Advertisement

Current Hypertension Reports

, Volume 9, Issue 3, pp 228–235 | Cite as

Circulating angiotensin II and dietary salt: Converging signals for neurogenic hypertension

  • John W. Osborn
  • Gregory D. Fink
  • Alan F. Sved
  • Glenn M. Toney
  • Mohan K. Raizada
Article

Abstract

Circulating angiotensin II (Ang II) combined with high salt intake increases sympathetic nerve activity (SNA) in some forms of hypertension. Ang II-induced increases in SNA are modest, delayed, and specific to certain vascular beds. The brain targets for circulating Ang II are neurons in the area postrema (AP), subfornical organ (SFO), and possibly other circumventricular organs. Ang II signaling is integrated with sodium-sensitive neurons in the SFO and/or organum vasculosum of the lamina terminalis (OVLT) and drives sympathetic premotor neurons in the rostral ventrolateral medulla (RVLM) via the paraventricular nucleus (PVN). It is likely that, over time, new patterns of gene expression emerge within neurons of the SFO-PVN-RVLM pathway that transform their signaling properties. This transformation is critical in maintaining increased SNA. Identification of a novel gene supporting this process may provide new targets for treatment of neurogenic hypertension.

Keywords

Mean Arterial Pressure Sympathetic Nerve Activity Total Peripheral Resistance Area Postrema Subfornical Organ 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Recommended Reading

  1. 1.
    Esler M: Sympathetic activity in experimental and human hypertension. In Pathophysiology of Hypertension. Edited by Bulpitt CJ. Amsterdam: Elsevier Science; 1997:628–673.Google Scholar
  2. 2.
    Esler M: Differentiation of the effects of the angiotensin II receptor blocker class on autonomic function. J Hypertens 2002, 20(Suppl 5):S13–S19.Google Scholar
  3. 3.
    Esler M, Straznicky N, Eikelis N, et al.: Mechanisms of sympathetic activation in obesity related hypertension. Hypertension 2006, 48:787–796.PubMedCrossRefGoogle Scholar
  4. 4.
    Fink GD: Long-term sympathoexcitatory effect of angiotensin II: a mechanism of spontaneous and renovascular hypertension. Clin Exp Pharmacol Physiol 1997, 24(1):91–95.PubMedGoogle Scholar
  5. 5.
    Johansson M, Elam M, Rundquist B, et al.: Increased sympathetic nerve activity in renovascular hypertension. Circulation 1999, 99:2537–2542.PubMedGoogle Scholar
  6. 6.
    Johansson M, Elam M, Rundquist B, et al.: Differentiated response of the sympathetic nervous system to angiotensin-converting enzyme inhibition in hypertension. Hypertension 2000, 36:543–548.PubMedGoogle Scholar
  7. 7.
    Struck J, Muck P, Trubger D, et al.: Effects of selective angiotensin II receptor blockade on sympathetic nerve activity in primary hypertensive subjects. J Hypertens 2002, 20:1143–1149.PubMedCrossRefGoogle Scholar
  8. 8.
    Ferrario CM: Neurogenic actions of angiotensin II. Hypertension 1983, 5:(Suppl V):V73–V79.PubMedGoogle Scholar
  9. 9.
    Xu L, Sved AF: Acute sympathoexcitatory action of angiotensin II in conscious baroreceptor-denervated rats. Am J Physiol 2002, 283:R451–R459.Google Scholar
  10. 10.
    Onishi A, Li P, Branch RA, et al.: Caffeine enhances the slow pressor response to angiotensin II in rats. Evidence for a caffeine-angiotensin II interaction with the sympathetic nervous system. J Clin Invest 1987, 80:13–16.Google Scholar
  11. 11.
    Simon G, Csiky B: Effect of neonatal sympathectomy on the development of structural vascular changes in angiotensin II-treated rats. J Hypertens 1998, 16:77–84.PubMedCrossRefGoogle Scholar
  12. 12.
    Carroll RG, Lohmeier TE, Brown AJ: Chronic angiotensin infusion decreases renal norepinephrine overflow in conscious dogs. Hypertension 1984, 6:675–681.PubMedGoogle Scholar
  13. 13.
    Sato Y, Ogata E, Fujita T: Role of chloride in angiotensin II-induced salt-sensitive hypertension. Hypertension 1991, 18:622–629.PubMedGoogle Scholar
  14. 14.
    Brooks VL, Osborn JW: Hormonal-sympathetic interactions in long-term regulation of arterial pressure: an hypothesis. Am J Physiol 1995, 268:R1343–R1358.PubMedGoogle Scholar
  15. 15.
    Julius S, Nesbitt S: Sympathetic overactivity in hypertension: a moving target. Am J Hypertens 1996, 9:113s–120s.PubMedCrossRefGoogle Scholar
  16. 16.
    Sullivan JM, Prewitt RL, Ratts TE, et al.: Hemodynamic characteristics of sodium sensitive human subjects. Hypertension 1987, 9:398–406.PubMedGoogle Scholar
  17. 17.
    Guyton AC: Dominant role of the kidneys and accessory role of whole-body autoregulation in the pathogenesis of hypertension. Am J Hypertens 1989, 2:575–585.PubMedGoogle Scholar
  18. 18.
    Fine D, Ariza P, Osborn JW: Does whole body autoregulation mediate the hemodynamic responses to increased dietary salt in rats with clamped angiotensin II? Am J Physiol 2003, 285:H2760–H2678.Google Scholar
  19. 19.
    Krieger JE, Roman RJ, Cowley AW Jr: Hemodynamics and blood volume in angiotensin II salt-dependent hypertension in dogs. Am J Physiol 1989, 257:H1402–H1412.PubMedGoogle Scholar
  20. 20.
    Krieger JE, Liard JF, Cowley AW Jr: Hemodynamics, fluid volume, and hormonal responses to chronic high-salt intake in dogs. Am J Physiol Heart Circ Physiol 1990, 259:H1629–H1636.Google Scholar
  21. 21.
    Kline RL, Chow KY, Mercer PF: Does enhanced sympathetic tone contribute to angiotensin II hypertension in rats? Eur J Pharmacol 1990, 184:109–118.PubMedCrossRefGoogle Scholar
  22. 22.
    Luft FC: Salt and hypertension: recent advances and perspectives. J Lab Clin Med 1989, 114:215–221.PubMedGoogle Scholar
  23. 23.
    Barrett CJ, Ramchandra R, Guild SJ, et al.: What sets the long-term level of renal sympathetic nerve activity: a role for angiotensin II and baroreflexes? Circ Res 2003, 92:1282–1284.CrossRefGoogle Scholar
  24. 24.
    Patel KP, Kline RL, Mercer PF: Noradrenergic mechanisms in the brain and peripheral organs of normotensive and spontaneously hypertensive rats at various ages. Hypertension 1981, 3:682–690.PubMedGoogle Scholar
  25. 25.
    Safar ME, London GM: Arterial and venous compliance in sustained essential hypertension. Hypertension 1987, 10:133–139.PubMedGoogle Scholar
  26. 26.
    Greenway CV, Lautt WW: Blood volume, the venous system, preload and cardiac output. Can J Physiol Pharmacol 1986, 64:383–387.PubMedGoogle Scholar
  27. 27.
    Schmeider RE, Schobel HP, Messerli FH: Central blood volume: a determinant of early cardiac adaptation in hypertension. J Am Coll Cardiol 1995, 26:1692–1698.CrossRefGoogle Scholar
  28. 28.
    Tabrizchi R, King KA, Pang CCY: Direct and indirect effects of angiotensin II on venous tone in conscious rats. Eur J Pharmacol 1992, 219:141–145.PubMedCrossRefGoogle Scholar
  29. 29.
    King AJ, Fink GD: Chronic low-dose angiotensin II infusion increases venomotor tone by neurogenic mechanisms. Hypertension 2006, 48:927–933.PubMedCrossRefGoogle Scholar
  30. 30.
    Guyenet PG: The sympathetic control of blood pressure. Nat Rev Neurosci 2006, 7(5):335–346.PubMedCrossRefGoogle Scholar
  31. 31.
    Sved AF, Ito S, Sved JC: Brainstem mechanisms of hypetension: role of rostral ventral lateral medulla. Curr Hypertens Rep 2003, 5:262–268.PubMedGoogle Scholar
  32. 32.
    Ito S, Gordon FJ, Sved AF: Dietary salt intake alters cardiovascular responses evoked from the rostral ventrolateral medulla. Am J Physiol 1999, 276(6 Pt 2):R1600–R1607.PubMedGoogle Scholar
  33. 33.
    Allen AM: Inhibition of the hypothalamic paraventricular nucleus in spontaneously hypertensive rats dramatically reduces sympathetic vasomotor tone. Hypertension 2002, 39:275–280.PubMedCrossRefGoogle Scholar
  34. 34.
    Sun MK, Guyenet PG: Medullospinal sympathoexcitatory neurons in normotensive and spontaneously hypertensive rats. Am J Physiol 1986, 250:R910–R917.PubMedGoogle Scholar
  35. 35.
    Matsuura T, Kumagai H, Kawai A, et al.: Rostral ventrolateral medulla neurons of neonatal Wistar-Kyoto and spontaneously hypertensive rats. Hypertension 2002, 40:560–565.PubMedCrossRefGoogle Scholar
  36. 36.
    Brody MJ, Fink GD, Buggy J, et al.: The role of the anteroventral third ventricle (AV3V) region in experimental hypertension. Circ Res 1978, 43(Suppl 1):I-2–I-13.Google Scholar
  37. 37.
    Fink GD, Bruner CA, Mangiapane ML: Area postrema is critical for angiotensin-induced hypertension in rats. Hypertension 1987, 9:355–361.PubMedGoogle Scholar
  38. 38.
    Bruner CA, Mangiapane ML, Fink GD: Subfornical organ: does it protect against angiotensin II-induced hypertension in the rat? Circ Res 1985, 56:462–466.PubMedGoogle Scholar
  39. 39.
    Collister JP, Hendel MD: Role of the subfornical organ in the chronic hypotensive response to losartan in normal rats. Hypertension 2003, 41:576–582.PubMedCrossRefGoogle Scholar
  40. 40.
    Toney GM, Chen QH, Cato MJ, Stocker SD: Central osmotic regulation of sympathetic nerve activity. Acta Physiol Scand 2003, 177:43–55.PubMedCrossRefGoogle Scholar
  41. 41.
    Osborn JW, Collister JP, Carlson SH: Angiotensin and osmoreceptor inputs to the area postrema: role in long-term control of fluid homeostasis and arterial pressure. Clin Exp Pharmacol Physiol 2000, 27:443–449.PubMedCrossRefGoogle Scholar
  42. 42.
    Chakfe Y, Bourque C: Excitatory peptides and osmotic pressure modulate mechanosensitive cation channels in concert. Nat Neurosci 2000, 3:572–579.PubMedCrossRefGoogle Scholar
  43. 43.
    Bourque CW, Voisin DL, Chakfe Y: Stretch-inactivated cation channels: cellular targets for modulation of osmosensitivity in supraoptic neurons. Prog Brain Res 2002, 139:85–94.PubMedCrossRefGoogle Scholar
  44. 44.
    Sharif Naeini R, Witty MF, Seguela P, Bourque CW: An N-terminal variant of Trpv1 channel is required for osmosensory transduction. Nat Neurosci 2006, 9:93–98.PubMedCrossRefGoogle Scholar
  45. 45.
    Ciura S, Bourque CW: Transient receptor potential vanilloid 1 is required for intrinsic osmoreception in organum vasculosum lamina terminalis neurons and for normal thirst responses to systemic hyperosmolality. J Neurosci 2006, 26:9069–9075.PubMedCrossRefGoogle Scholar
  46. 46.
    Cristino L, de Petrocellis L, Pryce G, et al.: Immunohistochemical localization of cannabinoid type 1 and vanilloid transient receptor potential vanilloid type 1 receptors in the mouse brain. Neuroscience 2006, 139:1405–1415.PubMedCrossRefGoogle Scholar
  47. 47.
    Anderson JW, Washburn DLS, Ferguson AV: Intrinsic osmosensitivity of subfornical organ neurons. Neuroscience 2000, 100:539–547.PubMedCrossRefGoogle Scholar
  48. 48.
    Gutman MB, Ciriello J, Mogenson GJ: Effects of plasma angiotensin II and hypernatremia on subfornical organ neurons. Am J Physiol 1988, 254(5 pt 2):R745–R754.Google Scholar
  49. 49.
    Ito S, Hiratsuka M, Komatsu K, et al.: Ventrolateral medulla AT1 receptors support arterial pressure in Dahl salt-sensitive rats. Hypertension 2003, 41:744–750.PubMedCrossRefGoogle Scholar
  50. 50.
    Ferguson AV, Bains JS: Electrophysiology of the circumventricular organs. Front Neuroendocrinol 1996, 17:440–475.PubMedCrossRefGoogle Scholar
  51. 51.
    Nicolaidis S, Jeulin AC: Converging projections of hydromineral imbalances and hormonal co-action upon neurons surrounding the anterior wall of the third ventricle. J Physiol (Paris) 1984, 79:406–415.Google Scholar
  52. 52.
    Lind RW, Johnson AK: Subfornical organ-median preoptic connections and drinking and pressor responses to angiotensin II. J Neuroscience 1982, 2:1043–1051.Google Scholar
  53. 53.
    Stocker SD, Toney GM: Median preoptic neurons projecting to the paraventricular nucleus of the hypothalamus respond to peripheral ANG II, osmotic and baroreceptor inputs. J Physiol 2005, 568:599–615.PubMedCrossRefGoogle Scholar
  54. 54.
    Stocker SD, Toney GM: Vagal afferent input alters the discharge of osmotic and ANG II responsive median preoptic neurons projecting to the hypothalamic paraventricular nucleus. Brain Res 2007, 1131:118–128.PubMedCrossRefGoogle Scholar
  55. 55.
    Travis KA, Johnson AK: In vitro sensitivity of median preoptic neurons to angiotensin II, osmotic pressure, and temperature. Am J Physiol Regul Integr Comp Physiol 1993, 264:R1200–R1205.Google Scholar
  56. 56.
    Veerasingham SJ, Sellers KW, Raizada MK: Functional genomics as an emerging strategy for the investigation of central mechanisms in experimental hypertension. Prog Biophys Mol Biol 2004, 84:107–123.PubMedCrossRefGoogle Scholar
  57. 57.
    Veerasingham SJ, Yamazato M, Berecek KH, et al.: Increased PI3-kinase in presympathetic brain areas of the spontaneously hypertensive rat. Circ Res 2005, 96:277–279.PubMedCrossRefGoogle Scholar
  58. 58.
    Sellers KW, Sun C, Diez-Freire C, et al.: Novel mechanism of brain soluble epoxide hydrolase-mediated blood pressure regulation in the spontaneously hypertensive rat. FASEB J 2005, 19:626–628.PubMedGoogle Scholar

Copyright information

© Current Medicine Group LLC 2007

Authors and Affiliations

  • John W. Osborn
    • 1
  • Gregory D. Fink
  • Alan F. Sved
  • Glenn M. Toney
  • Mohan K. Raizada
  1. 1.Department of Integrative Biology and PhysiologyUniversity of MinnesotaMinneapolisUSA

Personalised recommendations