G, De Nicola L. Changing the timing of antihypertensive therapy to reduce nocturnal blood pressure in CKD: an 8-week uncontrolled trial. Am J Kidney Dis. 2007;50(6):908–17.PubMedCrossRefGoogle Scholar
  77. 77.
    Agarwal R, Andersen MJ. Correlates of systolic hypertension in patients with chronic kidney disease. Hypertension. 2005;46(3):514–20.PubMedCrossRefGoogle Scholar
  78. 78.
    Farmer CK, Goldsmith DJ, Quin JD, Dallyn P, Cox J, Kingswood JC, Sharpstone P. Progression of diabetic nephropathy–is diurnal blood pressure rhythm as important as absolute blood pressure level? Nephrol Dial Transplant Official Public Eur Dial Trans Assoc Eur Renal Assoc. 1998;13(3):635–9.Google Scholar
  79. 79.
    Fukuda M, Munemura M, Usami T, Nakao N, Takeuchi O, Kamiya Y, Yoshida A, Kimura G. Nocturnal blood pressure is elevated with natriuresis and proteinuria as renal function deteriorates in nephropathy. Kidney Int. 2004;65(2):621–5.PubMedCrossRefGoogle Scholar
  80. 80.
    Davidson MB, Hix JK, Vidt DG, Brotman DJ. Association of impaired diurnal blood pressure variation with a subsequent decline in glomerular filtration rate. Arch Intern Med. 2006;166(8):846–52.PubMedCrossRefGoogle Scholar
  81. 81.
    Timio M, Venanzi S, Lolli S, Lippi G, Verdura C, Monarca C, Guerrini E. "Non-dipper" hypertensive patients and progressive renal insufficiency: a 3-year longitudinal study. Clin Nephrol. 1995;43(6):382–7.PubMedGoogle Scholar
  82. 82.
    Jacob P, Hartung R, Bohlender J, Stein G. Utility of 24-h ambulatory blood pressure measurement in a routine clinical setting of patients with chronic renal disease. J Hum Hypertens. 2004;18(10):745–51.PubMedCrossRefGoogle Scholar
  83. 83.
    Csiky B, Kovacs T, Wagner L, Vass T, Nagy J. Ambulatory blood pressure monitoring and progression in patients with IgA nephropathy. Nephrol Dial Transplant Official Public Eur Dial Trans Assoc Eur Renal Assoc. 1999;14(1):86–90.Google Scholar
  84. 84.
    Knudsen ST, Laugesen E, Hansen KW, Bek T, Mogensen CE, Poulsen PL. Ambulatory pulse pressure, decreased nocturnal blood pressure reduction and progression of nephropathy in type 2 diabetic patients. Diabetologia. 2009;52(4):698–704.PubMedCrossRefGoogle Scholar
  85. 85.
    Tsioufis C, Andrikou I, Thomopoulos C, Petras D, Manolis A, Stefanadis C. Comparative prognostic role of nighttime blood pressure and nondipping profile on renal outcomes. Am J Nephrol. 2011;33(3):277–88.PubMedCrossRefGoogle Scholar
  86. 86.
    Parati G, Bilo G. Clinical relevance of day-by-day blood pressure and heart rate variability: new information from home self-measurements. Hypertension. 2008;52(6):1006–8.PubMedCrossRefGoogle Scholar
  87. 87.
    Johansson JK, Niiranen TJ, Puukka PJ, Jula AM. Prognostic value of the variability in home-measured blood pressure and heart rate: the Finn-Home Study. Hypertension. 2012;59(2):212–8.PubMedCrossRefGoogle Scholar
  88. 88.
    Matsui Y, Ishikawa J, Eguchi K, Shibasaki S, Shimada K, Kario K. Maximum value of home blood pressure: a novel indicator of target organ damage in hypertension. Hypertension. 2011;57(6):1087–93.PubMedCrossRefGoogle Scholar
  89. 89.
    Tamura K, Azushima K, Umemura S. Day-by-day home-measured blood pressure variability: another important factor in hypertension with diabetic nephropathy? Hypertens Res Official J Japanes Soc Hyperten. 2011;34(12):1249–50.CrossRefGoogle Scholar
  90. 90.
    Ushigome E, Fukui M, Hamaguchi M, Senmaru T, Sakabe K, Tanaka M, Yamazaki M, Hasegawa G, Nakamura N. The coefficient variation of home blood pressure is a novel factor associated with macroalbuminuria in type 2 diabetes mellitus. Hypertens Res Official J Japanes Soc Hyperten. 2011;34(12):1271–5.CrossRefGoogle Scholar
  91. 91.
    Okada T, Nakao T, Matsumoto H, Nagaoka Y, Tomaru R, Iwasawa H, Wada T. Day-by-day variability of home blood pressure in patients with chronic kidney disease. Nihon Jinzo Gakkai shi. 2008;50(5):588–96.PubMedGoogle Scholar
  92. 92.
    Okada T, Matsumoto H, Nagaoka Y, Nakao T. Association of home blood pressure variability with progression of chronic kidney disease. Blood Pres Monit. 2012;17(1):1–7.CrossRefGoogle Scholar
  93. 93.
    Hata Y, Kimura Y, Muratani H, Fukiyama K, Kawano Y, Ashida T, Yokouchi M, Imai Y, Ozawa T, Fujii J, et al. Office blood pressure variability as a predictor of brain infarction in elderly hypertensive patients. Hypertens Res Official J Japanes Soc Hyperten. 2000;23(6):553–60.CrossRefGoogle Scholar
  94. 94.
    Hata Y, Muratani H, Kimura Y, Fukiyama K, Kawano Y, Ashida T, Yokouchi M, Imai Y, Ozawa T, Fujii J, et al. Office blood pressure variability as a predictor of acute myocardial infarction in elderly patients receiving antihypertensive therapy. J Hum Hypertens. 2002;16(2):141–6.PubMedCrossRefGoogle Scholar
  95. 95.
    Masugata H, Senda S, Murao K, Inukai M, Hosomi N, Iwado Y, Noma T, Kohno M, Himoto T, Goda F. Visit-to-visit variability in blood pressure over a 1-year period is a marker of left ventricular diastolic dysfunction in treated hypertensive patients. Hypertens Res Official J Japanes Soc Hyperten. 2011;34(7):846–50.CrossRefGoogle Scholar
  96. 96.
    Nagai M, Hoshide S, Ishikawa J, Shimada K, Kario K. Visit-to-visit blood pressure variations: new independent determinants for carotid artery measures in the elderly at high risk of cardiovascular disease. J Am Soc Hypertens JASH. 2011;5(3):184–92.CrossRefGoogle Scholar
  97. 97.
    Kilpatrick ES, Rigby AS, Atkin SL. The role of blood pressure variability in the development of nephropathy in type 1 diabetes. Diabetes Care. 2010;33(11):2442–7.PubMedCrossRefGoogle Scholar
  98. 98.
    Kawai T, Ohishi M, Kamide K, Onishi M, Takeya Y, Tatara Y, Oguro R, Yamamoto K, Sugimoto K, Rakugi H. The impact of visit-to-visit variability in blood pressure on renal function. Hypertens Res Official J Japanes Soc Hyperten. 2012;35(2):239–43.CrossRefGoogle Scholar
  99. 99.
    Brickman AM, Reitz C, Luchsinger JA, Manly JJ, Schupf N, Muraskin J, DeCarli C, Brown TR, Mayeux R. Long-term blood pressure fluctuation and cerebrovascular disease in an elderly cohort. Arch Neurol. 2010;67(5):564–9.PubMedCrossRefGoogle Scholar
  100. 100.
    Diaz KM, Veerabhadrappa P, Kashem MA, Feairheller DL, Sturgeon KM, Williamson ST, Crabbe DL, Brown MD. Relationship of visit-to-visit and ambulatory blood pressure variability to vascular function in African Americans. Hypertens Res Official J Japanes Soc Hyperten. 2012;35(1):55–61.CrossRefGoogle Scholar
  101. 101.
    Okada H, Fukui M, Tanaka M, Inada S, Mineoka Y, Nakanishi N, Senmaru T, Sakabe K, Ushigome E, Asano M, et al. Visit-to-visit variability in systolic blood pressure is correlated with diabetic nephropathy and atherosclerosis in patients with type 2 diabetes. Atherosclerosis. 2012;220(1):155–9.PubMedCrossRefGoogle Scholar
  102. 102.
    Tozawa M, Iseki K, Yoshi S, Fukiyama K. Blood pressure variability as an adverse prognostic risk factor in end-stage renal disease. Nephrol Dial Transplant Official Public Eur Dial Trans Assoc Eur Renal Assoc. 1999;14(8):1976–81.Google Scholar
  103. 103.
    Liu M, Takahashi H, Morita Y, Maruyama S, Mizuno M, Yuzawa Y, Watanabe M, Toriyama T, Kawahara H, Matsuo S. Non-dipping is a potent predictor of cardiovascular mortality and is associated with autonomic dysfunction in haemodialysis patients. Nephrol Dial Transplant Official Public Eur Dial Trans Assoc Eur Renal Assoc. 2003;18(3):563–9.Google Scholar
  104. 104.
    Liu JG, Xu LP, Chu ZX, Miao CY, Su DF. Contribution of blood pressure variability to the effect of nitrendipine on end-organ damage in spontaneously hypertensive rats. J Hypertens. 2003;21(10):1961–7.PubMedCrossRefGoogle Scholar
  105. 105.
    Xie HH, Miao CY, Jiang YY, Su DF. Synergism of atenolol and nitrendipine on hemodynamic amelioration and organ protection in hypertensive rats. J Hypertens. 2005;23(1):193–201.PubMedCrossRefGoogle Scholar
  106. 106.
    Xie HH, Shen FM, Xu LP, Han P, Miao CY, Su DF. Reduction of blood pressure variability by combination therapy in spontaneously hypertensive rats. J Hypertens. 2007;25(11):2334–44.PubMedCrossRefGoogle Scholar
  107. 107.
    Ichihara A, Kaneshiro Y, Takemitsu T, Sakoda M. Effects of amlodipine and valsartan on vascular damage and ambulatory blood pressure in untreated hypertensive patients. J Hum Hypertens. 2006;20(10):787–94.PubMedCrossRefGoogle Scholar
  108. 108.
    Zhang Y, Agnoletti D, Safar ME, Blacher J. Effect of antihypertensive agents on blood pressure variability: the Natrilix SR versus candesartan and amlodipine in the reduction of systolic blood pressure in hypertensive patients (X-CELLENT) study. Hypertension. 2011;58(2):155–60.PubMedCrossRefGoogle Scholar
  109. 109.
    Masuda S, Tamura K, Wakui H, Kanaoka T, Ohsawa M, Maeda A, Dejima T, Yanagi M, Azuma K, Umemura S. Effects of angiotensin II type 1 receptor blocker on ambulatory blood pressure variability in hypertensive patients with overt diabetic nephropathy. Hypertens Res Official J Japanes Soc Hyperten. 2009;32(11):950–5.CrossRefGoogle Scholar
  110. 110.
    Mitsuhashi H, Tamura K, Yamauchi J, Ozawa M, Yanagi M, Dejima T, Wakui H, Masuda S, Azuma K, Kanaoka T, et al. Effect of losartan on ambulatory short-term blood pressure variability and cardiovascular remodeling in hypertensive patients on hemodialysis. Atherosclerosis. 2009;207(1):186–90.PubMedCrossRefGoogle Scholar
  111. 111.
    Shigenaga A, Tamura K, Dejima T, Ozawa M, Wakui H, Masuda S, Azuma K, Tsurumi-Ikeya Y, Mitsuhashi H, Okano Y, et al. Effects of angiotensin II type 1 receptor blocker on blood pressure variability and cardiovascular remodeling in hypertensive patients on chronic peritoneal dialysis. Nephron Clin Pract. 2009;112(1):c31–40.PubMedCrossRefGoogle Scholar
  112. 112.
    Hermida RC, Calvo C, Ayala DE, Lopez JE. Decrease in urinary albumin excretion associated with the normalization of nocturnal blood pressure in hypertensive subjects. Hypertension. 2005;46(4):960–8.PubMedCrossRefGoogle Scholar
  113. 113.
    Hermida RC, Ayala DE, Mojon A, Fernandez JR. Decreasing sleep-time blood pressure determined by ambulatory monitoring reduces cardiovascular risk. J Am Coll Cardiol. 2011;58(11):1165–73.PubMedCrossRefGoogle Scholar
  114. 114.
    Mancia G, Messerli F, Bakris G, Zhou Q, Champion A, Pepine CJ. Blood pressure control and improved cardiovascular outcomes in the International Verapamil SR-Trandolapril Study. Hypertension. 2007;50(2):299–305.PubMedCrossRefGoogle Scholar
  115. 115.
    Webb AJ, Fischer U, Mehta Z, Rothwell PM. Effects of antihypertensive-drug class on interindividual variation in blood pressure and risk of stroke: a systematic review and meta-analysis. Lancet. 2010;375(9718):906–15.PubMedCrossRefGoogle Scholar
  116. 116.
    Matsui Y, O'Rourke MF, Hoshide S, Ishikawa J, Shimada K, Kario K. Combined effect of angiotensin II receptor blocker and either a calcium channel blocker or diuretic on day-by-day variability of home blood pressure: the Japan combined treatment with Olmesartan and a Calcium-Channel Blocker Versus Olmesartan and Diuretics Randomized Efficacy Study. Hypertension. 2012;59(6):1132–8.PubMedCrossRefGoogle Scholar
  117. 117.
    Mancia G, Facchetti R, Parati G, Zanchetti A. Visit-to-visit blood pressure variability in the European Lacidipine Study on Atherosclerosis: methodological aspects and effects of antihypertensive treatment. J Hypertens. 2012;30(6):1241–51.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Gianfranco Parati
    • 1
    • 2
  • Juan E. Ochoa
    • 3
    • 2
  • Grzegorz Bilo
    • 2
  1. 1.Cardiology and Department of Clinical Medicine and PreventionUniversity of Milan-BicoccaMilanItaly
  2. 2.Department of Cardiology, S. Luca HospitalIRCCS Istituto Auxologico ItalianoMilanItaly
  3. 3.Department of Clinical Medicine and PreventionUniversity of Milan-BicoccaMilanItaly

Personalised recommendations