Current Hypertension Reports

, 10:488

Genetic determinants of hypertension: An update

Article
  • 67 Downloads

Abstract

Hypertension represents a global public health burden. In addition to the rarer Mendelian forms of hypertension, classic genetic studies have documented a significant heritable component to the most common form, essential hypertension (EH). Extensive efforts are under way to elucidate the genetic basis of this disease. Recently, a new form of Mendelian hypertension has been identified, pharmacogenetic association studies in hypertensive patients have identified novel gene-by-drug interactions, and the first genome-wide association studies of EH have been published. New findings in consomic and congenic rat models also offer new clues to the genetic architecture of this complex phenotype. In this review, the authors summarize and evaluate the most recent findings related to hypertension gene identification.

References and Recommended Reading

  1. 1.
    Hajjar I, Kotchen TA: Trends in prevalence, awareness, treatment, and control of hypertension in the United States, 1988–2000 [see comment]. JAMA 2003, 290:199–206.PubMedCrossRefGoogle Scholar
  2. 2.
    Kearney PM, Whelton M, Reynolds K, et al.: Worldwide prevalence of hypertension: a systematic review [see comment]. J Hypertens 2004, 22:11–19.PubMedCrossRefGoogle Scholar
  3. 3.
    Kannel WB: Elevated systolic blood pressure as a cardiovascular risk factor. Am J Cardiol 2000, 85:251–255.PubMedCrossRefGoogle Scholar
  4. 4.
    Mosterd A, D’Agostino RB, Silbershatz H, et al.: Trends in the prevalence of hypertension, antihypertensive therapy, and left ventricular hypertrophy from 1950 to 1989 [see comment]. N Engl J Med 1999, 340:1221–1227.PubMedCrossRefGoogle Scholar
  5. 5.
    Abney M, McPeek MS, Ober C: Broad and narrow heritabilities of quantitative traits in a founder population. Am J Hum Genet 2001, 68:1302–1307.PubMedCrossRefGoogle Scholar
  6. 6.
    Gu C, Borecki I, Gagnon J, et al.: Familial resemblance for resting blood pressure with particular reference to racial differences: preliminary analyses from the HERITAGE Family Study. Hum Biol 1998, 70:77–90.PubMedGoogle Scholar
  7. 7.
    Jee SH, Suh I, Won SY, et al.: Familial correlation and heritability for cardiovascular risk factors. Yonsei Med J 2002, 43:160–164.PubMedGoogle Scholar
  8. 8.
    Knuiman MW, Divitini ML, Welborn TA, et al.: Familial correlations, cohabitation effects, and heritability for cardiovascular risk factors. Ann Epidemiol 1996, 6:188–194.PubMedCrossRefGoogle Scholar
  9. 9.
    Hansson JH, Nelson-Williams C, Suzuki H, et al.: Hypertension caused by a truncated epithelial sodium channel gamma subunit: genetic heterogeneity of Liddle syndrome [see comment]. Nat Genet 1995, 11:76–82.PubMedCrossRefGoogle Scholar
  10. 10.
    Hansson JH, Schild L, Lu Y, et al.: A de novo missense mutation of the beta subunit of the epithelial sodium channel causes hypertension and Liddle syndrome, identifying a proline-rich segment critical for regulation of channel activity. Proc Natl Acad Sci U S A 1995, 92:11495–11499.PubMedCrossRefGoogle Scholar
  11. 11.
    Lifton RP, Dluhy RG, Powers M, et al.: A chimaeric 11 beta-hydroxylase/aldosterone synthase gene causes glucocorticoid-remediable aldosteronism and human hypertension. Nature 1992, 355:262–265.PubMedCrossRefGoogle Scholar
  12. 12.
    Mune T, Rogerson FM, Nikkila H, et al.: Human hypertension caused by mutations in the kidney isozyme of 11 beta-hydroxysteroid dehydrogenase. Nat Genet 1995, 10:394–399.PubMedCrossRefGoogle Scholar
  13. 13.
    Shimkets RA, Warnock DG, Bositis CM, et al.: Liddle’s syndrome: heritable human hypertension caused by mutations in the beta subunit of the epithelial sodium channel. Cell 1994, 79:407–414.PubMedCrossRefGoogle Scholar
  14. 14.
    Tamura H, Schild L, Enomoto N, et al.: Liddle disease caused by a missense mutation of beta subunit of the epithelial sodium channel gene. J Clin Invest 1996, 97:1780–1784.PubMedCrossRefGoogle Scholar
  15. 15.
    Lifton RP, Dluhy RG, Powers M, et al.: Hereditary hypertension caused by chimaeric gene duplications and ectopic expression of aldosterone synthase. Nat Genet 1992, 2:66–74.PubMedCrossRefGoogle Scholar
  16. 16.
    Geller DS, Zhang JJ, Wisgerhof MV, et al.: A novel form of human Mendelian hypertension featuring non-glucocorticoid remediable aldosteronism. J Clin Endocrinol Metab 2008, 93:3117–3123.PubMedCrossRefGoogle Scholar
  17. 17.
    Kato N, Julier C: Linkage mapping for hypertension susceptibility genes. Curr Hypertens Rep 1999, 1:15–24.PubMedCrossRefGoogle Scholar
  18. 18.
    Tobin MD, Tomaszewski M, Braund PS, et al.: Common variants in genes underlying monogenic hypertension and hypotension and blood pressure in the general population. Hypertension 2008, 51:1658–1664.PubMedCrossRefGoogle Scholar
  19. 19.
    Cheung VG, Spielman RS, Ewens KG, et al.: Mapping determinants of human gene expression by regional and genome-wide association. Nature 2005, 437:1365–1369.PubMedCrossRefGoogle Scholar
  20. 20.
    Kohara K, Tabara Y, Nakura J, et al.: Identification of hypertension-susceptibility genes and pathways by a systemic multiple candidate gene approach: the millennium genome project for hypertension. Hypertens Res 2008, 31:203–212.PubMedCrossRefGoogle Scholar
  21. 21.
    Lynch AI, Boerwinkle E, Davis BR, et al.: Pharmacogenetic association of the NPPA T2238C genetic variant with cardiovascular disease outcomes in patients with hypertension. JAMA 2008, 299:296–307.PubMedCrossRefGoogle Scholar
  22. 22.
    Bhatnagar V, O’Connor DT, Schork NJ, et al.: Angiotensin-converting enzyme gene polymorphism predicts the time-course of blood pressure response to angiotensin converting enzyme inhibition in the AASK trial. J Hypertens 2007, 25:2082–2092.PubMedGoogle Scholar
  23. 23.
    Fan X, Wang Y, Sun K, et al.: Polymorphisms of ACE2 gene are associated with essential hypertension and antihypertensive effects of Captopril in women. Clin Pharmacol Ther 2007, 82:187–196.PubMedCrossRefGoogle Scholar
  24. 24.
    Kardia SL, Sun YV, Hamon SC, et al.: Interactions between the adducin 2 gene and antihypertensive drug therapies in determining blood pressure in people with hypertension. BMC Med Gen 2007, 8:61.CrossRefGoogle Scholar
  25. 25.
    Yatsu K, Mizuki N, Hirawa N, et al.: High-resolution mapping for essential hypertension using microsatellite markers. Hypertension 2007, 49:446–452.PubMedCrossRefGoogle Scholar
  26. 26.
    Wellcome Trust Case-Control Consortium: Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 2007, 447:661–678.CrossRefGoogle Scholar
  27. 27.
    Ehret GB, Morrison AC, O’Connor AA, et al.: Replication of the Wellcome Trust genome-wide association study of essential hypertension: the Family Blood Pressure Program. Eur J Hum Genet 2008 (Epub ahead of print).Google Scholar
  28. 28.
    Levy D, Larson MG, Benjamin EJ, et al.: Framingham Heart Study 100K Project: genome-wide associations for blood pressure and arterial stiffness. BMC Med Genet 2007, 8(Suppl 1):S3.PubMedCrossRefGoogle Scholar
  29. 29.
    Dahl LK, Heine M, Tassinari L: Role of genetic factors in susceptibility to experimental hypertension due to chronic excess salt ingestion. Nature 1962, 194:480–482.PubMedCrossRefGoogle Scholar
  30. 30.
    Okamoto K, Tabei R, Fukushima M, et al.: Further observations of the development of a strain of spontaneously hypertensive rats. Jpn Circ J 1966, 30:703–716.PubMedGoogle Scholar
  31. 31.
    Rapp JP: Genetic analysis of inherited hypertension in the rat. Physiol Rev 2000, 80:135–172.PubMedGoogle Scholar
  32. 32.
    McBride MW, Graham D, Delles C, et al.: Functional genomics in hypertension. Curr Opin Nephrol Hypertens 2006, 15:145–151.PubMedGoogle Scholar
  33. 33.
    Kwitek AE, Gullings-Handley J, Yu J, et al.: High-density rat radiation hybrid maps containing over 24,000 SSLPs, genes, and ESTs provide a direct link to the rat genome sequence. Genome Res 2004, 14:750–757.PubMedCrossRefGoogle Scholar
  34. 34.
    Steen RG, Kwitek-Black AE, Glenn C, et al.: A high-density integrated genetic linkage and radiation hybrid map of the laboratory rat. Genome Res 1999, 9:AP1–AP8, insert.PubMedGoogle Scholar
  35. 35.
    Lee SJ, Liu J, Qi N, et al.: Use of a panel of congenic strains to evaluate differentially expressed genes as candidate genes for blood pressure quantitative trait loci. Hypertens Res 2003, 26:75–87.PubMedCrossRefGoogle Scholar
  36. 36.
    Cowley AW Jr, Liang M, Roman RJ, et al.: Consomic rat model systems for physiological genomics. Acta Physiol Scand 2004, 181:585–592.PubMedCrossRefGoogle Scholar
  37. 37.
    Moreno C, Kaldunski ML, Wang T, et al.: Multiple blood pressure loci on rat chromosome 13 attenuate development of hypertension in the Dahl S hypertensive rat. Physiol Genomics 2007, 31:228–235.PubMedCrossRefGoogle Scholar
  38. 38.
    Cowley AW Jr, Roman RJ, Kaldunski ML, et al.: Brown Norway chromosome 13 confers protection from high salt to consomic Dahl S rat. Hypertension 2001, 37(2 Part 2):456–461.Google Scholar
  39. 39.
    Cowley AW Jr: The genetic dissection of essential hypertension. Nat Rev Gen 2006, 7:829–840.CrossRefGoogle Scholar
  40. 40.
    Clemitson JR, Dixon RJ, Haines S, et al.: Genetic dissection of a blood pressure quantitative trait locus on rat chromosome 1 and gene expression analysis identifies SPON1 as a novel candidate hypertension gene. Circ Res 2007, 100:992–999.PubMedCrossRefGoogle Scholar
  41. 41.
    Graham D, McBride MW, Gaasenbeek M, et al.: Candidate genes that determine response to salt in the stroke-prone spontaneously hypertensive rat: congenic analysis. Hypertension 2007, 50:1134–1141.PubMedCrossRefGoogle Scholar
  42. 42.
    Lee NH, Haas BJ, Letwin NE, et al.: Cross-talk of expression quantitative trait loci within 2 interacting blood pressure quantitative trait loci. Hypertension 2007, 50:1126–1133.PubMedCrossRefGoogle Scholar
  43. 43.
    Angeli F, Verdecchia P, Gattobigio R, et al.: White-coat hypertension in adults. Blood Press Monit 2005, 10:301–305.PubMedCrossRefGoogle Scholar
  44. 44.
    Papadopoulos DP, Makris TK: Masked hypertension definition, impact, outcomes: a critical review. J Clin Hypertens (Greenwich) 2007, 9:956–963.CrossRefGoogle Scholar
  45. 45.
    Verdecchia P, Angeli F, Gattobigio R, et al.: The clinical significance of white-coat and masked hypertension. Blood Press Monit 2007, 12:387–389.PubMedCrossRefGoogle Scholar
  46. 46.
    Wheeler DA, Srinivasan M, Egholm M, et al.: The complete genome of an individual by massively parallel DNA sequencing. Nature 2008, 452:872–876.PubMedCrossRefGoogle Scholar

Copyright information

© Current Medicine Group LLC 2008

Authors and Affiliations

  • Michael Harrison
  • Karen Maresso
  • Ulrich Broeckel
    • 1
  1. 1.Children’s Hospital of Wisconsin, Medical College of Wisconsin, Section of Genomic PediatricsTBRC/CRIMilwaukeeUSA

Personalised recommendations