Current Hypertension Reports

, Volume 8, Issue 4, pp 309–316 | Cite as

Genetic information in the diagnosis and treatment of hypertension

  • Maciej Tomaszewski
  • Lukas Zimmerli
  • Fadi J. Charchar
  • Anna F. DominiczakEmail author


Advancement in cardiovascular science should be measured by a number of new diagnostic and therapeutic options applied in clinical practice as a result of translational research. Hypertension genetics is a good example of such a successful transfer of knowledge from bench to bedside. There are genetic methods currently used as diagnostic tools in patients presenting with secondary forms of hypertension, including primary hyperaldosteronism, Cushing’s syndrome, pheochromocytoma, and chronic kidney disease. Directed treatment that corrects pathophysiologic abnormalities is available for several monogenic forms of hypertension as a result of uncovering their underlying genetic mechanisms. Progress in hypertension pharmacogenetics and pharmacogenomics brings closer a perspective of personalized antihypertensive treatment and gene transfer strategies, which, although still considered as innovative approaches, may soon become options to treat, control, and, possibly, cure hypertension.


Antihypertensive Treatment Multiple Endocrine Neoplasia Type Polycystic Kidney Disease Primary Aldosteronism Blood Pressure Response 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Recommended Reading

  1. 1.
    Omura M, Saito J, Yamaguchi K, et al.: Prospective study on the prevalence of secondary hypertension among hypertensive patients visiting a general outpatient clinic in Japan. Hypertens Res 2004, 27:193–202.PubMedCrossRefGoogle Scholar
  2. 2.
    Lifton RP, Dluhy RG, Powers M, et al.: A chimaeric 11 beta-hydroxylase/aldosterone synthase gene causes glucocorticoid-remediable aldosteronism and human hypertension. Nature 1992, 355:262–265.PubMedCrossRefGoogle Scholar
  3. 3.
    Mulatero P, Morello F, Veglio F: Genetics of primary aldosteronism. J Hypertens 2004, 22:663–670.PubMedCrossRefGoogle Scholar
  4. 4.
    Dluhy RG, Anderson B, Harlin B, et al.: Glucocorticoid-remediable aldosteronism is associated with severe hypertension in early childhood. J Pediatr 2001, 138:715–720.PubMedCrossRefGoogle Scholar
  5. 5.
    Lifton R, Gharavi A, Geller D: Molecular mechanisms of human hypertension. Cell 2001, 104:545–556.PubMedCrossRefGoogle Scholar
  6. 6.
    New MI, Geller DS, Fallo F, et al.: Monogenic low renin hypertension. Trends Endocrinol Metab 2005, 16:92–97. A topical, concise review on clinical aspects of monogenic hypertension.PubMedCrossRefGoogle Scholar
  7. 7.
    Stowasser M, Gordon R: Familial hyperaldosteronism. J Steroid Biochem Mol Biol 2001, 78:215–229.PubMedCrossRefGoogle Scholar
  8. 8.
    MacConnachie AA, Kelly KF, McNamara A, et al.: Rapid diagnosis and identification of cross-over sites in patients with glucocorticoid remediable aldosteronism. J Clin Endocrinol Metab 1998, 83:4328–4331.PubMedCrossRefGoogle Scholar
  9. 9.
    Adler G, Widecka K, Peczkowska M, et al.: Genetic screening for glucocorticoid-remediable aldosteronism (GRA): experience of three clinical centres in Poland. J Appl Genet 2005, 46:329–332.PubMedGoogle Scholar
  10. 10.
    Groussin L, Horvath A, Jullian E, et al.: A PRKAR1A mutation associated with primary pigmented nodular adrenocortical disease in 12 kindreds. J Clin Endocrinol Metab 2006, 91:1943–1949. An excellent example of progress in cardiovascular genetics in uncovering mechanisms of endocrine diseases.PubMedCrossRefGoogle Scholar
  11. 11.
    Libe R, Bertherat J: Molecular genetics of adrenocortical tumours, from familial to sporadic diseases. Eur J Endocrinol 2005, 153:477–487.PubMedCrossRefGoogle Scholar
  12. 12.
    Groussin L, Jullian E, Perlemoine K, et al.: Mutations of the PRKAR1A gene in Cushing’s syndrome due to sporadic primary pigmented nodular adrenocortical disease. J Clin Endocrinol Metab 2002, 87:4324–4329.PubMedCrossRefGoogle Scholar
  13. 13.
    Mulligan LM, Kwok JB, Healey CS, et al.: Germ-line mutations of the RET proto-oncogene in multiple endocrine neoplasia type 2A. Nature 1993, 363:458–460.PubMedCrossRefGoogle Scholar
  14. 14.
    Mulligan LM, Eng C, Healey CS, et al.: Specific mutations of the RET proto-oncogene are related to disease phenotype in MEN2A and FMTC. Nat Genet 1994, 6:70–74.PubMedCrossRefGoogle Scholar
  15. 15.
    Wiesner GL, Snow-Bailey K: Multiple endocrine neoplasia type 2. s&site=gt&id=8888891&key=fkWDBgv-gytUT&gry=& fcn=y&fw=p6V2&.lename=/profiles/men2/index.html. Accessed June 15, 2006. The most up-to-date information on genetic testing in patients with MEN2.Google Scholar
  16. 16.
    Takahashi M, Asai N, Iwashita T, et al.: Molecular mechanisms of development of multiple endocrine neoplasia 2 by RET mutations. J Intern Med 1998, 243:509–513.PubMedGoogle Scholar
  17. 17.
    Latif F, Tory K, Gnarra J, et al.: Identification of the von Hippel-Lindau disease tumor suppressor gene. Science 1993, 260:1317–1320.PubMedCrossRefGoogle Scholar
  18. 18.
    Schimke RN, Collins DL, Stolle CA: Von Hippel-Lindau syndrome. linics&site=gt&id=8888892&key=rcP7MCsyeptb1&gry =&fcn=y&fw=HfTO&.lename=/profiles/vhl/index.html. Accessed June 15, 2006. The most up-to-date information on genetic testing in patients with von Hippel-Lindau syndrome.Google Scholar
  19. 19.
    Stolle C, Glenn G, Zbar B, et al.: Improved detection of germline mutations in the von Hippel-Lindau disease tumour suppressor gene. Hum Mutat 1998, 12:417–423.PubMedCrossRefGoogle Scholar
  20. 20.
    American Society of Clinical Oncology: American Society of Clinical Oncology policy statement update: genetic testing for cancer susceptibility. J Clin Oncol 2003, 21:2397–2406.CrossRefGoogle Scholar
  21. 21.
    Ars S, Serra E, Garcia J, et al.: Mutations affecting mRNA splicing are the most common molecular defects in patients with neurofibromatosis type 1. Hum Mol Genet 2000, 9:237–247.PubMedCrossRefGoogle Scholar
  22. 22.
    Lama G, Graziano L, Calabrese E, et al.: Blood pressure and cardiovascular involvement in children with neurofibromatosis type 1. Pediatr Nephrol 2004, 19:413–418.PubMedCrossRefGoogle Scholar
  23. 23.
    Lenders JWM, Eisenhofer G, Mannelli M, et al.: Pheochromocytoma. Lancet 2005, 366:665–675. A state-of-the-art review presenting current views on pathogenesis, diagnosis, and treatment of pheochromocytoma.PubMedCrossRefGoogle Scholar
  24. 24.
    Friedman JM. Neurofibromatosis 1. servlet/access?db=geneclinics&site=gt&id=8888892&key =3t6-IckLoIkR3&gry=&fcn=y&fw=lXJ7&filename=/profiles/nf1/index.html. Accessed June 15, 2006.Google Scholar
  25. 25.
    Baysal BE, Willett-Brozick JE, Lawrence EC, et al.: Prevalence of SDHB, SDHC, and SDHD germline mutations in clinic patients with head and neck paragangliomas. J Med Genet 2002, 39:178–183.PubMedCrossRefGoogle Scholar
  26. 26.
    Neumann HP, Pawlu C, Peczkowska M, et al.: Distinct clinical features of paraganglioma syndromes associated with SDHB and SDHD gene mutations. JAMA 2004, 292:943–951.PubMedCrossRefGoogle Scholar
  27. 27.
    Baysal BE: Genomic imprinting and environment in hereditary paraganglioma. Am J Med Genet C Semin Med Genet 2004, 129:85–90.PubMedCrossRefGoogle Scholar
  28. 28.
    Neumann HP, Bausch B, McWhinney SR, et al.: Germ-line mutations in nonsyndromic pheochromocytoma. N Engl J Med 2002, 346:1459–1466.PubMedCrossRefGoogle Scholar
  29. 29.
    Amar L, Bertherat J, Baudin E, et al.: Genetic testing in pheochromocytoma or functional paraganglioma. J Clin Oncol 2005, 23:8812–8818.PubMedCrossRefGoogle Scholar
  30. 30.
    Steinman TI: Polycystic kidney disease: a new perspective from the beginning. Kidney Int 2005, 68:2398–2399.PubMedCrossRefGoogle Scholar
  31. 31.
    Ong AC, Harris PC: Molecular pathogenesis of ADPKD: the polycystin complex gets complex. Kidney Int 2005, 67:1234–1247. An excellent summary of current knowledge about genetic and molecular mechanisms of ADPKD.PubMedCrossRefGoogle Scholar
  32. 32.
    Kelleher CL, McFann KK, Johnson AM, et al.: Characteristics of hypertension in young adults with autosomal dominant polycystic kidney disease compared with the general U.S. population. Am J Hypertens 2004, 17:1029–1034.PubMedCrossRefGoogle Scholar
  33. 33.
    Chapman AM, Johnson S, Rainguet S, et al.: Left ventricular hypertrophy in autosomal dominant polycystic kidney disease. J Am Soc Nephrol 1997, 8:1292–1297.PubMedGoogle Scholar
  34. 34.
    Nicolau C, Torra R, Badenas C, et al.: Sonographic pattern of recessive polycystic kidney disease in young adults. Differences from the dominant form. Nephrol Dial Transplant 2000, 15:1373–1378.PubMedCrossRefGoogle Scholar
  35. 35.
    Sessa A, Ghiggeri GM, Turco AE: Autosomal dominant polycystic kidney disease: clinical and genetic aspects. J Nephrol 1997, 10:295–310.PubMedGoogle Scholar
  36. 36.
    Perrone RD, Miskulin DC:. Hypertension in individuals at risk for autosomal dominant polycystic kidney disease: to screen or not to screen. Am J Kidney Dis 2005, 46:557–559. An excellent editorial containing critical evaluation of indications for genetic screening in ADPKD.PubMedCrossRefGoogle Scholar
  37. 37.
    Stowasser M, Gordon RD: Primary aldosteronism: from genesis to genetics. Trends Endocrinol Metab 2003, 14:310–317.PubMedCrossRefGoogle Scholar
  38. 38.
    Nabel EG:. Cardiovascular disease. N Engl J Med 2003, 349:60–72. A very up-to-date review on molecular mechanisms underlying cardiovascular diseases.PubMedCrossRefGoogle Scholar
  39. 39.
    Jeunemaitre X, Bassilana F, Persu A, et al.: Genotype-phenotype analysis of a newly discovered family with Liddle’s syndrome. J Hypertens 1997, 15:1091–1100.PubMedCrossRefGoogle Scholar
  40. 40.
    Furuhashi M, Kitamura K, Adachi M, et al.: Liddle’s syndrome caused by a novel mutation in the proline-rich PY motif of the epithelial sodium channel beta-subunit. J Clin Endocrinol Metab 2005, 90:340–344.PubMedCrossRefGoogle Scholar
  41. 41.
    Baker EH, Duggal A, Dong Y, et al.: Amiloride, a specific drug for hypertension in black people with T594M variant? Hypertension 2002, 40:13–17.PubMedCrossRefGoogle Scholar
  42. 42.
    Hollier JM, Martin DF, Bell DM, et al.: Epithelial sodium channel allele T594M is not associated with blood pressure or blood pressure response to amiloride. Hypertension 2006, 47:428–433.PubMedCrossRefGoogle Scholar
  43. 43.
    Wilson FH, Disse-Nicodeme S, Choate KA, et al.: Human hypertension caused by mutations in WNK kinases. Science 2001, 293:1107–1112.PubMedCrossRefGoogle Scholar
  44. 44.
    Zhang H, Staessen JA: Association of blood pressure with genetic variation in WNK kinases in a white European population. Circulation 2005, 112:3371–3372.PubMedCrossRefGoogle Scholar
  45. 45.
    Mayan H, Vered I, Mouallem M, et al.: Pseudohypoaldosteronism type II: marked sensitivity to thiazides, hypercalciuria, normomagnesemia, and low bone mineral density. J Clin Endocrinol Metab 2002, 87:3248–3254.PubMedCrossRefGoogle Scholar
  46. 46.
    Tobin MD, Raleigh SM, Newhouse S, et al.: Association of WNK1 gene polymorphisms and haplotypes with ambulatory blood pressure in the general population. Circulation 2005, 112:3423–3429.PubMedCrossRefGoogle Scholar
  47. 47.
    Turner ST, Schwartz GL, Chapman AB, et al.: WNK1 kinase polymorphism and blood pressure response to a thiazide diuretic. Hypertension 2005, 46:758–765.PubMedCrossRefGoogle Scholar
  48. 48.
    Kurland L, Lind L, Melhus H: Using genotyping to predict responses to anti-hypertensive treatment. Trends Pharmacol Sci 2005, 26:443–447. An interesting review that highlights current concepts and challenges of current hypertension pharmacogenetics.PubMedGoogle Scholar
  49. 49.
    Cadman PE, O’Connor DT: Pharmacogenomics of hypertension. Curr Opin Nephrol Hypertens 2003, 12:61–70.PubMedCrossRefGoogle Scholar
  50. 50.
    Siest G, Marteau JB, Maumus S, et al.: Pharmacogenomics and cardiovascular drugs: need for integrated biological system with phenotypes and proteomic markers. Eur J Pharmacol 2005, 527:1–22.PubMedCrossRefGoogle Scholar
  51. 51.
    Maitland-van der Zee AH, Turner ST, Schwartz GL, et al.: A multilocus approach to the antihypertensive pharmacogenetics of hydrochlorothiazide. Pharmacogenet Genomics 2005, 15:287–93.PubMedCrossRefGoogle Scholar
  52. 52.
    Maitland-van der Zee AH, Turner ST, Schwartz GL, et al.: Demographic, environmental, and genetic predictors of metabolic side effects of hydrochlorothiazide treatment in hypertensive subjects. Am J Hypertens 2005, 18:1077–1083.PubMedCrossRefGoogle Scholar
  53. 53.
    Padmanabhan S, Wallace C, Munroe PB, et al.: Chromosome 2p shows significant linkage to antihypertensive response in the British Genetics of Hypertension Study. Hypertension 2006, 47:603–608. One of the first examples of a successful pharmacogenomic approach in studies on hypertension.PubMedCrossRefGoogle Scholar

Copyright information

© Current Science Inc. 2006

Authors and Affiliations

  • Maciej Tomaszewski
  • Lukas Zimmerli
  • Fadi J. Charchar
  • Anna F. Dominiczak
    • 1
    Email author
  1. 1.BHF Glasgow Cardiovascular Research Centre, University of GlasgowGlasgowUK

Personalised recommendations