Current Hypertension Reports

, Volume 8, Issue 3, pp 262–268 | Cite as

Aldosterone breakthrough during ras blockade: A role for endothelins and their antagonists?


Activation of the renin-angiotensin system (RAS), with ensuing aldosterone excess, detrimentally affects outcome in patients with hypertension and heart failure (HF). RAS blockade with angiotensin (Ang) 1-converting enzyme inhibitors (ACEIs) or Ang II type 1 receptor blockers (ARBs) is beneficial in such conditions. However, aldosterone secretion can persist despite these treatments. Hence, mechanisms besides Ang II acquire the role of aldosterone secretagogue. The RALES and EPHESUS studies have shown that this aldosterone “escape” or “breakthrough” is an important factor, because it is a determinant of outcome in HF patients. Endothelin (ET)-1, which stimulates aldosterone secretion via both A (ETA) and B (ETB) receptor subtypes, and which is increased in HF, is a candidate for the “aldosterone breakthrough.” Moreover, the novel ET peptide ET-1(1-31) is involved in adrenocortical growth. Therefore, findings suggesting a role for the ET-1 system as an aldosterone secretagogue, along with the potential usefulness of endothelin antagonists for the prevention of “aldosterone breakthrough,” are discussed.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Recommended Reading

  1. 1.
    Genest J, Lemieux G, Davignon A, et al.: Human arterial hypertension: A state of mild chronic hyperaldosteronism? Science 1956, 123:503–505.PubMedCrossRefGoogle Scholar
  2. 2.
    Weinberger MH, Roniker B, Krause SL, Weiss RJ: Eplerenone, a selective aldosterone blocker, in mild-tomoderate hypertension. Am J Hypertens 2002, 15:709–716. This study showed that eplerenone is well-tolerated and effective in reducing BP in patients with mild-to-moderate hypertension.PubMedCrossRefGoogle Scholar
  3. 3.
    Pitt B, Reichek N, Willenbrock R, et al.: Effects of eplerenone, enalapril, and eplerenone/enalapril in patients with essential hypertension and left ventricular hypertrophy: the 4E-Left Ventricular Hypertrophy Study. Circulation 2003, 108:1831–1838.PubMedCrossRefGoogle Scholar
  4. 4.
    Stowasser M: New perspectives on the role of aldosterone excess in cardiovascular disease. Clin Exp Pharmacol Physiol 2001, 28:783–791.PubMedCrossRefGoogle Scholar
  5. 5.
    Rossi GP: Primary aldosteronism: A needle in a haystack or a yellow cab on Fifth Avenue? Curr Hypertens Rep 2004, 6:1–4.PubMedCrossRefGoogle Scholar
  6. 6.
    Rossi GP, Bernini G, Fabris B, et al.: Primary aldosteronism (PA) prevalence in Italy (PAPY) study: Results of a nationwide survey. Am J Hypertens 2005, 18:S235A.Google Scholar
  7. 7.
    Swedberg K, Eneroth P, Kjekshus J, Snapinn S: Effects of enalapril and neuroendocrine activation on prognosis in severe congestive heart failure (follow-up of the CONSENSUS trial). CONSENSUS Trial Study Group. Am J Cardiol 1990, 66:40D-44D.PubMedCrossRefGoogle Scholar
  8. 8.
    Swedberg K, Kjekshus J, Snapinn S: Long-term survival in severe heart failure in patients treated with enalapril. Ten year follow-up of CONSENSUS I. Eur Heart J 1999, 20:136–139.PubMedCrossRefGoogle Scholar
  9. 9.
    Dahlof B, Devereux RB, Kjeldsen SE, et al.: Cardiovascular morbidity and mortality in the Losartan Intervention For Endpoint Reduction in Hypertension Study (LIFE): a randomised trial against atenolol. Lancet 2002, 359:995–1003.PubMedCrossRefGoogle Scholar
  10. 10.
    Cohen SA, Jondeau G, Beauvais F, Berdeaux A: Beneficial effects of carvedilol on angiotensin-converting enzyme activity and renin plasma levels in patients with chronic heart failure. Eur J Heart Fail. 2004, 6:463–466.CrossRefGoogle Scholar
  11. 11.
    Zannad F: Aldosterone and heart failure. Eur Heart J 1995, 16:98–102.PubMedGoogle Scholar
  12. 12.
    Masson S, Latini R, Bevilacqua M, et al.: Within-patient variability of hormone and cytokine concentrations in heart failure. Pharmacol Res 1998, 37:213–217.PubMedCrossRefGoogle Scholar
  13. 13.
    Rossi GP, Boscaro M, Ronconi V, Funder JW: Aldosterone as a cardiovascular risk factor. Trends Endocrinol Metab 2005, 16:104–107.PubMedCrossRefGoogle Scholar
  14. 14.
    Brilla CG, Maisch B, Weber KT: Myocardial collagen matrix remodelling in arterial hypertension. Eur Heart J 1992, 13:24–32.PubMedGoogle Scholar
  15. 15.
    Brilla CG, Pick R, Tan LB, et al.: Remodeling of the rat right and left ventricles in experimental hypertension. Circ Res 1990, 67:1355–1364.PubMedGoogle Scholar
  16. 16.
    Pitt B, Zannad F, Remme WJ, et al.: The effect of spironolactone on morbidity and mortality in patients with severe heart failure. Randomized Aldactone Evaluation Study Investigators. N Engl J Med 1999, 341:709–717. A study showing that blockade of aldosterone receptors by spironolactone, in addition to standard therapy, substantially reduces the risk for morbidity and death among patients with severe heart failure.PubMedCrossRefGoogle Scholar
  17. 17.
    Pitt B, Remme W, Zannad F, et al.: Eplerenone, a selective aldosterone blocker, in patients with left ventricular dysfunction after myocardial infarction. N Engl J Med 2003, 348:1309–1321.PubMedCrossRefGoogle Scholar
  18. 18.
    Silvestre JS, Heymes C, Oubenaissa A, et al.: Activation of cardiac aldosterone production in rat myocardial infarction: effect of angiotensin II receptor blockade and role in cardiac fibrosis. Circulation 1999, 99:2694–2701.PubMedGoogle Scholar
  19. 19.
    Delcayre C, Silvestre JS, Garnier A, et al.: Cardiac aldosterone production and ventricular remodeling. Kidney Int 2000, 57:1346–1351.PubMedCrossRefGoogle Scholar
  20. 20.
    Gomez-Sanchez CE, Gomez-Sanchez EP: Cardiac steroidogenesis —new sites of synthesis, or much ado about nothing? J Clin Endocrinol Metab 2001, 86:5118–5120.PubMedCrossRefGoogle Scholar
  21. 21.
    Bonvalet JP, Alfaidy N, Farman N, Lombes M: Aldosterone: intracellular receptors in human heart. Eur Heart J 1995, 16:92–97.PubMedGoogle Scholar
  22. 22.
    Weber KT, Sun Y, Guarda E: Structural remodeling in hypertensive heart disease and the role of hormones. Hypertension 1994, 23:869–877.PubMedGoogle Scholar
  23. 23.
    Park JB, Schiffrin EL: Cardiac and vascular fibrosis and hypertrophy in aldosterone-infused rats: role of endothelin-1. Am J Hypertens 2002, 15:164–169.PubMedCrossRefGoogle Scholar
  24. 24.
    Robert V, Heymes C, Silvestre JS, et al.: Angiotensin AT1 receptor subtype as a cardiac target of aldosterone: role in aldosterone-salt-induced fibrosis. Hypertension 1999, 33:981–986.PubMedGoogle Scholar
  25. 25.
    Rossi GP, Sacchetto A, Visentin P, et al.: Changes in left ventricular anatomy and function in hypertension and primary aldosteronism. Hypertension 1996, 27:1039–1045.PubMedGoogle Scholar
  26. 26.
    Rossi GP, Sacchetto A, Pavan E, et al.: Remodeling of the left ventricle in primary aldosteronism due to Conn’s adenoma. Circulation 1997, 95:1471–1478.PubMedGoogle Scholar
  27. 27.
    Rossi GP: Aldosterone excess and left ventricular hypertrophy. Am J Hyertens 2006, In press.Google Scholar
  28. 28.
    Rossi GP, Di Bello V, Ganzaroli C, et al.: Excess aldosterone is associated with alterations of myocardial texture in primary aldosteronism. Hypertension 2002, 40:23–27.PubMedCrossRefGoogle Scholar
  29. 29.
    Takeda Y, Miyamori I, Yoneda T, et al.: Production of aldosterone in isolated rat blood vessels. Hypertension 1995, 25:170–173.PubMedGoogle Scholar
  30. 30.
    Hatakeyama H, Miyamori I, Fujita T, et al.: Vascular aldosterone. Biosynthesis and a link to angiotensin II-induced hypertrophy of vascular smooth muscle cells. J Biol Chem 1994, 269:24316–24320.PubMedGoogle Scholar
  31. 31.
    Hatakeyama H, Miyamori I, Takeda Y, et al.: The expression of steroidogenic enzyme genes in human vascular cells. Biochem Mol Biol Int. 1996, 40:639–645.PubMedGoogle Scholar
  32. 32.
    Funder JW, Pearce PT, Smith R, Campbell J: Vascular type I aldosterone binding sites are physiological mineralocorticoid receptors. Endocrinology 1989, 125:2224–2226.PubMedCrossRefGoogle Scholar
  33. 33.
    Weber KT, Brilla CG: Pathological hypertrophy and cardiac interstitium. Fibrosis and renin-angiotensinaldosterone system. Circulation 1991, 83:1849–1865. One of the first studies call attention to the detrimental role of an abnormal accumulation of fibrillar collagen in the heart.PubMedGoogle Scholar
  34. 34.
    Young M, Fullerton M, Dilley R, Funder J: Mineralocorticoids, hypertension, and cardiac fibrosis. J Clin Invest 1994, 93:2578–2583.PubMedGoogle Scholar
  35. 35.
    Virdis A, Neves MF, Amiri F, et al.: Spironolactone improves angiotensin-induced vascular changes and oxidative stress. Hypertension 2002, 40:504–510.PubMedCrossRefGoogle Scholar
  36. 36.
    Rocha R, Chander PN, Khanna K, et al.: Mineralocorticoid blockade reduces vascular injury in stroke-prone hypertensive rats. Hypertension 1998, 31:451–458.PubMedGoogle Scholar
  37. 37.
    Rocha R, Martin-Berger CL, Yang P, et al.: Selective aldosterone blockade prevents angiotensin II/salt-induced vascular inflammation in the rat heart. Endocrinology 2002, 143:4828–4836.PubMedCrossRefGoogle Scholar
  38. 38.
    Rocha R, Rudolph AE, Frierdich GE, et al.: Aldosterone induces a vascular inflammatory phenotype in the rat heart. Am J Physiol Heart Circ Physiol 2002, 283:H1802-H1810.PubMedGoogle Scholar
  39. 39.
    Rizzoni D, Porteri E, Castellano M, et al.: Vascular hypertrophy and remodeling in secondary hypertension. Hypertension 1996, 28:785–790.PubMedGoogle Scholar
  40. 40.
    Rizzoni D, Porteri E, Castellano M, et al.: Endothelial dysfunction in hypertension is independent from the etiology and from vascular structure. Hypertension 1998, 31:335–341.PubMedGoogle Scholar
  41. 41.
    Farquharson CAJ, Struthers AD: Spironolactone increases nitric oxide bioactivity, improves endothelial vasodilator dysfunction, and suppresses vascular angiotensin I/angiotensin II conversion in patients with chronic heart failure. Circulation 2000, 101:594–597.PubMedGoogle Scholar
  42. 42.
    Garnier A, Bendall JK, Fuchs S, et al.: Cardiac specific increase in aldosterone production induces coronary dysfunction in aldosterone synthase-transgenic mice. Circulation 2004, 110:1819–1825.PubMedCrossRefGoogle Scholar
  43. 43.
    Pu Q, Neves MF, Virdis A, et al.: Endothelin antagonism on aldosterone-induced oxidative stress and vascular remodeling. Hypertension 2003, 42:49–55.PubMedCrossRefGoogle Scholar
  44. 44.
    Liu SL, Schmuck S, Chorazcyzewski JZ, et al.: Aldosterone regulates vascular reactivity: short-term effects mediated by phosphatidylinositol 3-kinase-dependent nitric oxide synthase activation. Circulation 2003, 108:2400–2406.PubMedCrossRefGoogle Scholar
  45. 45.
    Oberleithner H, Ludwig T, Riethmuller C, et al.: Human endothelium: target for aldosterone. Hypertension 2004, 43:952–956.PubMedCrossRefGoogle Scholar
  46. 46.
    Brunner H, Cockcroft JR, Deanfield J, et al.: Endothelial function and dysfunction. Part II: Association with cardiovascular risk factors and diseases. A statement by the Working Group on Endothelins and Endothelial Factors of the European Society of Hypertension. J Hypertens 2005, 23:233–246.PubMedCrossRefGoogle Scholar
  47. 47.
    Ammarguellat F, Larouche II, Schiffrin EL: Myocardial fibrosis in DOCA-salt hypertensive rats: effect of endothelin ET(A) receptor antagonism. Circulation 2001, 103:319–324.PubMedGoogle Scholar
  48. 48.
    Park JB, Schiffrin EL: ET(A) receptor antagonist prevents blood pressure elevation and vascular remodeling in aldosterone-infused rats. Hypertension 2001, 37:1444–1449.PubMedGoogle Scholar
  49. 49.
    Deng LY, Day R, Schiffrin EL: Localization of sites of enhanced expression of endothelin-1 in the kidney of DOCA-salt hypertensive rats. J Am Soc Nephrol 1996, 7:1158–1164.PubMedGoogle Scholar
  50. 50.
    Lariviere R, Thibault G, Schiffrin EL: Increased endothelin-1 content in blood vessels of deoxycorticosterone acetate-salt hypertensive but not in spontaneously hypertensive rats. Hypertension 1993, 21:294–300.PubMedGoogle Scholar
  51. 51.
    Rossi GP, Sacchetto A, Cesari M, Pessina AC: Interactions between endothelin-1 and the renin-angiotensin-aldosterone system. Cardiovasc Res 1999, 43:300–307.PubMedCrossRefGoogle Scholar
  52. 52.
    Schiffrin EL: Endothelin: role in experimental hypertension. J Cardiovasc Pharmacol 2000, 35:S33-S35.PubMedCrossRefGoogle Scholar
  53. 53.
    Funder JW: Is aldosterone bad for the heart? Trends Endocrinol Metab 2004, 15:139–142.PubMedCrossRefGoogle Scholar
  54. 54.
    Nussdorfer GG, Rossi GP, Malendowicz LK, Mazzocchi G: Autocrine-paracrine endothelin system in the physiology and pathology of steroid-secreting tissues. Pharmacol Rev 1999, 51:1–35.Google Scholar
  55. 55.
    Rossi G, Albertin G, Belloni A, et al.: Gene expression, localization, and characterization of endothelin A and B receptors in the human adrenal cortex. J Clin Invest 1994, 94:1226–1234. This is one of the first studies to show that the genes of ET-1 and of its receptors A and B are expressed in the normal human adrenal cortex and in aldosterone-producing adenoma (APA), which is histogenetically derived from the zona glomerulosa (ZG) cells.PubMedCrossRefGoogle Scholar
  56. 56.
    Rossi GP, Belloni AS, Nussdorfer GG, Pessina AC: Endothelin-1 and the adrenal gland. J Cardiovasc Pharmacol 2000, 35:18–20.CrossRefGoogle Scholar
  57. 57.
    Delarue C, Conlon JM, Remy-Jouet I, et al.: Endothelins as local activators of adrenocortical cells. J Mol Endocrinol 2004, 32:1–7. This updated review nicely summarizes the evidence that endothelins (ETs) synthesized within the adrenal cortex may act as autocrine and/or paracrine factors to regulate adrenocortical cell activity. The underlying signaling pathways are also discussed.PubMedCrossRefGoogle Scholar
  58. 58.
    Iwanaga Y, Kihara Y, Hasegawa K, et al.: Cardiac endothelin-1 plays a critical role in the functional deterioration of left ventricles during the transition from compensatory hypertrophy to congestive heart failure in salt-sensitive hypertensive rats. Circulation 1998, 98:2065–2073.PubMedGoogle Scholar
  59. 59.
    Kaburagi S, Hasegawa K, Morimoto T, et al.: The role of endothelin-converting enzyme-1 in the development of alpha1-adrenergic-stimulated hypertrophy in cultured neonatal rat cardiac myocytes. Circulation 1999, 99:292–298.PubMedGoogle Scholar
  60. 60.
    Wei CM, Lerman A, Rodeheffer RJ, et al.: Endothelin in human congestive heart failure. Circulation 1994, 89:1580–1586.PubMedGoogle Scholar
  61. 61.
    Pacher R, Bergler-Klein J, Globits S, et al.: Plasma big endothelin-1 concentrations in congestive heart failure patients with or without systemic hypertension. Am J Cardiol 1993, 71:1293–1299.PubMedCrossRefGoogle Scholar
  62. 62.
    Sutsch G, Bertel O, Kiowski W: Acute and short-term effects of the nonpeptide endothelin-1 receptor antagonist bosentan in humans. Cardiovasc Drugs Ther 1997, 10:717–725.PubMedCrossRefGoogle Scholar
  63. 63.
    Sutsch G, Kiowski W, Yan XW, et al.: Short-term oral endothelin-receptor antagonist therapy in conventionally treated patients with symptomatic severe chronic heart failure. Circulation 1998, 98:2262–2268.PubMedGoogle Scholar
  64. 64.
    Rossi GP, Albertin G, Bova S, et al.: Autocrine-paracrine role of endothelin-1 in the regulation of aldosterone synthase expression and intracellular Ca2+ in human adrenocortical carcinoma. Endocrinology 1997, 138:4421–4426.PubMedCrossRefGoogle Scholar
  65. 65.
    Rossi GP, Ganzaroli C, Cesari M, et al.: Endothelin receptor blockade lowers plasma aldosterone levels via different mechanisms in primary aldosteronism and high-to-normal renin hypertension. Cardiovasc Res 2003, 57:277–283.PubMedCrossRefGoogle Scholar
  66. 66.
    Andreis PG, Neri G, Tortorella C, et al.: Mechanisms transducing the aldosterone secretagogue signal of endothelins in the human adrenal cortex. Peptides 2002, 23:561–566.PubMedCrossRefGoogle Scholar
  67. 67.
    Fraccarollo D, Hu K, Galuppo P, et al.: Chronic endothelin receptor blockade attenuates progressive ventricular dilation and improves cardiac function in rats with myocardial infarction: possible involvement of myocardial endothelin system in ventricular remodeling. Circulation 1997, 96:3963–3973.PubMedGoogle Scholar
  68. 68.
    Mulder P, Richard V, Derumeaux G, et al.: Role of endogenous endothelin in chronic heart failure: effect of long-term treatment with an endothelin antagonist on survival, hemodynamics, and cardiac remodeling. Circulation 1997, 96:1976–1982.PubMedGoogle Scholar
  69. 69.
    Kiowski W, Sutsch G, Hunziker P, et al.: Evidence for endothelin-1-mediated vasoconstriction in severe chronic heart failure. Lancet 1995, 346:732–736.PubMedCrossRefGoogle Scholar
  70. 70.
    Sutsch G, Kiowski W: Endothelin and endothelin receptor antagonism in heart failure. J Cardiovasc Pharmacol 2000, 35:S69-S73.PubMedCrossRefGoogle Scholar
  71. 71.
    Torre-Amione G, Young JB, Durand J, et al.: Hemodynamic effects of tezosentan, an intravenous dual endothelin receptor antagonist, in patients with class III to IV congestive heart failure. Circulation 2001, 103:973–980.PubMedGoogle Scholar
  72. 72.
    Torre-Amione G, Durand JB, Nagueh S, et al.: A pilot safety trial of prolonged (48 h) infusion of the dual endothelinreceptor antagonist tezosentan in patients with advanced heart failure. Chest 2001, 120:460–466.PubMedCrossRefGoogle Scholar
  73. 73.
    Torre-Amione G, Young JB, Colucci WS, et al.: Hemodynamic and clinical effects of tezosentan, an intravenous dual endothelin receptor antagonist, in patients hospitalized for acute decompensated heart failure. J Am Coll Cardiol 2003, 42:140–147.PubMedCrossRefGoogle Scholar
  74. 74.
    Luscher TF, Enseleit F, Pacher R, et al.: Hemodynamic and neurohumoral effects of selective endothelin A (ET(A)) receptor blockade in chronic heart failure: the Heart Failure ET(A) Receptor Blockade Trial (HEAT). Circulation 2002, 106:2666–2672.PubMedCrossRefGoogle Scholar
  75. 75.
    Anand I, McMurray J, Cohn JN, et al.: Long-term effects of darusentan on left-ventricular remodelling and clinical outcomes in the EndothelinA Receptor Antagonist Trial in Heart Failure (EARTH): randomised, double-blind, placebo-controlled trial. Lancet 2004, 364:347–354.PubMedCrossRefGoogle Scholar
  76. 76.
    Rich S, McLaughlin V V: Endothelin receptor blockers in cardiovascular disease. Circulation 2003, 108:2184–2190.PubMedCrossRefGoogle Scholar
  77. 77.
    Ding SS, Qiu C, Hess P, et al.: Chronic endothelin receptor blockade prevents renal vasoconstriction and sodium retention in rats with chronic heart failure. Cardiovasc Res 2002, 53:963–970.PubMedCrossRefGoogle Scholar
  78. 78.
    Mazzocchi G, Rossi GP, Rebuffat P, et al.: Endothelin-1 stimulates deoxyribonucleic acid synthesis and cell proliferation in rat adrenal zona glomerulosa, acting through an endothelin A receptor coupled with protein kinase C- and tyrosine kinase-dependent signaling pathways. Endocrinology 1997, 138:2333–2338.PubMedCrossRefGoogle Scholar
  79. 79.
    Urata H, Ganten D: Cardiac angiotensin II formation: the angiotensin-I converting enzyme and human chymase. Eur Heart J 1993, 14:177–182.PubMedGoogle Scholar
  80. 80.
    Rossi GP, Andreis PG, Colonna S, et al.: Endothelin-1[1-31]: a novel autocrine-paracrine regulator of human adrenal cortex secretion and growth. J Clin Endocrinol Metab 2002, 87:322–328. This study provided for the first-time evidence of an alternative chymase-mediated biosynthetic pathway leading to the production of an ET-1[1-31] peptide in the normal human adrenal cortex. It also showed a weak secretagogue effect of ET-1[1-31] that was mediated exclusively via the ETA receptor. It was suggested that ET-1[1-31] can act as a selective ETA agonist and might play a role in adrenocortical cell growth regulation.PubMedCrossRefGoogle Scholar

Copyright information

© Current Science Inc 2006

Authors and Affiliations

  1. 1.DMCS-Internal Medicine 4University HospitalPadovaItaly

Personalised recommendations