Current Hypertension Reports

, Volume 9, Issue 1, pp 19–24 | Cite as

Gene therapy for stroke: 2006 overview



Gene therapy is a promising approach for treatment of stroke and other cerebrovascular diseases, although it may take many years to realize. Gene therapy could occur prior to a stroke (eg, to stabilize atherosclerotic plaques) and/or following a stroke (eg, to prevent vasospasm after subarachnoid hemorrhage [SAH] or reduce injury to neurons by ischemic insult). We have transferred the gene coding for vasoactive calcitonin gene-related peptide via cerebrospinal fluid, and demonstrated attenuation of vasospasm after SAH. Transfer of neuroprotective genes or small interfering RNA for neurotoxic genes has good potential for ischemic stroke. In this brief report, we review recent developments in experimental gene therapy for stroke. Fundamental advances, including development of safer, more specific gene transfer vectors, are discussed.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Recommended Reading

  1. 1.
    Goldstein LB, Adams R, Alberts MJ, et al.: Primary prevention of ischemic stroke: a guideline from the American Heart Association/American Stroke Association Stroke Council: cosponsored by the Atherosclerotic Peripheral Vascular Disease Interdisciplinary Working Group; Cardiovascular Nursing Council; Clinical Cardiology Council; Nutrition, Physical Activity, and Metabolism Council; and the Quality of Care and Outcomes Research Interdisciplinary Working Group. Circulation 2006, 113:e873–923.PubMedCrossRefGoogle Scholar
  2. 2.
    Flaherty ML, Woo D, Haverbusch M, et al.: Potential applicability of recombinant factor VIIa for intracerebral hemorrhage. Stroke 2005, 36:2660–2664.PubMedCrossRefGoogle Scholar
  3. 3.
    Iadecola C, Goldman SS, Harder DR, et al.: Recommendations of the National Heart, Lung, and Blood Institute working group on cerebrovascular biology and disease. Stroke 2006, 37:1578–1581.PubMedCrossRefGoogle Scholar
  4. 4.
    Singhal AB, Lo EH, Dalkara T, Moskowitz MA: Advances in stroke neuroprotection: hyperoxia and beyond. Neuroimaging Clin N Am 2005, 15:697–720.PubMedCrossRefGoogle Scholar
  5. 5.
    Heistad DD, Faraci FM: Gene therapy for cerebral vascular disease. Stroke 1996, 27:1688–1693.PubMedGoogle Scholar
  6. 6.
    Toyoda K, Chu Y, Heistad DD: Gene therapy for cerebral vascular disease: update 2003. Brit J Pharmacol 2003, 139:1–9.CrossRefGoogle Scholar
  7. 7.
    High KA: Stakeholders’ conference sharpens focus on challenges of clinical gene transfer. Mol Ther 2005, 12:581–582.PubMedCrossRefGoogle Scholar
  8. 8.
    Ooboshi H, Ibayashi S, Takada J, et al.: Adenovirus-mediated gene transfer to ischemic brain: ischemic flow threshold for transgene expression. Stroke 2001, 32:1043–1047.PubMedGoogle Scholar
  9. 9.
    Zhang ZG, Zhang L, Jiang Q, et al.: VEGF enhances angiogenesis and promotes blood-brain barrier leakage in the ischemic brain. J Clin Invest 2000, 106:829–838.PubMedCrossRefGoogle Scholar
  10. 10.
    Wolff JA, Malone RW, Williams P, et al.: Direct gene transfer into mouse muscle in vivo. Science, 1990, 247:1465–1468.PubMedCrossRefGoogle Scholar
  11. 11.
    Yoshino H, Hashizume K, Kobayashi E: Naked plasmid DNA transfer to the porcine liver using rapid injection with large volume. Gene Ther 2006, Jul 27; [Epub ahead of print].Google Scholar
  12. 12.
    Ghosh SS, Gopinath P, Ramesh A: Adenoviral vectors: a promising tool for gene therapy. Appl Biochem Biotechnol 2006, 133:9–29.PubMedCrossRefGoogle Scholar
  13. 13.
    Warrington KH Jr, Herzog RW: Treatment of human disease by adeno-associated viral gene transfer. Hum Genet 2006, 119:571–603.PubMedCrossRefGoogle Scholar
  14. 14.
    Yenari MA, Dumas TC, Sapolsky RM, Steinberg GK: Gene therapy for treatment of cerebral ischemia using defective herpes simplex viral vectors. Ann N Y Acad Sci 2001, 939:340–357.PubMedCrossRefGoogle Scholar
  15. 15.
    Cefai D, Simeoni E, Ludunge KM, et al.: Multiply attenuated, self-inactivating lentiviral vectors efficiently transduce human coronary artery cells in vitro and rat arteries in vivo. J Mol Cell Cardiol 2005, 38:333–344.PubMedCrossRefGoogle Scholar
  16. 16.
    Work LM, Buning H, Hunt E, et al.: Vascular bed-targeted in vivo gene delivery using tropism-modified adeno-associated viruses. Mol Ther 2006, 13:683–693.PubMedCrossRefGoogle Scholar
  17. 17.
    Anderson DG, Akinc A, Hossain N, Langer R: Structure/property studies of polymeric gene delivery using a library of poly(beta-amino esters). Mol Ther 2005, 11:426–434.PubMedCrossRefGoogle Scholar
  18. 18.
    Nimjee SM, Rusconi CP, Sullenger BA: Aptamers: an emerging class of therapeutics. Ann Rev Med 2005, 56:555–583.PubMedCrossRefGoogle Scholar
  19. 19.
    Griffin LC, Tidmarsh GF, Bock LC, et al.: In vivo anticoagulant properties of a novel nucleotide-based thrombin inhibitor and demonstration of regional anticoagulation in extracorporeal circuits. Blood 1993, 81:3271–3276.PubMedGoogle Scholar
  20. 20.
    Nimjee SM, Keys JR, Pitoc GA, et al.: A novel antidote-controlled anticoagulant reduces thrombin generation and inflammation and improves cardiac function in cardiopulmonary bypass surgery. Mol Ther 2006, 14:408–415.PubMedCrossRefGoogle Scholar
  21. 21.
    Dykxhoorn DM, Lieberman J: Knocking down disease with siRNAs. Cell 2006, 126:231–235.PubMedCrossRefGoogle Scholar
  22. 22.
    Chu TC, Twu KY, Ellington AD, Levy M: Aptamer mediated siRNA delivery. Nucleic Acids Res 2006, 34:e73.PubMedCrossRefGoogle Scholar
  23. 23.
    McNamara JO 2nd, Andrechek ER, Wang Y, et al.: Cell type-specific delivery of siRNAs with aptamer-siRNA chimeras. Nat Biotechnol 2006, 24:1005–1015.PubMedCrossRefGoogle Scholar
  24. 24.
    Li YF, Wang Y, Channon KM, et al.: Manipulation of neuronal nitric oxide synthase within the paraventricular nucleus using adenovirus and antisense technology. Methods Mol Med 2005, 112:59–79.PubMedGoogle Scholar
  25. 25.
    Nakagami H, Tomita N, Kaneda Y, et al.: Anti-oxidant gene therapy by NF kappa B decoy oligodeoxynucleotide. Curr Pharm Biotechnol 2006, 7:95–100.PubMedCrossRefGoogle Scholar
  26. 26.
    Muhonen MG, Ooboshi H, Welsh MJ, et al.: Gene transfer to cerebral blood vessels after subarachnoid hemorrhage. Stroke 1997, 28:822–829.PubMedGoogle Scholar
  27. 27.
    Betz AL, Yang GY, Davidson BL: Attenuation of stroke size in rats using an adenoviral vector to induce overexpression of interleukin-1 receptor antagonist in brain. J Cereb Blood Flow Metab 1995, 15:547–551.PubMedGoogle Scholar
  28. 28.
    Ooboshi H, Welsh MJ, Rios CD, et al.: Adenovirus-mediated gene transfer in vivo to cerebral blood vessels and perivascular tissue. Circ Res 1995, 77:7–13.PubMedGoogle Scholar
  29. 29.
    Watanabe Y, Chu Y, Andresen JJ, et al.: Gene transfer of extracellular superoxide dismutase reduces vasospasm following subarachnoid hemorrhage. Stroke 2003, 34:434–440.PubMedCrossRefGoogle Scholar
  30. 30.
    Yamaguchi M, Zhou C, Heistad DD, et al.: Gene transfer of extracellular superoxide dismutase failed to prevent cerebral vasospasm after experimental subarachnoid hemorrhage. Stroke 2004, 35:2512–2517.PubMedCrossRefGoogle Scholar
  31. 31.
    Toyoda K, Faraci FM, Watanabe Y, et al.: Gene transfer of calcitonin gene-related peptide prevents vasoconstriction after subarachnoid hemorrhage. Circ Res 2000, 87:818–824.PubMedGoogle Scholar
  32. 32.
    Satoh M, Perkins E, Kimura H, et al.: Post-treatment with adenovirus-mediated calcitonin gene-related peptide gene transfer reverses cerebral vasospasm in dogs. J Neurosurgery 2002, 97:136–142.Google Scholar
  33. 33.
    Sun Y, Jin K, Xie L, et al.: VEGF-induced neuroprotection, neurogenesis, and angiogenesis after focal cerebral ischemia. J Clin Invest 2003, 111:1843–1851.PubMedCrossRefGoogle Scholar
  34. 34.
    Hayashi S, Morishita R, Nakagami H, et al.: Gene therapy for preventing neuronal death using hepatocyte growth factor: in vivo gene transfer of HGF to subarachnoid space prevents delayed neuronal death in gerbil hippocampal CA1 neurons. Gene Ther 2001, 8:1167–1173.PubMedCrossRefGoogle Scholar
  35. 35.
    Yukawa H, Takahashi JC, Miyatake SI, et al.: Adenoviral gene transfer of basic fibroblast growth factor promotes angiogenesis in rat brain. Gene Ther 2000, 7:942–949.PubMedCrossRefGoogle Scholar
  36. 36.
    Shimamura M, Sato N, Waguri S, et al.: Gene transfer of hepatocyte growth factor gene improves learning and memory in the chronic stage of cerebral infarction. Hypertension 2006, 47:742–751.PubMedCrossRefGoogle Scholar
  37. 37.
    Lin TN, Cheung WM, Wu JS, et al.: 15d-prostaglandin J2 protects brain from ischemia-reperfusion injury. Arterioscler Thromb Vasc Biol 2006, 26:481–487.PubMedCrossRefGoogle Scholar
  38. 38.
    Davidson BL, Allen ED, Kozarsky KF, et al.: A model system for in vivo gene transfer into the central nervous system using an adenoviral vector. Nat Genet 1993, 3:219–223.PubMedCrossRefGoogle Scholar
  39. 39.
    Badin RA, Lythgoe MF, van der Weerd L, et al.: Neuroprotective effects of virally delivered HSPs in experimental stroke. J Cereb Blood Flow Metab 2006, 26:371–381.PubMedCrossRefGoogle Scholar
  40. 40.
    Chu Y, Lund DD, Weiss RM, et al.: Gene transfer of extracellular superoxide dismutase reduces arterial pressure in spontaneously hypertensive rats: role of heparin binding domain. Circ Res 2003, 92:461–468.PubMedCrossRefGoogle Scholar
  41. 41.
    Xia CF, Yin H, Yao YY, et al.: Kallikrein protects against ischemic stroke by inhibiting apoptosis and inflammation and promoting angiogenesis and neurogenesis. Hum Gene Ther 2006, 17:206–219.PubMedCrossRefGoogle Scholar
  42. 42.
    Xia CF, Yin H, Borlongan CV, et al.: Postischemic infusion of adrenomedullin protects against ischemic stroke by inhibiting apoptosis and promoting angiogenesis. Exp Neurol 2006, 197:521–530.PubMedCrossRefGoogle Scholar
  43. 43.
    Chao J, Chao L: Experimental therapy with tissue kallikrein against cerebral ischemia. Front Biosci 2006, 11:1323–1327.PubMedCrossRefGoogle Scholar
  44. 44.
    Heistad DD: Oxidative stress and vascular disease: 2005 Duff lecture. Arterioscler Thromb Vasc Biol 2006, 26:689–695.PubMedCrossRefGoogle Scholar
  45. 45.
    Nelson KK, Melendez JA: Mitochondrial redox control of matrix metalloproteinases. Free Radic Biol Med 2004, 37:768–784.PubMedCrossRefGoogle Scholar
  46. 46.
    Rosell A, Ortega-Aznar A, Alvarez-Sabin J, et al.: Increased brain expression of matrix metalloproteinase-9 after ischemic and hemorrhagic human stroke. Stroke 2006, 37:1399–1406.PubMedCrossRefGoogle Scholar
  47. 47.
    Hong H, Zeng JS, Kreulen DL, et al.: Atorvastatin protects against cerebral infarction via inhibiting NADPH oxidase-derived superoxide in ischemic stroke. Am J Physiol Heart Circ Physiol 2006 Jun 9; [Epub ahead of print].Google Scholar
  48. 48.
    Lees KR, Zivin JA, Ashwood T, et al.: NXY-059 for acute ischemic stroke. N Engl J Med 2006, 354:588–600.PubMedCrossRefGoogle Scholar
  49. 49.
    Iida S, Baumbach GL, Lavoie JL, et al.: Spontaneous stroke in a genetic model of hypertension in mice. Stroke 2005, 36:1253–1258.PubMedCrossRefGoogle Scholar
  50. 50.
    Nishimura N, Schaffer CB, Friedman B, et al.: Targeted insult to subsurface cortical blood vessels using ultrashort laser pulses: three models of stroke. Nat Methods 2006, 3:99–108.PubMedCrossRefGoogle Scholar
  51. 51.
    Kondziolka D, Steinberg GK, Wechsler L, et al.: Neurotransplantation for patients with subcortical motor stroke: a phase 2 randomized trial. J Neurosurg 2005, 103:38–45.PubMedCrossRefGoogle Scholar
  52. 52.
    Borlongan CV, Fournier C, Stahl CE, et al.: Gene therapy, cell transplantation and stroke. Front Biosci 2006, 11:1090–1100.PubMedCrossRefGoogle Scholar

Copyright information

© Current Medicine Group LLC 2007

Authors and Affiliations

  1. 1.Department of Internal MedicineUniversity of Iowa Carver College of MedicineIowa CityUSA

Personalised recommendations