Current Hypertension Reports

, Volume 5, Issue 1, pp 11–18

Epithelial sodium channel, salt intake, and hypertension

  • Edith Hummler


The epithelial sodium channel (ENaC) is a membrane protein made of three different but homologous subunits (α, β, and γ) present in the apical membrane of epithelial cells of, for example, the distal nephron. This channel is responsible for salt reabsorption in the kidney and can cause human diseases by increasing channel function in Liddle’ syndrome, a form of hereditary hypertension, or by decreasing channel function in pseudohypoaldosteronism type I, a salt-wasting disease in infancy. This review briefly discusses recent advances in understanding the implication of ENaC in Liddle’ syndrome and in pseudohypoaldosteronism type I, both caused by mutations in the SCNN1 (ENaC) genes. Furthermore, it is still an open question to which extent SCNN1 genes coding for ENaC might be implicated in essential hypertension. The development of Scnn1 genetically engineered mouse models will provide the opportunity to test the effect of environmental factors, like salt intake, on the development of this kind of saltsensitive hypertension.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Recommended Reading

  1. 1.
    Ward R: Familial aggregation and genetic epidemiology of blood pressure. In Hypertension: Pathophysiology, Diagnosis, and Management. Edited by Laragh JH, Brenner BM. New York: Raven Press; 1990:81–100.Google Scholar
  2. 2.
    Taubes G: The (political) science of salt. Science 1998, 281:898–901.PubMedCrossRefGoogle Scholar
  3. 3.
    Group ICR: Intersalt: an international study of electrolyte excretion and blood pressure. Biol Mol J 1988, 297:319–328.Google Scholar
  4. 4.
    Page LB, Damon A, Moellering RCJ: Antecedents of cardiovascular disease in six Solomon Islands societies. Circulation 1974, 49:1132–1146.PubMedGoogle Scholar
  5. 5.
    Smith SCW, Crombie IK, Tavendale RT, et al.: Urinary electrolyte excretion, alcohol consumption, and blood pressure in the Scottish heart health study. Biol Mol J 1988, 297:329–330.Google Scholar
  6. 6.
    Denton D, Weisinger R, Mundy NI, et al.: The effect of increased salt intake on blood pressure of chimpanzees. Nat Med 1995, 1:1009–1016.PubMedCrossRefGoogle Scholar
  7. 7.
    Egan BM, Stepniakowski K, Nazzaro P: Insulin levels are similar in obese salt-sensitive and salt-resistant hypertensive subjects. Hypertension 1994, 23 (suppl):I1-II7.PubMedGoogle Scholar
  8. 8.
    Zoccali C, Mallamaci F, Parlongo S: The influence of salt intake on plasma calcitonin gene-related petide in subjects with mild essential hypertension. J Hypertens 1994, 12:1249–1253.PubMedCrossRefGoogle Scholar
  9. 9.
    Weinberger MH: Salt sensitivity: does it play an important role in the pathogenesis and treatment of hypertension? Curr Opin Nephrol Hypertens 1996, 5:205–208.PubMedCrossRefGoogle Scholar
  10. 10.
    Guyton AC: Blood pressure control-special role of the kidneys and body fluids. Science 1991, 252:1813–1816.PubMedCrossRefGoogle Scholar
  11. 11.
    Palmer LG, Frindt G: Conductance and gating of epithelial Na channels from rat cortical collecting tubule. Effects of luminal Na and Li. J Gen Physiol 1988, 92:121–138.PubMedCrossRefGoogle Scholar
  12. 12.
    Kellenberger S, Schild L: Epithelial sodium channel/degenerin family of ion channels: a variety of functions for a shared structure. Physiol Rev 2002, 82:735–737.PubMedGoogle Scholar
  13. 13.
    Liddle GW, Bledsoe T, Coppage WS: A familial renal disorder simulating primary aldosteronism but with negligible aldosterone secretion. Trans Assoc Am Physicians 1963, 76:199–213.Google Scholar
  14. 14.
    Botero-Velez M, Curtis JJ, Warnock DG: Brief report: Liddle’ syndrome revisited - a disorder of sodium reabsorption in the distal tubule. N Engl J Med 1994, 330:178–181.PubMedCrossRefGoogle Scholar
  15. 15.
    Rossier BC, Pradervand S, Schild L, et al.: Epithelial sodium channel and the control of sodium balance: interaction between genetic and environmental factors. Ann Rev Physiol 2002, 64:877–897.CrossRefGoogle Scholar
  16. 16.
    Bonny O, Rossier BC: Disturbances of Na/K balance: pseudohypoaldosteronism revisited. J Am Soc Nephrol 2002, 13:2399–2402. A detailed description of the pathophysiology and the clinical presentation of PHA-1.PubMedCrossRefGoogle Scholar
  17. 17.
    Saxena A, Hanukoglu I, Saxena D, et al.: Novel mutations responsible for autosomal recessive multisystem pseudohypoaldosteronism and sequence variants in epithelial sodium channel α-, β-, and γ-subunit genes. J Clin Endocrin Metab 2002, 87:3344–3350.CrossRefGoogle Scholar
  18. 18.
    Schild L, Canessa CM, Shimkets RA, et al.: A mutation in the epithelial sodium channel causing Liddle’ disease increases channel activity in the Xenopus laevis oocyte expression system. Proc Natl Acad Sci U S A 1995, 92:5699–5703.PubMedCrossRefGoogle Scholar
  19. 19.
    Firsov D, Schild L, Gautschi I, et al.: Cell surface expression of the epithelial Na channel and a mutant causing Liddle syndrome: a quantitative approach. Proc Natl Acad Sci U S A 1996, 93:15370–15375.PubMedCrossRefGoogle Scholar
  20. 20.
    Snyder PM, Price MP, McDonald FJ, et al.: Mechanism by which Liddle’ syndrome mutations increase activity of a human epithelial Na+ channel. Cell 1995, 83:969–978.PubMedCrossRefGoogle Scholar
  21. 21.
    Abriel H, Loffing J, Rebhun JF, et al.: Defective regulation of the epithelial Na+ channel by Nedd4 in Liddle’ syndrome. J Clin Invest 1999, 103:667–673. This paper provides evidence that Nedd4 is a suppressor of ENaC activity via the PY motifs and that those, when mutated, may cause Liddle’ syndrome.PubMedGoogle Scholar
  22. 22.
    Konstas A-A, Shearwin-Whyatt LM, Fotia AR, et al.: Regulation of the epithelial sodium channel by N4WBP5A, a novel Nedd4/Nedd4-2-interacting protein. J Biol Chem 2002, 277:29406–29416.PubMedCrossRefGoogle Scholar
  23. 23.
    Kamynina E, Staub O: Concerted action of ENaC, Nedd4-2, and Sgk1 in transepithelial transport. Am J Physiol Renal Physiol 2002, 283:F337-F387.Google Scholar
  24. 24.
    Rotin D, Kanelis V, Schild L: Trafficking and cell surface stability of ENaC. Am J Physiol Renal Physiol 2001, 281:F391-F399.PubMedGoogle Scholar
  25. 25.
    Hiltunen TP, Hannila-Handelberg T, Petäjäniemi N, et al.: Liddle’ syndrome associated with a point mutation in the extracellular domain of the epithelial sodium channel γ subunit. J Hypertens 2002, In press.Google Scholar
  26. 26.
    Lifton RP, Dluhy RG, Powers M, et al.: A chimaeric 11β-hydroxylase/aldosterone synthase gene causes glucocorticoid-remediable aldosteronism and human hypertension. Nature 1992, 355:262–265.PubMedCrossRefGoogle Scholar
  27. 27.
    Ferrari P, Krozowski Z: Role of the 11β-hydroxysteroid dehydrogenase type 2 in blood pressure regulation. Kidney Int 2000, 57:1374–1381.PubMedCrossRefGoogle Scholar
  28. 28.
    Geller DS, Rodriguez-Soriano J, Boado AV, et al.: Mutations in the mineralocorticoid receptor gene cause autosomal dominant pseudohypoaldosteronism type 1. Nat Genet 1998, 19:279–281.PubMedCrossRefGoogle Scholar
  29. 29.
    Shimkets RA, Warnock DG, Bositis CM, et al.: Liddle’ syndrome: Heritable human hypertension caused by mutations in the β subunit of the epithelial sodium channel. Cell 1994, 79:407–414.PubMedCrossRefGoogle Scholar
  30. 30.
    Hansson JH, Nelson-Williams C, Suzuki H, et al.: Hypertension caused by a truncated epithelial sodium channel γ subunit: genetic heterogeneity of Liddle syndrome. Nat Genet 1995, 11:76–82.PubMedCrossRefGoogle Scholar
  31. 31.
    Nagy Z, Busjahn A, Bahring S, et al.: Quantitative trait loci for blood pressure exist near the IGF-1, the Liddle syndrome, the angiotensin II-receptor gene and the renin loci in man. J Am Soc Nephrol 1999, 10:1709–1716.PubMedGoogle Scholar
  32. 32.
    Wong ZY, Stebbing M, Ellis JA, et al.: Genetic linkage of beta and gamma subunits of epithelial sodium channel to systolic blood pressure. Lancet 1999, 353:1222–1225. The first study showing an association between ENaC and essential hypertension.PubMedCrossRefGoogle Scholar
  33. 33.
    Ambrosius WT, Bloem LJ, Zhou L, et al.: Genetic variants in the epithelial sodium channel in relation to aldosterone and potassium excretion and risk for hypertension. Hypertension 1999, 34:631–637.PubMedGoogle Scholar
  34. 34.
    Baker EH, Dong YB, Sagnella GA, et al.: Association of hypertension with T594M mutation in beta subunit of epithelial sodium channels in black people resident in London. Lancet 1998, 351:1388–1392.PubMedCrossRefGoogle Scholar
  35. 35.
    Dong YB, Zhu HD, Baker EH, et al.: T594M and G442V polymorphisms of the sodium channel beta subunit and hypertension in a black population. J Hum Hypertens 2001, 15:425–430.PubMedCrossRefGoogle Scholar
  36. 36.
    Baker EH, Duggal A, Dong Y, et al.: Amiloride, a specific drug for hypertension in black people with T594M variant?. Hypertension 2002, 40:13–17.PubMedCrossRefGoogle Scholar
  37. 37.
    Cui Y, Su YR, Rutkowski M, et al.: Loss of protein kinase C inhibition in the beta-T594M variant of the amiloride-sensitive Na+ channel. Proc Natl Acad Sci U S A 1997, 94:9962–9966.PubMedCrossRefGoogle Scholar
  38. 38.
    Parmer RJ, Stone RA, Cervenka JH: Renal hemodynamics in essential hypertension: racial differences in response to changes in dietary sodium. Hypertension 1994, 24:752–757.PubMedGoogle Scholar
  39. 39.
    Chang H, Fujita T: Lack of mutations in epithelial sodium channel beta-subunit gene in human subjects with hypertension. J Hypertension 1996, 14:1417–1419.CrossRefGoogle Scholar
  40. 40.
    Baker WH, Portal AJ, McElvaney TA, et al.: Epithelial sodium channel activity is not increaed in hypertension in whites. Hypertens 1999, 33:1031–1035.Google Scholar
  41. 41.
    Melander O, Orho M, Fagerudd J, et al.: Mutations and variants of the epithelial sodium channel gene in Liddle’ syndrome and primary hypertension. Hypertension 1998, 31:1118–1124.PubMedGoogle Scholar
  42. 42.
    Persu A, Coscoy S, Houot AM, et al.: Polymorphisms of the gamma subunit of the epithelial sodium channel in essential hypertension. J Hypertens 1999, 17:639–645.PubMedCrossRefGoogle Scholar
  43. 43.
    Matsubara M, Ohkubo T, Micimata M, et al.: Japanese individuals do not harbor the T594M mutation but do have the P592S mutation in the C-terminus of the beta-subunit of the epithelial sodium channel: the Ohasama study. J Hypertens 2000, 18:861–866.PubMedCrossRefGoogle Scholar
  44. 44.
    Xue M-Z, Bonny O, Morgenthaler S, et al.: Use of constant denaturing capillary electrophoresis of pooled blood samples to identify single-nucleotide polymorphisms in the genes (Scnn1a and Scnn1b) encoding the α and β subunits of the epithelial sodium channel. Clin Chem 2002, 48:718–728.PubMedGoogle Scholar
  45. 45.
    Munroe PB, Strautnicks SS, Farall M, et al.: Absence of linkage of the epithelial sodium channel to hypertension in black Caribbeans. Am J Hypertens 1998, 11:942–945.PubMedCrossRefGoogle Scholar
  46. 46.
    Födinger M, Schedler D, Fritsche-Polanz R, et al.: Molecular analysis of the carboxy terminus of the beta and gamma subunits of the epithelial sodium channel in patients with end-stage renal disease. Nephron 1999, 81:381–386.PubMedCrossRefGoogle Scholar
  47. 47.
    Iwai N, Shunroku B, Mannami T, et al.: Association of sodium channel [gamma]-subunit promoter variant with blood pressure. Hypertension 2001, 38:86–89.PubMedGoogle Scholar
  48. 48.
    Iwai N, Baba S, Mannami T, et al.: Association of a sodium channel alpha subunit promoter variant with blood pressure. Am J Nephrol 2002, 13:80–85. This is the first study showing that a polymorphism within the SCNN1A promoter has a significant effect on blood pressure.CrossRefGoogle Scholar
  49. 49.
    Schild L, Lu Y, Gautschi I, et al.: Identification of a PY motif in the epithelial Na channel subunits as a target sequence for mutations causing channel activation found in Liddle syndrome. EMBO J 1996, 15:2381–2387.PubMedGoogle Scholar
  50. 50.
    Hanukoglu A: Type I pseudohypoaldosteronism includes two clinically and genetically distinct entities with either renal or multiple target organ defects. J Clin Endocrinol Metab 1991, 73:936–944.PubMedCrossRefGoogle Scholar
  51. 51.
    Kuhnle U, Hinkel GK, Huble W, et al.: Pseudohypoaldosteronism: family studies to identify asymptomatic carriers by stimulation of the renin-aldosterone system. Hormone Res 1996, 46:124–129.PubMedCrossRefGoogle Scholar
  52. 52.
    Chang SS, Gründer S, Hanukoglu A, et al.: Mutations in subunits of the epithelial sodium channel cause salt wasting with hyperkalaemic acidosis, pseudohypoaldosteronism type 1. Nat Genet 1996, 12:248–253.PubMedCrossRefGoogle Scholar
  53. 53.
    Gründer S, Jaeger NF, Gautschi I, et al.: Identification of a highly conserved sequence at the N-terminus of the epithelial Na+ channel alpha subunit involved in gating. Pflügers Arch 1999, 438:709–715.PubMedCrossRefGoogle Scholar
  54. 54.
    Gründer S, Firsov D, Chang SS, et al.: A mutation causing pseudohypoaldosteronism type 1 identifies a conserved glycine that is involved in the gating of the epithelial sodium channel. EMBO J 1997, 16:899–907.PubMedCrossRefGoogle Scholar
  55. 55.
    Rubera I, Rossier BC, Hummler E: Inactivation of sodium transporting proteins in the kidney. Pflügers Arch 2002, In press.Google Scholar
  56. 56.
    Pradervand S, Wang Q: A mouse model for Liddle’ syndrome. J Am Soc Nephrol 1999, 10:2527–2533.PubMedGoogle Scholar
  57. 57.
    Wang Q, Hummler E, Nussberger J, et al.: Blood pressure, cardiac, and renal responses to salt and deoxycorticosterone acetate in mice: role of renin genes. J Am Soc Nephrol 2002, 13:1509–1516.PubMedCrossRefGoogle Scholar
  58. 58.
    Hummler E, Barker P, Gatzy J, et al.: Early death due to defective neonatal lung liquid clearance in αENaC-deficient mice. Nat Genet 1996, 12:325–328.PubMedCrossRefGoogle Scholar
  59. 59.
    Hummler E, Barker P, Talbot C, et al.: A mouse model for the renal salt-wasting syndrome pseudohypoaldosteronism. Proc Natl Acad Sci U S A 1997, 94:11710–11715.PubMedCrossRefGoogle Scholar
  60. 60.
    Pradervand S, Barker P, Wang Q, et al.: Salt restriction induces pseudohypoaldosteronism type 1 in mice expressing low levels of the beta-subunit of the amiloride-sensitive epithelial sodium channel. Proc Natl Acad Sci U S A 1999, 96:1732–1737.PubMedCrossRefGoogle Scholar
  61. 61.
    Barker PM, Ngugen MS, Gatzy JT, et al.: Role of βENaC subunit in lung liquid clearance and electrolyte balance in newborn mice: insights into perinatal adaptation and pseudohypoaldosteronism. J Clin Invest 1998, 102:1634–1640.PubMedCrossRefGoogle Scholar
  62. 62.
    Wang Q, Hummler E, Maillard M, et al.: Compensatory upregulation of angiotensin II AT1 receptors in αENaC knockout heterozygous mice. Kidney Int 2001, 59:2216–2221.PubMedGoogle Scholar
  63. 63.
    McDonald FJ, Yang B, Hrstka RF, et al.: Disruption of the beta subunit of the epithelial Na+ channel in mice: hyperkalemia and neonatal death associated with a pseudohypoaldosteronism phenotype. Proc Natl Acad Sci U S A 1999, 96:1727–1731.PubMedCrossRefGoogle Scholar
  64. 64.
    Huang H, Pravenec M, Wang JM, et al.: Mapping and sequence analysis of the gene encoding the beta subunit of the epithelial sodium channel in experimental models of hypertension. J Hypertens 1995, 13:1247–1251.PubMedCrossRefGoogle Scholar
  65. 65.
    Kreutz R, Struk B: Role of the α-, β-, and γ-subunits of epithelial sodium channel in a model of polygenic hypertension. Hypertension 1997, 29:131–136.PubMedGoogle Scholar
  66. 66.
    Gründer S, Zagato L, Yagil C, et al.: Polymorphisms in the carboxy-terminus of the epithelial sodium channel in rat models for hypertension. J Hypertens 1997, 93:173–179.CrossRefGoogle Scholar
  67. 67.
    Corvol P, Persu A, Gimenez-Roqueplo A-P, et al.: Seven lessons from two candidate genes in human essential hypertension: angiotensinogen and epithelial sodium channel. Hypertension 1999, 33:1324–1331. This review summarizes the recent problems in correlating polymorphisms with essential hypertension in candidate genes like ENaC or angioteninogen.PubMedGoogle Scholar
  68. 68.
    Persu A, Barbry P, Houot A-M, et al.: Frequency of a polymorphism of a α subunit of the epithelial Na channel [abstract]. Am J Hypertens 1998, 11:6A.CrossRefGoogle Scholar
  69. 69.
    Ludwig M, Bolkenius U, Wickert L, et al.: Common polymorphisms in genes encoding the human mineralocorticoid receptor and the human amiloride-sensitive sodium channel. J Steroid Biochem Mol Biol 1998, 64:227–230.PubMedCrossRefGoogle Scholar
  70. 70.
    Arai K, Zachman K, Shibasaki T, et al.: Polymorphisms of amiloride-sensitive sodium channel subunits in five sporadic cases of pseudohypoaldosteronism: do they have pathological potential? J Clin Endocrinol Metab 1999, 84:2434–2437.PubMedCrossRefGoogle Scholar
  71. 71.
    Saxena A, Hanukoglu I, Strautnieks SS, et al.: Gene structure of the human amiloride-sensitive epithelial sodium channel β subunit. Biochem Biophys Res Commun 1998, 252:208–213.PubMedCrossRefGoogle Scholar
  72. 72.
    Matsubara M, Metoki H, Suzuki M, et al.: Genotypes of the βENaC gene have little influence on blood pressure level in the Japanese population. Am J Hypertens 2002, 15:189–192.PubMedCrossRefGoogle Scholar
  73. 73.
    Persu A, Barbry P, Bassilana F, et al.: Genetic analysis of the beta subunit of the epithelial Na+ channel in essential hypertension. Hypertension 1998, 32:129–137.PubMedGoogle Scholar
  74. 74.
    Ma X, Tian Y, Gao Y: A study of mutation(s) of the epithelial sodium channel gene in a Liddle’ sydrome family. Zhonghua Nei Ke Za Zhi 2001, 40:390–393.PubMedGoogle Scholar
  75. 75.
    Hummler E, Mérillat A-M, Rubera I, et al.: Conditional gene targeting of the Scnn1a (alpha ENaC) gene locus. Genesis 2002, 32:169–172.PubMedCrossRefGoogle Scholar

Copyright information

© Current Science Inc. 2003

Authors and Affiliations

  • Edith Hummler
    • 1
  1. 1.Institut de Pharmacologie et de ToxicologieUniversité de LausanneLausanneSwitzerland

Personalised recommendations