Current Hypertension Reports

, Volume 8, Issue 1, pp 30–34 | Cite as

Fat tissue metabolism and adrenal steroid secretion

  • Valéria Lamounier-Zepter
  • Monika Ehrhart-Bornstein
Article

Abstract

Obesity has reached epidemic proportions in Western societies, contributing to metabolic diseases, hypertension, and vascular diseases. White adipose tissue has traditionally been regarded merely as lipid, and consequently, as energy storage. However, recent data revealed the importance of adipose tissue as a highly active endocrine organ and its involvement in the body’s metabolism and homeostasis. Obesity is associated with several endocrine disorders, including adrenocortical malfunction. Because of the central role of adrenal function in the body’s homeostasis, adrenal malfunction is important in the development of other obesity-related abnormalities. Therefore, in this short review, we summarize recent data on obesity-induced changes in adrenocortical mineralocorticoid, glucocorticoid, and androgen secretions and their consequences for metabolism.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Recommended Reading

  1. 1.
    Hedley AA, Ogden CL, Johnson CL, et al.: Prevalence of overweight and obesity among US children, adolescents, and adults, 1999–2002. JAMA 2004, 291:2847–2850.PubMedCrossRefGoogle Scholar
  2. 2.
    Kopelman PG: Obesity as a medical problem. Nature 2000, 404:635–643. Comprehensive and critical review on the metabolic and medical problems associated with overweight and obesity.PubMedGoogle Scholar
  3. 3.
    Kim S, Moustaid-Moussa N: Secretory, endocrine and autocrine/paracrine function of the adipocyte. J Nutr 2000, 130:3110S-3115S.PubMedGoogle Scholar
  4. 4.
    Trayhurn P, Beattie JH: Physiological role of adipose tissue: white adipose tissue as an endocrine and secretory organ. Proc Nutr Soc 2001, 60:329–339. The endocrine function of adipose tissue plays a key role in the development of obesity-associated diseases and malfunctions such as adrenal malfunction.PubMedCrossRefGoogle Scholar
  5. 5.
    Hauner H: The new concept of adipose tissue function. Physiol Behav 2004, 83:653–658.PubMedCrossRefGoogle Scholar
  6. 6.
    Weaver JU, Kopelman PG, McLoughlin L, et al.: Hyperactivity of the hypothalamo-pituitary-adrenal axis in obesity: a study of ACTH, AVP, beta-lipotrophin and cortisol responses to insulin-induced hypoglycaemia. Clin Endocrinol (Oxf) 1993, 39:345–350.Google Scholar
  7. 7.
    Rosmond R, Dallman MF, Bjorntorp P: Stress-related cortisol secretion in men: relationships with abdominal obesity and endocrine, metabolic and hemodynamic abnormalities. J Clin Endocrinol Metab 1998, 83:1853–1859.PubMedCrossRefGoogle Scholar
  8. 8.
    Bjorntorp P: Neuroendocrine factors in obesity. J Endocrinol 1997, 155:193–195.PubMedCrossRefGoogle Scholar
  9. 9.
    Duclos M, Gatta B, Corcuff JB, et al.: Fat distribution in obese women is associated with subtle alterations of the hypothalamic-pituitary-adrenal axis activity and sensitivity to glucocorticoids. Clin Endocrinol (Oxf) 2001, 55:447–454.CrossRefGoogle Scholar
  10. 10.
    Ehrhart-Bornstein M, Hinson JP, Bornstein SR, et al.: Intraadrenal interactions in the regulation of adrenocortical steroidogenesis. Endocrinol Rev 1998, 19:101–143.CrossRefGoogle Scholar
  11. 11.
    Lamounier-Zepter V, Bornstein SR, Ehrhart-Bornstein M: Mechanisms of obesity-related hypertension. Horm Metab Res 2004, 36:376–380.PubMedCrossRefGoogle Scholar
  12. 12.
    Stowasser M, Gunasekera TG, Gordon RD: Familial varieties of primary aldosteronism. Clin Exp Pharmacol Physiol 2001, 28:1087–1090.PubMedCrossRefGoogle Scholar
  13. 13.
    Thakur V, Richards R, Reisin E: Obesity, hypertension, and the heart. Am J Med Sci 2001, 321:242–248.PubMedCrossRefGoogle Scholar
  14. 14.
    Licata G, Scaglione R, Ganguzza A, et al.: Central obesity and hypertension: relationship between fasting serum insulin, plasma renin activity, and diastolic blood pressure in young obese subjects. Am J Hypertens 1994, 7:314–320.PubMedGoogle Scholar
  15. 15.
    Egan BM, Stepniakowski K, Goodfriend TL: Renin and aldosterone are higher and the hyperinsulinemic effect of salt restriction greater in subjects with risk factors clustering. Am J Hypertens 1994, 7:886–893.PubMedGoogle Scholar
  16. 16.
    El Gharbawy AH, Nadig VS, Kotchen JM, et al.: Arterial pressure, left ventricular mass, and aldosterone in essential hypertension. Hypertension 2001, 37:845–850.Google Scholar
  17. 17.
    Goodfriend TL, Calhoun DA: Resistant hypertension, obesity, sleep apnea, and aldosterone: theory and therapy. Hypertension 2004, 43:518–524.PubMedCrossRefGoogle Scholar
  18. 18.
    de PaulaRB, da Silva AA, Hall JE: Aldosterone antagonism attenuates obesity-induced hypertension and glomerular hyperfiltration. Hypertension 2004, 43:41–47.PubMedCrossRefGoogle Scholar
  19. 19.
    Engeli S, Sharma AM: The renin-angiotensin system and natriuretic peptides in obesity-associated hypertension. J Mol Med 2001, 79:21–29.PubMedCrossRefGoogle Scholar
  20. 20.
    Engeli S, Schling P, Gorzelniak K, et al.: The adipose-tissue renin-angiotensin-aldosterone system: role in the metabolic syndrome? Int J Biochem Cell Biol 2003, 35:807–825.PubMedCrossRefGoogle Scholar
  21. 21.
    Frederich RC Jr, Kahn BB, Peach MJ, et al.: Tissue-specific nutritional regulation of angiotensinogen in adipose tissue. Hypertension 1992, 19:339–344.PubMedGoogle Scholar
  22. 22.
    Prat-Larquemin L, Oppert JM, Clement K, et al.: Adipose angiotensinogen secretion, blood pressure, and AGT M235T polymorphism in obese patients. Obes Res 2004, 12:556–561.PubMedGoogle Scholar
  23. 23.
    Engeli S, Bohnke J, Gorzelniak K, et al.: Weight loss and the renin-angiotensin-aldosterone system. Hypertension 2005, 45:356–362.PubMedCrossRefGoogle Scholar
  24. 24.
    Harte A, McTernan P, Chetty R, et al.: Insulin-mediated upregulation of the renin angiotensin system in human subcutaneous adipocytes is reduced by rosiglitazone. Circulation 2005, 111:1954–1961.PubMedCrossRefGoogle Scholar
  25. 25.
    Ehrhart-Bornstein M, Lamounier-Zepter V, Schraven A, et al.: Human adipocytes secrete mineralocorticoid releasing factors. Proc Nat Acad Sci U S A 2003, 100:14211–14216.CrossRefGoogle Scholar
  26. 26.
    Ehrhart-Bornstein M, Arakelyan K, Krug AW, et al.: Fat cells may be the obesity-hypertension link: human adipogenic factors stimulate aldosterone secretion from adrenocortical cells. Endocrinol Res 2004, 30:865–870.CrossRefGoogle Scholar
  27. 27.
    Glasow A, Haidan A, Hilbers U, et al.: Expression of ob receptor in normal human adrenal: differential regulation of adrenocortical and adrenomedullary function by leptin. J Clin Endocrinol Metab 1998, 83:4459–4466.PubMedCrossRefGoogle Scholar
  28. 28.
    Goodfriend TL, Ball DL, Egan BM, et al.: Epoxy-keto derivative of linoleic acid stimulates aldosterone secretion. Hypertension 2004, 43:358–363.PubMedCrossRefGoogle Scholar
  29. 29.
    Purnell JQ, Brandon DD, Isabelle LM, et al.: Association of 24-hour cortisol production rates, cortisol-binding globulin, and plasma-free cortisol levels with body composition, leptin levels, and aging in adult men and women. J Clin Endocrinol Metab 2004, 89:281–287.PubMedCrossRefGoogle Scholar
  30. 30.
    Andrew R, Phillips DI, Walker BR: Obesity and gender influence cortisol secretion and metabolism in man. J Clin Endocrinol Metab 1998, 83:1806–1809.PubMedCrossRefGoogle Scholar
  31. 31.
    Zhang Y, Proenca R, Maffei M, et al.: Positional cloning the mouse obese gene and its human homologue. Nature 1994, 372:425–432.PubMedCrossRefGoogle Scholar
  32. 32.
    Heiman ML, Ahima RS, Craft LS, et al.: Leptin inhibition of the hypothalamic-pituitary-adrenal axis in response to stress. Endocrinology 1997, 138:3859–3863.PubMedCrossRefGoogle Scholar
  33. 33.
    Stephens TW, Basinski M, Bristow PK, et al.: The role of neuropeptide Y in the antiobesity action of the obese gene product. Nature 1995, 377:530–532.PubMedCrossRefGoogle Scholar
  34. 34.
    Pralong FP, Roduit R, Waeber G, et al.: Leptin inhibits directly glucocorticoid secretion by normal human and rat adrenal gland. Endocrinology 1998, 139:4264–4268.PubMedCrossRefGoogle Scholar
  35. 35.
    Bornstein SR, Uhlmann K, Haidan A, et al.: Evidence for a novel peripheral action of leptin as a metabolic signal to the adrenal gland. Leptin inhibits cortisol release directly. Diabetes 1997, 46:1235–1238.PubMedCrossRefGoogle Scholar
  36. 36.
    Kruse M, Bornstein SR, Uhlmann K, et al.: Leptin downregulates the steroid producing system in the adrenal. Endocriunol Res 1998, 24:587–590.CrossRefGoogle Scholar
  37. 37.
    Lado-Abeal J, Mrotek JJ, Stocco DM, et al.: Effect of leptin on ACTH-stimulated secretion of cortisol in rhesus macaques and on human adrenal carcinoma cells. Eur J Endocrinol 1999, 141:534–538.PubMedCrossRefGoogle Scholar
  38. 38.
    Ahima RS, Prabakaran D, Mantzoros C, et al.: Role of leptin in the neuroendocrine response to fasting. Nature 1996, 382:250–252.PubMedCrossRefGoogle Scholar
  39. 39.
    L’Allemand D, Schmidt S, Rousson V, et al.: Associations between body mass, leptin, IGF-I and circulating adrenal androgens in children with obesity and premature adrenarche. Eur J Endocrinol 2002, 146:537–543.PubMedCrossRefGoogle Scholar
  40. 40.
    Remer T, Manz F: Role of nutritional status in the regulation of adrenarche. J Clin Endocrinol Metab 1999, 84:3936–3944.PubMedCrossRefGoogle Scholar
  41. 41.
    Quinton ND, Smith RF, Clayton PE, et al.: Leptin binding activity changes with age: the link between leptin and puberty. J Clin Endocrinol Metab 1999, 84:2336–2341.PubMedCrossRefGoogle Scholar
  42. 42.
    Blum WF, Englaro P, Hanitsch S, et al.: Plasma leptin levels in healthy children and adolescents: dependence on body mass index, body fat mass, gender, pubertal stage, and testosterone. J Clin Endocrinol Metab 1997, 82:2904–2910.PubMedCrossRefGoogle Scholar
  43. 43.
    Mantzoros CS, Flier JS, Rogol AD: A longitudinal assessment of hormonal and physical alterations during normal puberty in boys. V. Rising leptin levels may signal the onset of puberty. J Clin Endocrinol Metab 1997, 82:1066–1070.PubMedCrossRefGoogle Scholar
  44. 44.
    Ahima RS, Dushay J, Flier SN, et al.: Leptin accelerates the onset of puberty in normal female mice. J Clin Invest 1997, 99:391–395.PubMedCrossRefGoogle Scholar
  45. 45.
    Chehab FF, Mounzih K, Lu R, et al.: Early onset of reproductive function in normal female mice treated with leptin. Science 1997, 275:88–90.PubMedCrossRefGoogle Scholar
  46. 46.
    Ghizzoni L, Mastorakos G: Interactions of leptin, GH, and cortisol in normal children. Ann N Y Acad Sci 2003, 997:56–63.PubMedCrossRefGoogle Scholar
  47. 47.
    Biason-Lauber A, Zachmann M, Schoenle EJ: Effect of leptin on CYP17 enzymatic activities in human adrenal cells: new insight in the onset of adrenarche. Endocrinology 2000, 141:1446–1454.PubMedCrossRefGoogle Scholar
  48. 48.
    MacCario M, Mazza E, Ramunni J, et al.: Relationships between dehydroepiandrosterone-sulphate and anthropometric, metabolic and hormonal variables in a large cohort of obese women. Clin Endocrinol (Oxf) 1999, 50:595–600.CrossRefGoogle Scholar
  49. 49.
    De PG, Giagulli VA, Garruti G, et al.: Low dehydroepiandrosterone circulating levels in premenopausal obese women with very high body mass index. Metabolism 1991, 40:187–190.CrossRefGoogle Scholar
  50. 50.
    Tchernof A, Despres JP, Belanger A, et al.: Reduced testosterone and adrenal C19 steroid levels in obese men. Metabolism 1995, 44:513–519.PubMedCrossRefGoogle Scholar
  51. 51.
    Hauner H, Entenmann G, Wabisch M, et al.: Promoting effects of glucocorticoids on the differentiation of human adipocyte precursor cells cultured in a chemically defined medium. J Clin Invest 1989, 84:1663–1670.PubMedGoogle Scholar
  52. 52.
    Vrezas I, Wentworth P, Bornstein SR: Myelolipomatous foci on an adrenal adenoma causing Cushing’s syndrome. Endocrinol Res 2003, 29:67–71.CrossRefGoogle Scholar
  53. 53.
    Päth G, Bornstein SR, Ehrhart-Bornstein M, et al.: Interleukin-6 and the interleukin-6 receptor in the human adrenal gland: expression and effects on steroidogenesis. J Clin Endocrinol Metab 1997, 82:2343–2349.PubMedCrossRefGoogle Scholar
  54. 54.
    Natarajan R, Ploszaj S, Horton R, et al.: Tumor necrosis factor and interleukin-1 are potent inhibitors of angiotensin II-induced aldosterone synthesis. Endocrinology 1989, 125:3084–3089.PubMedCrossRefGoogle Scholar
  55. 55.
    Judd AM, Call GB, Barney M, et al.: Possible function of IL-6 and TNF as intraadrenal factors in the regulation of adrenal steroid secretion. Ann N Y Acad Sci 2000, 917:628–637.PubMedCrossRefGoogle Scholar
  56. 56.
    McGarry JD: Banting lecture 2001: dysregulation of fatty acid metabolism in the etiology of type 2 diabetes. Diabetes 2002, 51:7–18.PubMedCrossRefGoogle Scholar

Copyright information

© Current Science Inc 2006

Authors and Affiliations

  • Valéria Lamounier-Zepter
  • Monika Ehrhart-Bornstein
    • 1
  1. 1.Medical Clinic IIITechnical University of DresdenFetscherstrasseGermany

Personalised recommendations