Current Hypertension Reports

, Volume 7, Issue 1, pp 61–67

Nitric oxide, angiotensin II, and reactive oxygen species in hypertension and atherogenesis

  • Ivonne H. Schulman
  • Ming-Sheng Zhou
  • Leopoldo Raij
Article

Abstract

A balance among nitric oxide (NO), angiotensin II (Ang II), and reactive oxygen species (ROS) in the endothelium is necessary for maintaining the homeostasis of the vascular wall. Oxidative stress has been shown to play a critical role in the development of hypertension and atherosclerosis. Although there is overwhelming evidence that hypertension promotes atherosclerosis, the relative contribution and/or interaction of hemodynamic and oxidative stress remains undefined. NO is synthesized in the endothelium by NO synthase and antagonizes the vasoconstrictive and proatherosclerotic effects of Ang II. On the other hand, Ang II decreases NO bioavailability by promoting oxidative stress. A better understanding of the pathophysiologic mechanisms involved in the link between hypertension and atherosclerosis may aid in developing therapeutic interventions. We propose that those antihypertensive agents that lower blood pressure and concomitantly restore the homeostatic balance of vasoactive agents in the endothelium would be more effective in preventing or arresting atherosclerosis.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Recommended Reading

  1. 1.
    Zhou MS, Schulman IH, Raij L: Nitric oxide, angiotensin II, and hypertension. Semin Nephrol 2004, 24:366–378. This article reviews the antagonistic interaction between NO and Ang II in the cardiovascular and renal systems.PubMedCrossRefGoogle Scholar
  2. 2.
    Yan C, Kim D, Aizawa T, Berk BC: Functional interplay between angiotensin II and nitric oxide: cyclic GMP as a key mediator. Arterioscler Thromb Vasc Biol 2003, 23:26–36. This review focuses on the interaction between Ang II and NO and the signaling pathways activated by these vasoactive mediators.PubMedCrossRefGoogle Scholar
  3. 3.
    Endemann DH, Schiffrin EL: Endothelial dysfunction. J Am Soc Nephrol 2004, 15:1983–1992. This is an excellent review of the pathophysiology, prognostic value, assessment, and therapy of endothelial dysfunction.PubMedCrossRefGoogle Scholar
  4. 4.
    Bugiardini R, Manfrini O, Pizzi C, et al.: Endothelial function predicts future development of coronary artery disease: a study of women with chest pain and normal coronary angiograms. Circulation 2004, 109:2518–2523.PubMedCrossRefGoogle Scholar
  5. 5.
    Sorescu D, Weiss D, Lassegue B, et al.: Superoxide production and expression of nox family proteins in human atherosclerosis. Circulation 2002, 105:1429–1435.PubMedCrossRefGoogle Scholar
  6. 6.
    CathcartMK: Regulation of superoxide anion production by NADPH oxidase in monocytes/macrophages: contributions to atherosclerosis. Arterioscler Thromb Vasc Biol 2004, 24:23–28.PubMedCrossRefGoogle Scholar
  7. 7.
    Libby P, Ridker PM, Maseri A: Inflammation and atherosclerosis. Circulation 2002, 105:1135–1143.PubMedCrossRefGoogle Scholar
  8. 8.
    Nickenig G, Harrison DG: The AT(1)-type angiotensin receptor in oxidative stress and atherogenesis: Part II: AT(1) receptor regulation. Circulation 2002, 105:530–536.PubMedCrossRefGoogle Scholar
  9. 9.
    Nickenig G, Harrison DG: The AT(1)-type angiotensin receptor in oxidative stress and atherogenesis: Part I: oxidative stress and atherogenesis. Circulation 2002, 105:393–396.PubMedCrossRefGoogle Scholar
  10. 10.
    Schmidt-Ott KM, Kagiyama S, Phillips MI: The multiple actions of angiotensin II in atherosclerosis. Regul Pept 2000, 93:65–77.PubMedCrossRefGoogle Scholar
  11. 11.
    Griendling KK, FitzGerald GA: Oxidative stress and cardiovascular injury: Part I: basic mechanisms and in vivo monitoring of ROS. Circulation 2003, 108:1912–1916.PubMedCrossRefGoogle Scholar
  12. 12.
    Griendling KK, FitzGerald GA: Oxidative stress and cardiovascular injury: Part II: animal and human studies. Circulation 2003, 108:2034–2040.PubMedCrossRefGoogle Scholar
  13. 13.
    Lassegue B, Griendling KK: Reactive oxygen species in hypertension: an update. Am J Hypertens 2004, 17:852–860.PubMedCrossRefGoogle Scholar
  14. 14.
    Szmitko PE, Wang CH, Weisel RD, et al.: New markers of inflammation and endothelial cell activation: Part I. Circulation 2003, 108:1917–1923.PubMedCrossRefGoogle Scholar
  15. 15.
    Koh KK, Ahn JY, Han SH, et al.: Pleiotropic effects of angiotensin II receptor blocker in hypertensive patients. J Am Coll Cardiol 2003, 42:905–910.PubMedCrossRefGoogle Scholar
  16. 16.
    SchiffrinEL: Beyond blood pressure: the endothelium and atherosclerosis progression. Am J Hypertens 2002, 15:115S-122S.PubMedCrossRefGoogle Scholar
  17. 17.
    Weinberger MH, Fineberg NS, Fineberg SE, Weinberger M: Salt sensitivity, pulse pressure, and death in normal and hypertensive humans. Hypertension 2001, 37:429–432.PubMedGoogle Scholar
  18. 18.
    Morimoto A, Uzu T, Fujii T, et al.: Sodium sensitivity and cardiovascular events in patients with essential hypertension. Lancet 1997, 350:1734–1737.PubMedCrossRefGoogle Scholar
  19. 19.
    Landmesser U, Hornig B, Drexler H: Endothelial function: a critical determinant in atherosclerosis? Circulation 2004, 109:II27-II33.PubMedCrossRefGoogle Scholar
  20. 20.
    Coats P, Johnston F, MacDonald J, et al.: Endothelium-derived hyperpolarizing factor: identification and mechanisms of action in human subcutaneous resistance arteries. Circulation 2001, 103:1702–1708.PubMedGoogle Scholar
  21. 21.
    Freitas MR, Schott C, Corriu C, et al.: Heterogeneity of endothelium-dependent vasorelaxation in conductance and resistance arteries from Lyon normotensive and hypertensive rats. J Hypertens 2003, 21:1505–1512.PubMedCrossRefGoogle Scholar
  22. 22.
    Zhou MS, Raij L: Cross-talk between nitric oxide and endothelium-derived hyperpolarizing factor: synergistic interaction? J Hypertens 2003, 21:1449–1451.PubMedCrossRefGoogle Scholar
  23. 23.
    Huang PL, Huang Z, Mashimo H, et al.: Hypertension in mice lacking the gene for endothelial nitric oxide synthase. Nature 1995, 377:239–242.PubMedCrossRefGoogle Scholar
  24. 24.
    Cosentino F, Barker JE, Brand MP, et al.: Reactive oxygen species mediate endothelium-dependent relaxations in tetrahydrobiopterin-deficient mice. Arterioscler Thromb Vasc Biol 2001, 21:496–502.PubMedGoogle Scholar
  25. 25.
    Mitchell BM, Dorrance AM, Webb RC: GTP cyclohydrolase 1 inhibition attenuates vasodilation and increases blood pressure in rats. Am J Physiol Heart Circ Physiol 2003, 285:H2165-H2170.PubMedGoogle Scholar
  26. 26.
    Vaziri ND, Ni Z, Oveisi F: Upregulation of renal and vascular nitric oxide synthase in young spontaneously hypertensive rats. Hypertension 1998, 31:1248–1254.PubMedGoogle Scholar
  27. 27.
    Hayakawa H, Coffee K, Raij L: Endothelial dysfunction and cardiorenal injury in experimental salt-sensitive hypertension: effects of antihypertensive therapy. Circulation 1997, 96:2407–2413.PubMedGoogle Scholar
  28. 28.
    Hayakawa H, Raij L: The link among nitric oxide synthase activity, endothelial function, and aortic and ventricular hypertrophy in hypertension. Hypertension 1997, 29:235–241.PubMedGoogle Scholar
  29. 29.
    Zhou MS, Jaimes EA, Raij L: Atorvastatin prevents end-organ injury in salt-sensitive hypertension: role of eNOS and oxidant stress. Hypertension 2004, 44:186–190.PubMedCrossRefGoogle Scholar
  30. 30.
    Lefer DJ, Jones SP, Girod WG, et al.: Leukocyte-endothelial cell interactions in nitric oxide synthase-deficient mice. Am J Physiol 1999, 276:H1943-H1950.PubMedGoogle Scholar
  31. 31.
    Tomita H, Egashira K, Kubo-Inoue M, et al.: Inhibition of NO synthesis induces inflammatory changes and monocyte chemoattractant protein-1 expression in rat hearts and vessels. Arterioscler Thromb Vasc Biol 1998, 18:1456–1464.PubMedGoogle Scholar
  32. 32.
    Numaguchi K, Egashira K, Takemoto M, et al.: Chronic inhibition of nitric oxide synthesis causes coronary microvascular remodeling in rats. Hypertension 1995, 26:957–962.PubMedGoogle Scholar
  33. 33.
    Kuhlencordt PJ, Gyurko R, Han F, et al.: Accelerated atherosclerosis, aortic aneurysm formation, and ischemic heart disease in apolipoprotein E/endothelial nitric oxide synthase double-knockout mice. Circulation 2001, 104:448–454.PubMedGoogle Scholar
  34. 34.
    Chen J, Kuhlencordt PJ, Astern J, et al.: Hypertension does not account for the accelerated atherosclerosis and development of aneurysms in male apolipoprotein e/endothelial nitric oxide synthase double knockout mice. Circulation 2001, 104:2391–2394.PubMedGoogle Scholar
  35. 35.
    Freedman JE, Ting B, Hankin B, et al.: Impaired platelet production of nitric oxide predicts presence of acute coronary syndromes. Circulation 1998, 98:1481–1486.PubMedGoogle Scholar
  36. 36.
    Usui M, Ichiki T, Katoh M, et al.: Regulation of angiotensin II receptor expression by nitric oxide in rat adrenal gland. Hypertension 1998, 32:527–533.PubMedGoogle Scholar
  37. 37.
    Ichiki T, Usui M, Kato M, et al.: Downregulation of angiotensin II type 1 receptor gene transcription by nitric oxide. Hypertension 1998, 31:342–348.PubMedGoogle Scholar
  38. 38.
    Craven PA, Studer RK, Felder J, et al.: Nitric oxide inhibition of transforming growth factor-beta and collagen synthesis in mesangial cells. Diabetes 1997, 46:671–681.PubMedCrossRefGoogle Scholar
  39. 39.
    Kawashima S, Yokoyama M: Dysfunction of endothelial nitric oxide synthase and atherosclerosis. Arterioscler Thromb Vasc Biol 2004, 24:998–1005.PubMedCrossRefGoogle Scholar
  40. 40.
    Zou MH, Shi C, Cohen RA: Oxidation of the zinc-thiolate complex and uncoupling of endothelial nitric oxide synthase by peroxynitrite. J Clin Invest 2002, 109:817–826.PubMedCrossRefGoogle Scholar
  41. 41.
    Alp NJ, McAteer MA, Khoo J, et al.: Increased endothelial tetrahydrobiopterin synthesis by targeted transgenic GTPcyclohydrolase I overexpression reduces endothelial dysfunction and atherosclerosis in ApoE-knockout mice. Arterioscler Thromb Vasc Biol 2004, 24:445–450.PubMedCrossRefGoogle Scholar
  42. 42.
    Landmesser U, Dikalov S, Price SR, et al.: Oxidation of tetrahydrobiopterin leads to uncoupling of endothelial cell nitric oxide synthase in hypertension. J Clin Invest 2003, 111:1201–1209.PubMedCrossRefGoogle Scholar
  43. 43.
    Ozaki M, Kawashima S, Yamashita T, et al.: Overexpression of endothelial nitric oxide synthase accelerates atherosclerotic lesion formation in apoE-deficient mice. J Clin Invest 2002, 110:331–340.PubMedCrossRefGoogle Scholar
  44. 44.
    Sydow K, Munzel T: ADMA and oxidative stress. Atheroscler Suppl 2003, 4:41–51.PubMedCrossRefGoogle Scholar
  45. 45.
    Boger RH, Bode-Boger SM, Szuba A, et al.: Asymmetric dimethylarginine (ADMA): a novel risk factor for endothelial dysfunction: its role in hypercholesterolemia. Circulation 1998, 98:1842–1847.PubMedGoogle Scholar
  46. 46.
    Higashi Y, Sasaki S, Nakagawa K, et al.: Endothelial function and oxidative stress in renovascular hypertension. N Engl J Med 2002, 346:1954–1962.PubMedCrossRefGoogle Scholar
  47. 47.
    Mancini GB, Henry GC, Macaya C, et al.: Angiotensin-converting enzyme inhibition with quinapril improves endothelial vasomotor dysfunction in patients with coronary artery disease. The TREND (Trial on Reversing Endothelial Dysfunction) Study. Circulation 1996, 94:258–265.PubMedGoogle Scholar
  48. 48.
    Brosnan MJ, Hamilton CA, Graham D, et al.: Irbesartan lowers superoxide levels and increases nitric oxide bioavailability in blood vessels from spontaneously hypertensive stroke-prone rats. J Hypertens 2002, 20:281–286.PubMedCrossRefGoogle Scholar
  49. 49.
    Lassegue B, Clempus RE: Vascular NAD(P)H oxidases: specific features, expression, and regulation. Am J Physiol Regul Integr Comp Physiol 2003, 285:R277-R297.PubMedGoogle Scholar
  50. 50.
    Desideri G, Bravi MC, Tucci M, et al.: Angiotensin II inhibits endothelial cell motility through an AT1-dependent oxidantsensitive decrement of nitric oxide availability. Arterioscler Thromb Vasc Biol 2003, 23:1218–1223.PubMedCrossRefGoogle Scholar
  51. 51.
    Laursen JB, Rajagopalan S, Galis Z, et al.: Role of superoxide in angiotensin II-induced but not catecholamine-induced hypertension. Circulation 1997, 95:588–593.PubMedGoogle Scholar
  52. 52.
    Ronson RS, Nakamura M, Vinten-Johansen J: The cardiovascular effects and implications of peroxynitrite. Cardiovasc Res 1999, 44:47–59.PubMedCrossRefGoogle Scholar
  53. 53.
    Xu H, Fink GD, Galligan JJ: Tempol lowers blood pressure and sympathetic nerve activity but not vascular O2- in DOCA-salt rats. Hypertension 2004, 43:329–334.PubMedCrossRefGoogle Scholar
  54. 54.
    Chu Y, Iida S, Lund DD, et al.: Gene transfer of extracellular superoxide dismutase reduces arterial pressure in spontaneously hypertensive rats: role of heparin-binding domain. Circ Res 2003, 92:461–468.PubMedCrossRefGoogle Scholar
  55. 55.
    Zhou MS, Adam AG, Jaimes EA, Raij L: In salt-sensitive hypertension, increased superoxide production is linked to functional upregulation of angiotensin II. Hypertension 2003, 42:945–951.PubMedCrossRefGoogle Scholar
  56. 56.
    Zhou MS, Jaimes EA, Raij L: Inhibition of oxidative stress and improvement of endothelial function by amlodipine in angiotensin II-infused rats. Am J Hypertens 2004, 17:167–171.PubMedCrossRefGoogle Scholar
  57. 57.
    Heitzer T, Schlinzig T, Krohn K, et al.: Endothelial dysfunction, oxidative stress, and risk of cardiovascular events in patients with coronary artery disease. Circulation 2001, 104:2673–2678.PubMedGoogle Scholar
  58. 58.
    Barry-Lane PA, Patterson C, van der Merwe M, et al.: p47phox is required for atherosclerotic lesion progression in ApoE(-/-) mice. J Clin Invest 2001, 108:1513–1522.PubMedCrossRefGoogle Scholar
  59. 59.
    Liu J, Yang F, Yang XP, et al.: NAD(P)H oxidase mediates angiotensin II-induced vascular macrophage infiltration and medial hypertrophy. Arterioscler Thromb Vasc Biol 2003, 23:776–782.PubMedCrossRefGoogle Scholar
  60. 60.
    Strawn WB, Chappell MC, Dean RH, et al.: Inhibition of early atherogenesis by losartan in monkeys with diet-induced hypercholesterolemia. Circulation 2000, 101:1586–1593.PubMedGoogle Scholar
  61. 61.
    Zhou MS, Pagano P, Schulman IH, et al.: Activation of vascular NAD(P)H oxidase by Ang II: link between salt sensitive hypertension and atherogenesis. In 11th Annual Meeting of COSEHC; New Orleans, LA. August 2004.Google Scholar
  62. 62.
    Reckelhoff JF, Romero JC: Role of oxidative stress in angiotensin-induced hypertension. Am J Physiol Regul Integr Comp Physiol 2003, 284:R893-R912.PubMedGoogle Scholar
  63. 63.
    Touyz RM, Chen X, Tabet F, et al.: Expression of a functionally active gp91phox-containing neutrophil-type NAD(P)H oxidase in smooth muscle cells from human resistance arteries: regulation by angiotensin II. Circ Res 2002, 90:1205–1213.PubMedCrossRefGoogle Scholar
  64. 64.
    Rey FE, Cifuentes ME, Kiarash A, et al.: Novel competitive inhibitor of NAD(P)H oxidase assembly attenuates vascular O(2)(-) and systolic blood pressure in mice. Circ Res 2001, 89:408–414.PubMedGoogle Scholar
  65. 65.
    Jung O, Schreiber JG, Geiger H, et al.: gp91phox-containing NADPH oxidase mediates endothelial dysfunction in renovascular hypertension. Circulation 2004, 109:1795–1801.PubMedCrossRefGoogle Scholar

Copyright information

© Current Science Inc. 2005

Authors and Affiliations

  • Ivonne H. Schulman
    • 1
  • Ming-Sheng Zhou
    • 1
  • Leopoldo Raij
    • 1
  1. 1.Nephrology-Hypertension SectionUniversity of Miami School of Medicine, Veterans Affairs Medical CenterMiamiUSA

Personalised recommendations