Current Hypertension Reports

, Volume 8, Issue 2, pp 171–177

Development of microalbuminuria in essential hypertension



During the past few years, microalbuminuria has become a prognostic marker for cardiovascular and/or renal risk in diabetic and nondiabetic subjects. In essential hypertensives, an increased transglomerular passage of albumin may result from several mechanisms—hyperfiltration, glomerular basal membrane abnormalities, endothelial dysfunction, and nephrosclerosis. Cross-sectional studies have demonstrated that the main factors related to microalbuminuria are blood pressure (BP) values and hyperinsulinemia, as an expression of insulin resistance. Genetics, obesity, and smoking, however, have also been implicated as determinants of microalbuminuria in some of the studies. Follow-up studies support the role of BP values and subtle alterations in glucose metabolism, although contributing roles need to be assessed in further studies. It seems that the significance of microalbuminuria in essential hypertension is much broader than expected, and several factors may influence the presence of microalbuminuria. Thus, to reverse microalbuminuria, and to reduce urine albumin excretion and cardiovascular and renal risk, a strategy of multiple approaches may be needed. Whether or not the multiple approaches need to be implemented from the beginning or step by step in an individual approach should be established in the near future.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Recommended Reading

  1. 1.
    Mogensen CE: Microalbuminuria predicts clinical proteinuria and early mortality in maturity onset diabetes. N Engl J Med 1984, 310:356–360.PubMedCrossRefGoogle Scholar
  2. 2.
    Yudkin JS, Forrest RD, Jackson CA: Microalbuminuria as a predictor of vascular disease in non-diabetic subjects. Islington Diabetes Survey. Lancet 1988, 2:530–533.PubMedCrossRefGoogle Scholar
  3. 3.
    Damsgaard EM, Froland A, Jorgensen OD, Mogensen CE: Microalbuminuria as predictor of increased mortality in elderly people. BMJ 1990, 300:297–300.PubMedCrossRefGoogle Scholar
  4. 4.
    Haffner SM, Stern MP, Kozlowski MK, et al.: Microalbuminuria. Potential marker for increased cardiovascular factors in non-diabetic subjects? Atherosclerosis 1990, 10:727–731.Google Scholar
  5. 5.
    Bigazzi R, Bianchi S, Baldari D, Campese VM: Microalbuminuria predicts cardiovascular events and renal insufficiency in patients with essential hypertension. J Hypertens 1998, 16:1325–1333.PubMedCrossRefGoogle Scholar
  6. 6.
    Borch-Johnsen K, Feldt-Rasmussen B, Strandgaard S, et al.: Urinary albumin excretion. An independent predictor of ischemic heart disease. Arterioscler Thromb Vasc Biol 1999, 19:1992–1997. This was the first publication of one of the most important studies performed in the field of microalbuminuria as a prognostic factor for cardiovascular disease—the PREVEND study.PubMedGoogle Scholar
  7. 7.
    Jager A, Kostense PJ, Ruhe HG, et al.: Microalbuminuria and peripheral arterial disease are independent predictors of cardiovascular and all-cause mortality, especially among hypertensive subjects: five-year follow-up of the Hoorn Study. Arterioscler Thromb Vasc Biol 1999, 19:617–624.PubMedGoogle Scholar
  8. 8.
    Roest M, Banga JD, Janssen WM, et al.: Excessive urinary albumin levels are associated with future cardiovascular mortality in postmenopausal women. Circulation 2001, 103:3057–3061.PubMedGoogle Scholar
  9. 9.
    Gerstein HC, Mann JF, Yi Q, et al.: Albuminuria and risk of cardiovascular events, death, and heart failure in diabetic and nondiabetic individuals. HOPE Study Investigators. JAMA 2001, 286:421–426.PubMedCrossRefGoogle Scholar
  10. 10.
    Romunstad S, Holmen J, Hallan H, et al.: Microalbuminuria and all-cause mortality in treated hypertensive individuals. Does sex matter? The Nord-Trondelag Health Study (HUNT), Norway. Circulation 2003, 108:2783–2789.CrossRefGoogle Scholar
  11. 11.
    Wachtell K, Ibsen H, Olsen MH, et al.: Albuminuria and cardiovascular risk in hypertensive patients with left ventricular hypertrophy: The LIFE Study. Ann Intern Med 2003, 139:901–906.PubMedGoogle Scholar
  12. 12.
    Guidelines Committee: 2003 European Society of Hypertension —European Society of Cardiology guidelines for the management of arterial hypertension. J Hypertens 2003, 21:1011–1053.CrossRefGoogle Scholar
  13. 13.
    Chobanian AV, Bakris GL, Black HR, et al.: National Heart, Lung, and Blood Institute Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure, National High Blood Pressure Education Program Coordinating Committee. The Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure: the JNC 7 report. JAMA 2003, 289:2560–2572.PubMedCrossRefGoogle Scholar
  14. 14.
    Ljugman S: Microalbuminuria in essential hypertension. Am J Hypertens 1990, 3:956–960.Google Scholar
  15. 15.
    Nosadini R, Semplicini A, Fioretto P, et al.: Sodium-lithium countertransport and cardiorenal abnormalities in essential hypertension. Hypertension 1991, 18:191–198.PubMedGoogle Scholar
  16. 16.
    Erley CM, Risler T: Microalbuminuria in primary hypertension: Is it a marker of glomerular damage? Nephrol Dial Transplant 1995, 9:1713–1715.Google Scholar
  17. 17.
    Bigazzi R, Bianchi S: Microalbuminuria as a marker of cardiovascular and renal disease in essential hypertension. Nephrol Dial Transplant 1995, 10(Suppl 6):10–14.PubMedGoogle Scholar
  18. 18.
    Cerasola G, Cottone S, D’Ignoto G, et al.: Microalbuminuria as a predictor of cardiovascular damage in essential hypertension. J Hypertens 1989, 7(Suppl 6):S332-S333.Google Scholar
  19. 19.
    Minram A, Ribstein J, DuCailar G: Is microalbuminuria a marker of early intrarenal vascular damage in essential hypertension? Hypertension 1994, 23:878–883.Google Scholar
  20. 20.
    Pedrinelli R, Giampietro O, Carmassi F, et al.: Microalbuminuria and endothelial dysfunction in essential hypertension. Lancet 1994, 344:14–18.PubMedCrossRefGoogle Scholar
  21. 21.
    Minram A, Ribstein J: Hyperfiltration in lean essential hypertension. Karger Basel. Contrib Nephrol 1996, 119:98–102.Google Scholar
  22. 22.
    Konen JC, Shihabi ZK, Summerson JH: Urinary transferrin and albumin excretion in patients with mild to moderate and controlled hypertension. Clin Physiol Biochem 1993, 10:1–7.Google Scholar
  23. 23.
    Alli C, Lombardo M, Zanni D, et al.: Albuminuria and transferrinuria in essential hypertension. Effects of antihypertensive therapy. Am J Hypertens 1996, 9:1068–1076.PubMedCrossRefGoogle Scholar
  24. 24.
    Taddei S, Virdis A, Ghiadoni L, et al.: Endothelial dysfunction in hypertension. J Nephrol 2000, 13:205–210.PubMedGoogle Scholar
  25. 25.
    Sommers SC, Melamed J: Renal pathology of essential hypertension 1990, 3:583–587.Google Scholar
  26. 26.
    Yoshioka T, Shiraga H, Yoshida Y, et al.: “Intact nephrons” as the primary origin of proteinuria in chronic renal disease. Study in the rat model of subtotal nephrectomy. J Clin Invest 1988, 82:1614–1623.PubMedGoogle Scholar
  27. 27.
    Ruilope LM, Alcazar JM, Hernandez E, Rodicio JL: Long-term influences of antihypertensive therapy on microalbuminuria in essential hypertension. Kidney Int 1994, 45(Suppl 45):S171-S173.Google Scholar
  28. 28.
    Sievert-Delle A, Ljungman S, Hartford M, Wikstrand J: Effect of 14 years of antihypertensive treatment on renal function and urinary albumin excretion in primary hypertension. Am J Hypertens 1996, 9:841–849.CrossRefGoogle Scholar
  29. 29.
    Bigazzi R, Bianchi S, Baldari D, Campese VM: Microalbuminuria predicts cardiovascular events and renal insufficiency in patients with essential hypertension. J Hypertens 1998, 16:1325–1333.PubMedCrossRefGoogle Scholar
  30. 30.
    Redon J, Rovira E, Miralles A, et al.: Factors related to the occurrence of microalbuminuria during antihypertensive treatment in essential hypertension. Hypertension 2002, 39:794–798.PubMedCrossRefGoogle Scholar
  31. 31.
    Giaconi S, Levanti C, Fommei E, et al.: Microalbuminuria and casual and ambulatory blood pressure monitoring in normotensives and in patients with borderline and mild essential hypertension. Am J Hypertens 1989, 2:259–261.PubMedGoogle Scholar
  32. 32.
    Gerber LM, Smukler C, Alderman MH: Differences in urinary albumin excretion rate between normotensive and hypertensive, white and nonwhite subjects. Arch Intern Med 1992, 152:373–377.PubMedCrossRefGoogle Scholar
  33. 33.
    Redon J, Lozano JV, Liao Y, et al.: Factors related to the presence of microalbuminuria in essential hypertension. Am J Hypertens 1994, 7:801–807.PubMedGoogle Scholar
  34. 34.
    Martinez MA, Moreno A, Aguirre de Carcer A, et al.: Frequency and determinants of microalbuminuria in mild hypertension: a primary-care-based study. MAPA-Madrid Working Group. J Hypertens 2001, 19:319–326.PubMedCrossRefGoogle Scholar
  35. 35.
    Bianchi S, Bigazzi R, Valtriani C, et al.: Elevated serum insulin levels in patients with essential hypertension and microalbuminuria. Hypertension 1994, 23(Part 1):681–687.PubMedGoogle Scholar
  36. 36.
    Redon J, Miralles A, Pascual JM, et al.: Hyperinsulinemia as a determinant of microalbuminuria in essential hypertension. J Hypertens 1997, 15:79–86. The study uncovers the influence of hyperinsulinemia in the increment of urinary albumin excretion even in hypertensive populations. Independent of 24-hour ambulatory blood pressure values, fasting insulin was the strongest predictor of microalbuminuria in lean essential hypertensives.PubMedCrossRefGoogle Scholar
  37. 37.
    Fernandez-Llama P, Poch E, Oriola J, et al.: Angiotensin converting enzyme I/D polymorphism in essential hypertension and nephroangiosclerosis. Kidney Int 1998, 53:1743–1747.PubMedCrossRefGoogle Scholar
  38. 38.
    Chaves FJ, Pascual JM, Rovira E, et al.: Angiotensin II AT1 receptor gene polymorphism and microalbuminuria in essential hypertension. Am J Hypertens 2001, 14:364–370.PubMedCrossRefGoogle Scholar
  39. 39.
    de Jong PE, Verhave JC, Pinto-Sietsma SJ, Hillege HL: Obesity and target organ damage: the kidney. PREVEND Study Group. Int J Obes Relat Metab Disord 2002, 26 (Suppl 4):S21-S24.PubMedCrossRefGoogle Scholar
  40. 40.
    Pinto-Sietsma SJ, Mulder J, Janssen WM, et al.: Smoking is related to albuminuria and abnormal renal function in nondiabetic persons. Ann Intern Med 2000, 133:585–591.PubMedGoogle Scholar
  41. 41.
    Opshal JA, Abraham PA, Haltenson ChE, Keane WF: Correlation of office and ambulatory blood pressure measurements with urinary albumin and N-acetyl-beta-D-glucosaminidase excretions in essential hypertension. Am J Hypertens 1988, 1:117S-120S.Google Scholar
  42. 42.
    Lurbe E, Redon J, Pascual JM, et al.: Altered blood pressure during sleep in normotensive subjects with type 1 diabetes. Hypertension 1993, 21:227–235.PubMedGoogle Scholar
  43. 43.
    Redon J, Miralles A, Liao Y, et al.: Circadian variability and microalbuminuria in essential hypertension. J Hypertens 1994, 12:947–954.PubMedCrossRefGoogle Scholar
  44. 44.
    Redon J, Lurbe E: Ambulatory blood pressure and the kidney. In Calcium Antagonists in Clinical Medicine, edn 3. Edited by Epstein M. Philadelphia: Hanley and Belfus; 2002:665–681.Google Scholar
  45. 45.
    Groop L, Ekstrand A, Forsblom C, et al.: Insulin resistance, hypertension and microalbuminuria in patients with type 2 (non-insulin-dependent) diabetes mellitus. Diabetologia 1993, 36:642–647.PubMedCrossRefGoogle Scholar
  46. 46.
    Nosadini R, Solini A, Velussi M, et al.: Impaired insulininduced glucose uptake by extra-hepatic tissue is hallmark of NIDDM patients who have or will develop hypertension and microalbuminuria. Diabetes 1994, 43:491–499.PubMedCrossRefGoogle Scholar
  47. 47.
    Agewall S, Fagerberg B, Attvall S, et al.: Microalbuminuria, insulin sensitivity and haemostatic factors in non-diabetic treated hypertensive men. The Risk Factor Intervention Study Group. J Intern Med 1995, 237:195–203.PubMedCrossRefGoogle Scholar
  48. 48.
    Nestler JE, Barlascini GO, Tetrault GA, et al.: Increased transcapillary escape rate of albumin in nondiabetic men in response to hyperinsulinemia. Diabetes 1990, 39:1212–1217.PubMedCrossRefGoogle Scholar
  49. 49.
    Bigazzi R, Bianchi S, Baldari D, et al.: Microalbuminuria in salt-sensitive patients: a marker for renal and cardiovascular risk factors. Hypertension 1994, 23:195–199.PubMedGoogle Scholar
  50. 50.
    Nesovic M, Stojanovic M, Nesovic MM, et al.: Microalbuminuria is associated with salt sensitivity in hypertensive patients. J Human Hypertens 1996, 10:573–576.Google Scholar
  51. 51.
    Campese VM: Salt sensitivity in hypertension: renal and cardiovascular implications. Hypertension 1994, 23:531–550.PubMedGoogle Scholar
  52. 52.
    Weir MR, Dengel DR, Behrens MT, Goldberg AP: Saltinduced increases in systolic blood pressure affect renal hemodynamics and proteinuria. Hypertension 1995, 25:1339–1344.PubMedGoogle Scholar
  53. 53.
    Erley CM, Holzer M, Kramer BK, Risler T: Renal hemodynamics and organ damage in young hypertensive patients with different plasma renin activities after ACE inhibition. Nephrol Dial Transplant 1992, 7:216–220.PubMedGoogle Scholar
  54. 54.
    Pontremoli R, Sofia A, Tirotta A, et al.: The deletion/insertion polymorphism of the angiotensin I-converting enzyme gene is associated with target organ damage in essential hypertension. J Am Soc Nephrol 1996, 7:2550–2558.PubMedGoogle Scholar
  55. 55.
    Yudkin JS, Andres C, Mohamed AV, et al.: The angiotensinconverting enzyme gene and the angiotensin II type I receptor gene as a candidate genes for microalbuminuria. A study in non-diabetic and non-insulin dependent diabetic subjects. Arterioscl Thromb Vasc Biol 1997, 17:2188–2191.PubMedGoogle Scholar
  56. 56.
    Jeunemaitre X, Soubrier F, Kotelevtsev Y V, et al.: Molecular basis of human hypertension role of angiotensinogen. Cell 1992, 71:169–180.PubMedCrossRefGoogle Scholar
  57. 57.
    Sato N, Katsuya T, Rakugi H, et al.: Association of variants in critical core promoter element of angiotensinogen gene with increased risk of essential hypertension in Japanese. Hypertension 1997, 30:321–325.PubMedGoogle Scholar
  58. 58.
    Inoue I, Nakajima T, Williams CS, et al.: A nucleotide substitution in the promoter of human angiotensinogen is associated with essential hypertension and affects basal transcription in vitro. J Clin Invest 1997, 99:1786–1797.PubMedCrossRefGoogle Scholar
  59. 59.
    Bakker SJ, Gansevoort RT, Stuveling EM, et al.: Microalbuminuria and C-reactive protein: similar messengers of cardiovascular risks? Curr Hypertens Rep 2005, 7:379–384.PubMedGoogle Scholar
  60. 60.
    Barzilay JI, Peterson D, Cushman M, et al.: The relationship of cardiovascular risk factors to microalbuminuria in older adults with and without diabetes mellitus or hypertension: the cardiovascular health study. Am J Kidney Dis 2004, 44:25–34.PubMedCrossRefGoogle Scholar
  61. 61.
    Pedrinelli R, DellØmo G, Di Vello V, et al.: Low-grade inflammation and microalbuminuria in hypertension. Arterioscler Thromb Vasc Biol 2004, 24:2414–2419.PubMedCrossRefGoogle Scholar
  62. 62.
    Stuveling EM, Bakker SJ, Hillege HL, et al.: C-reactive protein modifies the relationship between blood pressure and microalbuminuria. PREVEND Study Group. Hypertension 2004, 43:791–796.PubMedCrossRefGoogle Scholar
  63. 63.
    Schrier RW, Estacio RO, Esler A, Mehler P: Effects of aggressive blood pressure control in normotensive type 2 diabetic patients on albuminuria, retinopathy and strokes. Kidney Int 2002, 61:1086–1097.PubMedCrossRefGoogle Scholar
  64. 64.
    Lurbe E, Redon J, Kesani A, et al.: Increase in nocturnal blood pressure and progression to microalbuminuria in type 1 diabetes. N Engl J Med 2002, 347:797–805. The prospective study of normotensive and normoalbuminuric type 1 diabetics demonstrated the importance of nocturnal blood pressure in the risk to develop early diabetic nephropathy. A progressive increment of systolic blood pressure at night heralded the occurrence of persistent microalbuminuria.PubMedCrossRefGoogle Scholar
  65. 65.
    Redon J: Renal protection with antihypertensive drugs. Insights from the microalbuminuria studies. J Hypertens 1998, 16:2091–2100.PubMedCrossRefGoogle Scholar
  66. 66.
    Pascual JM, Rodilla E, Gonzalez C, et al.: Long-term impact of systolic blood pressure and glycemia on the development of microalbuminuria in essential hypertension. Hypertension 2005, 45:1125–1130. A prospective assessment of the factor related to the development of microalbuminuria in previously normoalbuminuric subjects. This demonstrated that risk to develop microalbuminuria depends on the achieved systolic blood pressure and on the progressive increment of fasting glucose.PubMedCrossRefGoogle Scholar
  67. 67.
    Redon J, Chaves FJ, Liao YL, et al.: Influence of the I/D polymorphism of the angiotensin-converting enzyme gene on the outcome of microalbuminuria in essential hypertension. Hypertension 2000, 35:490–495. Genetic factors may impact the development of microalbuminuria in diabetic and nondiabetic populations. DD polymorphism of the angiotensin-converting enzyme has been associated with poor renal outcomes, whatever the disease considered. In this study, changes in urinary albumin excretion were linked to systolic blood pressure only in subjects carrying the DD genotype but not in the II or ID genotype.PubMedGoogle Scholar
  68. 68.
    Marin P, Julve R, Chaves FJ, et al.: Polymorphisms of the angiotensinogen gene and the outcome of microalbuminuria in essential hypertension: a 3-year follow-up study. J Human Hypertens 2004, 18:25–31.CrossRefGoogle Scholar
  69. 69.
    Agewall S, Wikstrand J, Ljugman S, et al.: Does microalbuminuria predict cardiovascular events in nondiabetic men with treated hypertension? The Risk Factor Intervention Study Group. Am J Hypertens 1995, 8:337–342.PubMedCrossRefGoogle Scholar

Copyright information

© Current Science Inc 2006

Authors and Affiliations

  1. 1.Hypertension Clinic, Internal MedicineHospìtal ClinicoValenciaSpain

Personalised recommendations