Current Hypertension Reports

, Volume 14, Issue 3, pp 228–237 | Cite as

Vascular Calcification: Pathophysiology and Risk Factors



Vascular calcification can occur in nearly all arterial beds and in both the medial and intimal layers. The initiating factors and clinical consequences depend on the underlying disease state and location of the calcification. The best studied manifestation is coronary artery calcification, in part because of the obvious clinical consequences, but also because of CT-based imaging modalities. In the general population, the presence of coronary artery calcification increases cardiovascular risk above that predicted by traditional Framingham risk factors, suggesting the presence of nontraditional risk factors. In patients with chronic kidney disease (CKD), coronary artery calcification is more prevalent and markedly more severe than in the general population. In these CKD patients, nontraditional risk factors such as oxidative stress, advanced glycation end products, and disordered mineral metabolism are also more prevalent and more severe and offer mechanistic insight into the pathogenesis of vascular calcification.


Hypertension Diabetes Vascular calcification Chronic kidney disease (CKD) Traditional risk factors Nontraditional risk factors Inflammation Mineral metabolism Dyslipidemia Calcium Phosphorus Cardiovascular risk Pathophysiology 



Dr. Chen has received grant support from Genzyme Corp. and has received royalties from Amgen.

Dr. Moe has served as a consultant for and received honoraria from Genzyme Corp., Shire, Amgen, and Citrolink; has been paid for providing expert testimony by Fitzpatrick; has received grant support from Genzyme Corp., Shire, and Amgen; holds stock/stock options in Eli Lilly and Company; and has had travel/accommodations expenses covered/reimbursed by Shire, Genzyme Corp., and Amgen.


Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Moe SM, Chen NX. Mechanisms of vascular calcification in chronic kidney disease. J Am Soc Nephrol. 2008;19(2):213–6.PubMedCrossRefGoogle Scholar
  2. 2.
    Ibanez B, Badimon JJ, Garcia MJ. Diagnosis of atherosclerosis by imaging. Am J Med. 2009;122(1 Suppl):S15–25.PubMedCrossRefGoogle Scholar
  3. 3.
    Moe SM, Chen NX. Pathophysiology of vascular calcification in chronic kidney disease. Circ Res. 2004;95(6):560–7.PubMedCrossRefGoogle Scholar
  4. 4.
    Proudfoot D, Shanahan CM, Weissberg PL. Vascular calcification: new insights into an old problem [editorial; comment]. J Pathol. 1998;185(1):1–3.PubMedCrossRefGoogle Scholar
  5. 5.
    Lehto S, Niskanen L, Suhonen M, Ronnemaa T, Laakso M. Medial artery calcification. A neglected harbinger of cardiovascular complications in non-insulin-dependent diabetes mellitus. Arterioscler Thromb Vasc Biol. 1996;16(8):978–83.PubMedCrossRefGoogle Scholar
  6. 6.
    London GM, Guerin AP, Marchais SJ, Metivier F, Pannier B, Adda H. Arterial media calcification in end-stage renal disease: impact on all-cause and cardiovascular mortality. Nephrol Dial Transplant. 2003;18(9):1731–40.PubMedCrossRefGoogle Scholar
  7. 7.
    Moe SM, Chen NX. Calciphylaxis and vascular calcification: a continuum of extra-skeletal osteogenesis. Pediatr Nephrol. 2003;18:969–75.PubMedCrossRefGoogle Scholar
  8. 8.
    Raggi P, Gongora MC, Gopal A, Callister TQ, Budoff M, Shaw LJ. Coronary artery calcium to predict all-cause mortality in elderly men and women. J Am Coll Cardiol. 2008;52(1):17–23.PubMedCrossRefGoogle Scholar
  9. 9.
    Block, G.A., P. Raggi, A. Bellasi, L. Kooienga, and D.M. Spiegel, Mortality effect of coronary calcification and phosphate binder choice in incident hemodialysis patients. Kidney Int, 2007.Google Scholar
  10. 10.
    Mehrotra R, Budoff M, Hokanson JE, Ipp E, Takasu J, Adler S. Progression of coronary artery calcification in diabetics with and without chronic kidney disease. Kidney Int. 2005;68(3):1258–66.PubMedCrossRefGoogle Scholar
  11. 11.
    Block GA, Spiegel DM, Ehrlich J, Mehta R, Lindbergh J, Dreisbach A, et al. Effects of sevelamer and calcium on coronary artery calcification in patients new to hemodialysis. Kidney Int. 2005;68(4):1815–24.PubMedCrossRefGoogle Scholar
  12. 12.
    Moe SM, O'Neill KD, Reslerova M, Fineberg N, Persohn S, Meyer CA. Natural history of vascular calcification in dialysis and transplant patients. Nephrol Dial Transplant. 2004;19(9):2387–93.PubMedCrossRefGoogle Scholar
  13. 13.
    Schwarz U, Buzello M, Ritz E, Stein G, Raabe G, Wiest G, et al. Morphology of coronary atherosclerotic lesions in patients with end-stage renal failure. Nephrology, Dialysis, Transplantation. 2000;15(2):218–23.PubMedCrossRefGoogle Scholar
  14. 14.
    Gross ML, Meyer HP, Ziebart H, Rieger P, Wenzel U, Amann K, et al. Calcification of coronary intima and media: immunohistochemistry, backscatter imaging, and x-ray analysis in renal and nonrenal patients. Clin J Am Soc Nephrol. 2007;2(1):121–34.PubMedCrossRefGoogle Scholar
  15. 15.
    Nakamura S, Ishibashi-Ueda H, Niizuma S, Yoshihara F, Horio T, Kawano Y. Coronary calcification in patients with chronic kidney disease and coronary artery disease. Clin J Am Soc Nephrol. 2009;4(12):1892–900.PubMedCrossRefGoogle Scholar
  16. 16.
    Moe SM, O'Neill KD, Duan D, Ahmed S, Chen NX, Leapman SB, et al. Medial artery calcification in ESRD patients is associated with deposition of bone matrix proteins. Kidney Int. 2002;61(2):638–47.PubMedCrossRefGoogle Scholar
  17. 17.
    Allison MA, Hsi S, Wassel CL, Morgan C, Ix JH, Wright CM, et al. Calcified atherosclerosis in different vascular beds and the risk of mortality. Arterioscler Thromb Vasc Biol. 2012;32(1):140–6.PubMedCrossRefGoogle Scholar
  18. 18.
    Chen NX, O'Neill KD, Chen X, Moe SM. Annexin-mediated matrix vesicle calcification in vascular smooth muscle cells. J Bone Miner Res. 2008;23(11):1798–805.PubMedCrossRefGoogle Scholar
  19. 19.
    Shroff RC, McNair R, Figg N, Skepper JN, Schurgers L, Gupta A, et al. Dialysis accelerates medial vascular calcification in part by triggering smooth muscle cell apoptosis. Circulation. 2008;118(17):1748–57.PubMedCrossRefGoogle Scholar
  20. 20.
    •• Chen, N.X., F. Kircelli, K.D. O'Neill, X. Chen, and S.M. Moe, Verapamil inhibits calcification and matrix vesicle activity of bovine vascular smooth muscle cells. Kidney Int, 2010. 77(5): p. 436-42. This study provides evidence of the importance of extracellular calcium in MV activity and calcification.PubMedCrossRefGoogle Scholar
  21. 21.
    Barreto DV, Barreto Fde C, Carvalho AB, Cuppari L, Draibe SA, Dalboni MA, et al. Association of changes in bone remodeling and coronary calcification in hemodialysis patients: a prospective study. Am J Kidney Dis. 2008;52(6):1139–50.PubMedCrossRefGoogle Scholar
  22. 22.
    Ketteler M, Biggar PH. Review article: getting the balance right: assessing causes and extent of vascular calcification in chronic kidney disease. Nephrology (Carlton). 2009;14(4):389–94.CrossRefGoogle Scholar
  23. 23.
    Everhart JE, Pettitt DJ, Knowler WC, Rose FA, Bennett PH. Medial arterial calcification and its association with mortality and complications of diabetes. Diabetologia. 1988;31(1):16–23.PubMedGoogle Scholar
  24. 24.
    Mehrotra R, Budoff M, Christenson P, Ipp E, Takasu J, Gupta A, et al. Determinants of coronary artery calcification in diabetics with and without nephropathy. Kidney Int. 2004;66(5):2022–31.PubMedCrossRefGoogle Scholar
  25. 25.
    Chertow, G.M., P. Raggi, S. Chasan-Taber, J. Bommer, H. Holzer, and S.K. Burke, Determinants of progressive vascular calcification in haemodialysis patients. Nephrol Dial Transplant, 2004.Google Scholar
  26. 26.
    Orakzai SH, Nasir K, Blaha M, Blumenthal RS, Raggi P. Non-HDL cholesterol is strongly associated with coronary artery calcification in asymptomatic individuals. Atherosclerosis. 2009;202(1):289–95.PubMedCrossRefGoogle Scholar
  27. 27.
    Henein MY, Owen A. Statins moderate coronary stenoses but not coronary calcification: results from meta-analyses. Int J Cardiol. 2011;153(1):31–5.PubMedCrossRefGoogle Scholar
  28. 28.
    Raggi P, Cooil B, Callister TQ. Use of electron beam tomography data to develop models for prediction of hard coronary events. Am Heart J. 2001;141(3):375–82.PubMedCrossRefGoogle Scholar
  29. 29.
    Budoff MJ, Rader DJ, Reilly MP, Mohler 3rd ER, Lash J, Yang W, et al. Relationship of estimated GFR and coronary artery calcification in the CRIC (Chronic Renal Insufficiency Cohort) Study. Am J Kidney Dis. 2011;58(4):519–26.PubMedCrossRefGoogle Scholar
  30. 30.
    Detrano R. The ethnic-specific nature of mechanisms for coronary heart disease. J Am Coll Cardiol. 2003;41(1):45–6.PubMedCrossRefGoogle Scholar
  31. 31.
    Elias-Smale SE, Proenca RV, Koller MT, Kavousi M, van Rooij FJ, Hunink MG, et al. Coronary calcium score improves classification of coronary heart disease risk in the elderly: the Rotterdam study. J Am Coll Cardiol. 2010;56(17):1407–14.PubMedCrossRefGoogle Scholar
  32. 32.
    Greenland P, LaBree L, Azen SP, Doherty TM, Detrano RC. Coronary artery calcium score combined with Framingham score for risk prediction in asymptomatic individuals. JAMA. 2004;291(2):210–5.PubMedCrossRefGoogle Scholar
  33. 33.
    Kalsch H, Lehmann N, Mohlenkamp S, Neumann T, Slomiany U, Schmermund A, et al. Association of coronary artery calcium and congestive heart failure in the general population: results of the Heinz Nixdorf Recall study. Clin Res Cardiol. 2010;99(3):175–82.PubMedCrossRefGoogle Scholar
  34. 34.
    •• Peters, S.A., M. Bakker, H.M. den Ruijter, and M.L. Bots, Added value of CAC in risk stratification for cardiovascular events: a systematic review. Eur J Clin Invest, 2012. 42(1): p. 110-6. This systemic review provides important information regarding the risk factors for coronary artery calcification.PubMedCrossRefGoogle Scholar
  35. 35.
    •• Savoia, C., D. Burger, N. Nishigaki, A. Montezano, and R.M. Touyz, Angiotensin II and the vascular phenotype in hypertension. Expert Rev Mol Med, 2011. 13: p. e11. This review describes the roles of renin-angiotensin systems in VSMC growth, apoptosis, differentiation, and calcification.Google Scholar
  36. 36.
    • Armstrong, Z.B., D.R. Boughner, M. Drangova, and K.A. Rogers, Angiotensin II type 1 receptor blocker inhibits arterial calcification in a pre-clinical model. Cardiovasc Res, 2011. 90(1): p. 165-70. This article provides evidence regarding the angiotensin receptor in the development of arterial calcification.PubMedCrossRefGoogle Scholar
  37. 37.
    Tokumoto M, Mizobuchi M, Finch JL, Nakamura H, Martin DR, Slatopolsky E. Blockage of the renin-angiotensin system attenuates mortality but not vascular calcification in uremic rats: sevelamer carbonate prevents vascular calcification. Am J Nephrol. 2009;29(6):582–91.PubMedCrossRefGoogle Scholar
  38. 38.
    Wu SY, Yu YR, Cai Y, Jia LX, Wang X, Xiao CS, et al. Endogenous aldosterone is involved in vascular calcification in rat. Exp Biol Med (Maywood). 2012;237(1):31–7.CrossRefGoogle Scholar
  39. 39.
    Chen NX, Duan D, O'Neill D. K, and S.M. Moe, High glucose increases the expression of Cbfa1 and BMP-2 and enhances the calcification of vascular smooth muscle cells. Nephrol Dial Transplant. 2006;21(12):3435–42.PubMedCrossRefGoogle Scholar
  40. 40.
    Al-Aly Z, Shao JS, Lai CF, Huang E, Cai J, Behrmann A, et al. Aortic Msx2-Wnt calcification cascade is regulated by TNF-alpha-dependent signals in diabetic Ldlr-/- mice. Arterioscler Thromb Vasc Biol. 2007;27(12):2589–96.PubMedCrossRefGoogle Scholar
  41. 41.
    Bostrom KI, Jumabay M, Matveyenko A, Nicholas SB, Yao Y. Activation of vascular bone morphogenetic protein signaling in diabetes mellitus. Circ Res. 2011;108(4):446–57.PubMedCrossRefGoogle Scholar
  42. 42.
    Parhami F, Basseri B, Hwang J, Tintut Y, Demer LL. High-density lipoprotein regulates calcification of vascular cells. Circ Res. 2002;91(7):570–6.PubMedCrossRefGoogle Scholar
  43. 43.
    • Ting, T.C., S. Miyazaki-Anzai, M. Masuda, M. Levi, L.L. Demer, Y. Tintut, and M. Miyazaki, Increased lipogenesis and stearate accelerate vascular calcification in calcifying vascular cells. J Biol Chem, 2011. 286(27): p. 23938-49. This article provides evidence for lipid metabolism and lipogenesis as risk factors for vascular calcification.PubMedCrossRefGoogle Scholar
  44. 44.
    Abedin M, Lim J, Tang TB, Park D, Demer LL, Tintut Y. N-3 fatty acids inhibit vascular calcification via the p38-mitogen-activated protein kinase and peroxisome proliferator-activated receptor-gamma pathways. Circ Res. 2006;98(6):727–9.PubMedCrossRefGoogle Scholar
  45. 45.
    Parhami F, Morrow AD, Balucan J, Leitinger N, Watson AD, Tintut Y. Lipid oxidation products have opposite effects on calcifying vascular cell and bone cell differentiation. A possible explanation for the paradox of arterial calcification in osteoporotic patients. Arterioscler Thromb Vasc Biol. 1997;17(4):680–7.PubMedCrossRefGoogle Scholar
  46. 46.
    Ridker PM. Clinical application of C-reactive protein for cardiovascular disease detection and prevention. Circulation. 2003;107(3):363–9.PubMedCrossRefGoogle Scholar
  47. 47.
    Kimmel PL, Phillips TM, Simmens SJ, Peterson RA, Weihs KL, Alleyne S, et al. Immunologic function and survival in hemodialysis patients. Kidney Int. 1998;54(1):236–44.PubMedCrossRefGoogle Scholar
  48. 48.
    Oh J, Wunsch R, Turzer M, Bahner M, Raggi P, Querfeld U, et al. Advanced coronary and carotid arteriopathy in young adults with childhood-onset chronic renal failure. Circulation. 2002;106(1):100–5.PubMedCrossRefGoogle Scholar
  49. 49.
    Stompor T, Krasniak A, Sulowicz W, Dembinska-Kiec A, Janda K, Wojcik K, et al. Changes in common carotid artery intima-media thickness over 1 year in patients on peritoneal dialysis. Nephrol Dial Transplant. 2005;20(2):404–12.PubMedCrossRefGoogle Scholar
  50. 50.
    Aikawa E, Nahrendorf M, Figueiredo JL, Swirski FK, Shtatland T, Kohler RH, et al. Osteogenesis associates with inflammation in early-stage atherosclerosis evaluated by molecular imaging in vivo. Circulation. 2007;116(24):2841–50.PubMedCrossRefGoogle Scholar
  51. 51.
    Tintut Y, Patel J, Parhami F, Demer LL. Tumor necrosis factor-alpha promotes in vitro calcification of vascular cells via the cAMP pathway. Circulation. 2000;102(21):2636–42.PubMedGoogle Scholar
  52. 52.
    Tintut Y, Patel J, Territo M, Saini T, Parhami F, Demer LL. Monocyte/macrophage regulation of vascular calcification in vitro. Circulation. 2002;105(5):650–5.PubMedCrossRefGoogle Scholar
  53. 53.
    Okazaki H, Shioi A, Hirowatari K, Koyama H, Fukumoto S, Ishimura E, et al. Phosphatidylinositol 3-kinase/Akt pathway regulates inflammatory mediators-induced calcification of human vascular smooth muscle cells. Osaka City Med J. 2009;55(2):71–80.PubMedGoogle Scholar
  54. 54.
    Amore A, Coppo R. Immunological basis of inflammation in dialysis. Nephrol Dial Transplant. 2002;17 Suppl 8:16–24.PubMedCrossRefGoogle Scholar
  55. 55.
    Zoccali C, Mallamaci F, Tripepi G. Novel cardiovascular risk factors in end-stage renal disease. J Am Soc Nephrol. 2004;15 Suppl 1:S77–80.PubMedCrossRefGoogle Scholar
  56. 56.
    • Yamada, S., M. Taniguchi, M. Tokumoto, J. Toyonaga, K. Fujisaki, T. Suehiro, H. Noguchi, M. Iida, K. Tsuruya, and T. Kitazono, The antioxidant tempol ameliorates arterial medial calcification in uremic rats: Important role of oxidative stress in the pathogenesis of vascular calcification in chronic kidney disease. J Bone Miner Res, 2011. This study demonstrated that oxidative stress induced by uremia may play a role in the development of vascular calcification in CKD.Google Scholar
  57. 57.
    Sutra T, Morena M, Bargnoux AS, Caporiccio B, Canaud B, Cristol JP. Superoxide production: a procalcifying cell signalling event in osteoblastic differentiation of vascular smooth muscle cells exposed to calcification media. Free Radic Res. 2008;42(9):789–97.PubMedCrossRefGoogle Scholar
  58. 58.
    Liberman M, Bassi E, Martinatti MK, Lario FC, Wosniak Jr J, Pomerantzeff PM, et al. Oxidant generation predominates around calcifying foci and enhances progression of aortic valve calcification. Arterioscler Thromb Vasc Biol. 2008;28(3):463–70.PubMedCrossRefGoogle Scholar
  59. 59.
    You H, Yang H, Zhu Q, Li M, Xue J, Gu Y, et al. Advanced oxidation protein products induce vascular calcification by promoting osteoblastic trans-differentiation of smooth muscle cells via oxidative stress and ERK pathway. Ren Fail. 2009;31(4):313–9.PubMedCrossRefGoogle Scholar
  60. 60.
    Byon CH, Javed A, Dai Q, Kappes JC, Clemens TL, Darley-Usmar VM, et al. Oxidative stress induces vascular calcification through modulation of the osteogenic transcription factor Runx2 by AKT signaling. J Biol Chem. 2008;283(22):15319–27.PubMedCrossRefGoogle Scholar
  61. 61.
    Tintut Y, Parhami F, Tsingotjidou A, Tetradis S, Territo M, Demer LL. 8-Isoprostaglandin E2 enhances receptor-activated NFkappa B ligand (RANKL)-dependent osteoclastic potential of marrow hematopoietic precursors via the cAMP pathway. J Biol Chem. 2002;277(16):14221–6.PubMedCrossRefGoogle Scholar
  62. 62.
    Tseng W, Lu J, Bishop GA, Watson AD, Sage AP, Demer L, et al. Regulation of interleukin-6 expression in osteoblasts by oxidized phospholipids. J Lipid Res. 2010;51(5):1010–6.PubMedCrossRefGoogle Scholar
  63. 63.
    Demer LL. Vascular calcification and osteoporosis: inflammatory responses to oxidized lipids. Int J Epidemiol. 2002;31(4):737–41.PubMedCrossRefGoogle Scholar
  64. 64.
    Niwa T, Katsuzaki T, Miyazaki S, Miyazaki T, Ishizaki Y, Hayase F, et al. Immunohistochemical detection of imidazolone, a novel advanced glycation end product, in kidneys and aortas of diabetic patients. J Clin Invest. 1997;99(6):1272–80.PubMedCrossRefGoogle Scholar
  65. 65.
    Miyata T, Sprague SM. Advanced glycation of beta 2-microglobulin in the pathogenesis of bone lesions in dialysis-associated amyloidosis. Nephrol, Dial, Transplant. 1996;11 Suppl 3:86–90.CrossRefGoogle Scholar
  66. 66.
    Sakata N, Noma A, Yamamoto Y, Okamoto K, Meng J, Takebayashi S, et al. Modification of elastin by pentosidine is associated with the calcification of aortic media in patients with end-stage renal disease. Nephrol Dial Transplant. 2003;18(8):1601–9.PubMedCrossRefGoogle Scholar
  67. 67.
    Yamagishi S, Fujimori H, Yonekura H, Tanaka N, Yamamoto H. Advanced glycation endproducts accelerate calcification in microvascular pericytes. Biochem Biophys Res Commun. 1999;258(2):353–7.PubMedCrossRefGoogle Scholar
  68. 68.
    Tanikawa T, Okada Y, Tanikawa R, Tanaka Y. Advanced glycation end products induce calcification of vascular smooth muscle cells through RAGE/p38 MAPK. J Vasc Res. 2009;46(6):572–80.PubMedCrossRefGoogle Scholar
  69. 69.
    Naka Y, Bucciarelli LG, Wendt T, Lee LK, Rong LL, Ramasamy R, et al. RAGE axis: Animal models and novel insights into the vascular complications of diabetes. Arterioscler Thromb Vasc Biol. 2004;24(8):1342–9.PubMedCrossRefGoogle Scholar
  70. 70.
    Ren X, Shao H, Wei Q, Sun Z, Liu N. Advanced glycation end-products enhance calcification in vascular smooth muscle cells. J Int Med Res. 2009;37(3):847–54.PubMedGoogle Scholar
  71. 71.
    Suga T, Iso T, Shimizu T, Tanaka T, Yamagishi S, Takeuchi M, et al. Activation of receptor for advanced glycation end products induces osteogenic differentiation of vascular smooth muscle cells. J Atheroscler Thromb. 2011;18(8):670–83.PubMedCrossRefGoogle Scholar
  72. 72.
    Block GA, Hulbert-Shearon TE, Levin NW, Port FK. Association of serum phosphorus and calcium x phosphate product with mortality risk in chronic hemodialysis patients: a national study. Am J Kidney Dis. 1998;31(4):607–17.PubMedCrossRefGoogle Scholar
  73. 73.
    Goodman WG, Goldin J, Kuizon BD, Yoon C, Gales B, Sider D, et al. Coronary-artery calcification in young adults with end-stage renal disease who are undergoing dialysis. N Engl J Med. 2000;342(20):1478–83.PubMedCrossRefGoogle Scholar
  74. 74.
    Chertow GM, Burke SK, Raggi P. Sevelamer attenuates the progression of coronary and aortic calcification in hemodialysis patients. Kidney Int. 2002;62(1):245–52.PubMedCrossRefGoogle Scholar
  75. 75.
    Tonelli M, Sacks F, Pfeffer M, Gao Z, Curhan G. Relation between serum phosphate level and cardiovascular event rate in people with coronary disease. Circulation. 2005;112(17):2627–33.PubMedCrossRefGoogle Scholar
  76. 76.
    Jono S, McKee MD, Murry CE, Shioi A, Nishizawa Y, Mori K, et al. Phosphate regulation of vascular smooth muscle cell calcification. Circ Res. 2000;87(7):E10–7.PubMedGoogle Scholar
  77. 77.
    Jono S, Peinado C, Giachelli CM. Phosphorylation of osteopontin is required for inhibition of vascular smooth muscle cell calcification. J Biol Chem. 2000;275(26):20197–203.PubMedCrossRefGoogle Scholar
  78. 78.
    Steitz SA, Speer MY, Curinga G, Yang HY, Haynes P, Aebersold R, et al. Smooth muscle cell phenotypic transition associated with calcification: upregulation of Cbfa1 and downregulation of smooth muscle lineage markers. Circ Res. 2001;89(12):1147–54.PubMedCrossRefGoogle Scholar
  79. 79.
    Werner A, Dehmelt L, Nalbant P. Na +-dependent phosphate cotransporters: the NaPi protein families. J Exp Biol. 1998;201(Pt 23):3135–42.PubMedGoogle Scholar
  80. 80.
    Li X, Yang HY, Giachelli CM. Role of the sodium-dependent phosphate cotransporter, Pit-1, in vascular smooth muscle cell calcification. Circ Res. 2006;98(7):905–12.PubMedCrossRefGoogle Scholar
  81. 81.
    Chen NX, O'Neill KD, Duan D, Moe SM. Phosphorus and uremic serum up-regulate osteopontin expression in vascular smooth muscle cells. Kidney Int. 2002;62(5):1724–31.PubMedCrossRefGoogle Scholar
  82. 82.
    Chen, N.X., D. Duan, D. O'Neill K, G.O. Wolisi, J.J. Koczman, R. Laclair, and S.M. Moe, The mechanisms of uremic serum-induced expression of bone matrix proteins in bovine vascular smooth muscle cells. Kidney Int, 2006.Google Scholar
  83. 83.
    Hosaka N, Mizobuchi M, Ogata H, Kumata C, Kondo F, Koiwa F, et al. Elastin degradation accelerates phosphate-induced mineralization of vascular smooth muscle cells. Calcif Tissue Int. 2009;85(6):523–9.PubMedCrossRefGoogle Scholar
  84. 84.
    Simionescu A, Philips K, Vyavahare N. Elastin-derived peptides and TGF-beta1 induce osteogenic responses in smooth muscle cells. Biochem Biophys Res Commun. 2005;334(2):524–32.PubMedCrossRefGoogle Scholar
  85. 85.
    Lee KS, Kim HJ, Li QL, Chi XZ, Ueta C, Komori T, et al. Runx2 is a common target of transforming growth factor beta1 and bone morphogenetic protein 2, and cooperation between Runx2 and Smad5 induces osteoblast-specific gene expression in the pluripotent mesenchymal precursor cell line C2C12. Mol Cell Biol. 2000;20(23):8783–92.PubMedCrossRefGoogle Scholar
  86. 86.
    Bouvet C, Moreau S, Blanchette J, de Blois D, Moreau P. Sequential activation of matrix metalloproteinase 9 and transforming growth factor beta in arterial elastocalcinosis. Arterioscler Thromb Vasc Biol. 2008;28(5):856–62.PubMedCrossRefGoogle Scholar
  87. 87.
    • Chen, N.X., Kalisha D. O’Neill, Xianming Chen Kiattisunthorn, Kraiwporn, Vincent H. Gattone and Sharon M. Moe, Activation of arterial matrix metalloproteinases leads to vascular calcification in chronic kidney disease. American Journal of Nephrology, 2011. Vol. 34(No. 3). This study suggests that matrix degradation plays an important role in vascular calcification in CKD.Google Scholar
  88. 88.
    Moe SM, Chertow GM. The Case against Calcium-Based Phosphate Binders. Clin J Am Soc Nephrol. 2006;1(4):697–703.PubMedCrossRefGoogle Scholar
  89. 89.
    Yang H, Curinga G, Giachelli CM. Elevated extracellular calcium levels induce smooth muscle cell matrix mineralization in vitro. Kidney Int. 2004;66(6):2293–9.PubMedCrossRefGoogle Scholar
  90. 90.
    Reynolds JL, Joannides AJ, Skepper JN, McNair R, Schurgers LJ, Proudfoot D, et al. Human vascular smooth muscle cells undergo vesicle-mediated calcification in response to changes in extracellular calcium and phosphate concentrations: a potential mechanism for accelerated vascular calcification in ESRD. J Am Soc Nephrol. 2004;15(11):2857–67.PubMedCrossRefGoogle Scholar
  91. 91.
    Lomashvili KA, Cobbs S, Hennigar RA, Hardcastle KI, O'Neill WC. Phosphate-induced vascular calcification: role of pyrophosphate and osteopontin. J Am Soc Nephrol. 2004;15(6):1392–401.PubMedCrossRefGoogle Scholar
  92. 92.
    • Shroff, R.C., R. McNair, J.N. Skepper, N. Figg, L.J. Schurgers, J. Deanfield, L. Rees, and C.M. Shanahan, Chronic mineral dysregulation promotes vascular smooth muscle cell adaptation and extracellular matrix calcification. J Am Soc Nephrol, 2010. 21(1): p. 103-12. This study demonstrates an important role for calcium in VSMC calcification. PubMedCrossRefGoogle Scholar
  93. 93.
    Kapustin AN, Davies JD, Reynolds JL, McNair R, Jones GT, Sidibe A, et al. Calcium regulates key components of vascular smooth muscle cell-derived matrix vesicles to enhance mineralization. Circ Res. 2011;109(1):e1–e12.PubMedCrossRefGoogle Scholar
  94. 94.
    Wolf M. Fibroblast growth factor 23 and the future of phosphorus management. Curr Opin Nephrol Hypertens. 2009;18(6):463–8.PubMedCrossRefGoogle Scholar
  95. 95.
    Kuro-o M, Matsumura Y, Aizawa H, Kawaguchi H, Suga T, Utsugi T, et al. Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature. 1997;390(6655):45–51.PubMedCrossRefGoogle Scholar
  96. 96.
    Balci M, Kirkpantur A, Gulbay M, Gurbuz OA. Plasma fibroblast growth factor-23 levels are independently associated with carotid artery atherosclerosis in maintenance hemodialysis patients. Hemodial Int. 2010;14(4):425–32.PubMedCrossRefGoogle Scholar
  97. 97.
    •Desjardins, L., S. Liabeuf, C. Renard, A. Lenglet, H.D. Lemke, G. Choukroun, T.B. Drueke, and Z.A. Massy, FGF23 is independently associated with vascular calcification but not bone mineral density in patients at various CKD stages. Osteoporos Int, 2011. This study demonstrates an important role for FGF23 in vascular calcification in CKD. Google Scholar
  98. 98.
    Stubbs J, Liu S, Quarles LD. Role of fibroblast growth factor 23 in phosphate homeostasis and pathogenesis of disordered mineral metabolism in chronic kidney disease. Semin Dial. 2007;20(4):302–8.PubMedCrossRefGoogle Scholar
  99. 99.
    El-Abbadi MM, Pai AS, Leaf EM, Yang HY, Bartley BA, Quan KK, et al. Phosphate feeding induces arterial medial calcification in uremic mice: role of serum phosphorus, fibroblast growth factor-23, and osteopontin. Kidney Int. 2009;75(12):1297–307.PubMedCrossRefGoogle Scholar
  100. 100.
    Takei, Y., H. Yamamoto, T. Sato, A. Otani, M. Kozai, M. Masuda, Y. Taketani, K. Muto-Sato, B. Lanske, and E. Takeda, Stanniocalcin 2 is associated with ectopic calcification in alpha-klotho mutant mice and inhibits hyperphosphatemia-induced calcification in aortic vascular smooth muscle cells. Bone, 2012.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Division of Nephrology, Department of MedicineIndiana University School of MedicineIndianapolisUSA
  2. 2.Division of Nephrology, Department of MedicineIndiana University School of MedicineIndianapolisUSA

Personalised recommendations