Current Hypertension Reports

, Volume 3, Issue 1, pp 53–60 | Cite as

Antioxidants and endothelial dysfunction in Hyperlipidemia

  • Ascan Warnholtz
  • Hanke Mollnau
  • Mathias Oelze
  • Maria Wendt
  • Thomas Münzel


Endothelial function is abnormal in a variety of diseased states such as hypercholesterolemia and atherosclerosis. This may be secondary to decreased synthesis of nitric oxide (NO) and/or increased degradation of NO due to interaction with superoxide anions. More recent experimental observations demonstrate increased production of superoxide in hyperlipidemia, suggesting that endothelial dysfunction in these states is in part secondary to increased NO metabolism. Enzymes proposed to be involved in increased superoxide production may include xanthine oxidase, the NO synthase, and the NAD(P)H oxidase. Superoxide rapidly reacts with NO to form peroxynitrite (ONOO-), a highly reactive intermediate with cytotoxic properties. Despite experimental evidence for the oxidative stress concept in causing endothelial dysfunction, the results of recent randomized trials to test the influence of antioxidants on coronary event rates and prognosis in patients with coronary artery disease were very disappointing. In all of these studies the use of vitamins such as vitamin E failed to improve the prognosis. In contrast, treatment with angiotensin converting enzyme inhibitors or cholesterollowering drugs improved endothelial dysfunction, prevented the activation of superoxide-producing enzymes in cholesterol-fed animals, reduced coronary event rates, and improved prognosis in patients with coronary artery disease. Therefore, inhibition of superoxide production at the enzymatic level rather than symptomatic superoxide scavenging may be the better choice of treatment.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Recommended Reading

  1. 1.
    Schachinger V, Britten MB, Zeiher AM: Prognostic impact of coronary vasodilator dysfunction on adverse long-term outcome of coronary heart disease. Circulation 2000, 101:1899–1906. This study demonstrates for the first time that endothelial dysfunction may have some prognostic impact.PubMedGoogle Scholar
  2. 2.
    Suwaidi JA, Hamasaki S, Higano ST, et al.: Long-term follow-up of patients with mild coronary artery disease and endothelial dysfunction. Circulation 2000, 101:948–954.PubMedGoogle Scholar
  3. 3.
    Palmer RM, Ferrige AG, Moncada S: Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 1987, 327:524–526.PubMedCrossRefGoogle Scholar
  4. 4.
    Myers PR, Minor RL Jr, Guerra R Jr, et al.: Vasorelaxant properties of the endothelium-derived relaxing factor more closely resemble S-nitrosocysteine than nitric oxide. Nature 1990, 345:161–163.PubMedCrossRefGoogle Scholar
  5. 5.
    Munzel T, Heitzer T, Harrison DG: The physiology and pathophysiology of the nitric oxide/superoxide system. Herz 1997, 22:158–172.PubMedCrossRefGoogle Scholar
  6. 6.
    Gryglewski RJ, Palmer RMJ, Moncada S: Superoxide anion is involved in the breakdown of endothelium-derived vascular relaxing factor. Nature 1986, 320:454–456.PubMedCrossRefGoogle Scholar
  7. 7.
    Beckman JS, Beckman TW, Chen J, et al.: Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci U S A 1990, 87:1620–1624.PubMedCrossRefGoogle Scholar
  8. 8.
    Freiman PC, Mitchell GC, Heistad DD, et al.: Atherosclerosis impairs endothelium-dependent vascular relaxation to acetylcholine and thrombin in primates. Circ Res 1986, 58:783–789.PubMedGoogle Scholar
  9. 9.
    Ludmer PL, Selwyn AP, Shook TL, et al.: Paradoxical vasoconstriction induced by acetylcholine in atherosclerotic coronary arteries. N Engl J Med 1986, 315:1046–1051.PubMedCrossRefGoogle Scholar
  10. 10.
    Zeiher AM, Drexler H, Wollschlager H, et al.: Modulation of coronary vasomotor tone in humans. Progressive endothelial dysfunction with different early stages of coronary atherosclerosis. Circulation 1991, 83:391–401.PubMedGoogle Scholar
  11. 11.
    Minor RLJ, Myers PR, Guerra RJ, et al.: Diet-induced atherosclerosis increases the release of nitrogen oxides from rabbit aorta. J Clin Invest 1990, 86:2109–2116.PubMedGoogle Scholar
  12. 12.
    Mugge A, Elwell JH, Peterson TE, et al.: Chronic treatment with polyethylene-glycolated superoxide dismutase partially restores endothelium-dependent vascular relaxations in cholesterol-fed rabbits. Circ Res 1991, 69:1293–1300.PubMedGoogle Scholar
  13. 13.
    White CR, Brock TA, Chang LY, et al.: Superoxide and peroxynitrite in atherosclerosis. Proc Natl Acad Sci U S A 1994, 91:1044–1048.PubMedCrossRefGoogle Scholar
  14. 14.
    Ohara Y, Peterson TE, Harrison DG: Hypercholesterolemia increases endothelial superoxide anion production. J Clin Invest 1993, 91:2546–2551.PubMedGoogle Scholar
  15. 15.
    Miller FJ Jr, Gutterman DD, Rios CD, et al.: Superoxide production in vascular smooth muscle contributes to oxidative stress and impaired relaxation in atherosclerosis. Circ Res 1998, 82:1298–1305.PubMedGoogle Scholar
  16. 16.
    White CR, Darley-Usmar V, Berrington WR, et al.: Circulating plasma xanthine oxidase contributes to vascular dysfunction in hypercholesterolemic rabbits. Proc Natl Acad Sci U S A 1996, 93:8745–8749.PubMedCrossRefGoogle Scholar
  17. 17.
    Warnholtz A, Nickenig G, Schulz E, et al.: Increased NADHoxidase-mediated superoxide production in the early stages of atherosclerosis: evidence for involvement of the renin-angiotensin system. Circulation 1999, 99:2027–2033. This study describes the involvement of the NADH oxidase in superoxide production in early stages of atherosclerosis and the potent anti-atherosclerotic properties of AT1 receptor blockade.PubMedGoogle Scholar
  18. 18.
    Guzik TJ, West NE, Black E, et al.: Vascular superoxide production by NAD(P)H oxidase: association with endothelial dysfunction and clinical risk factors. Circ Res 2000, 86:E85-E90.PubMedGoogle Scholar
  19. 19.
    Griendling KK, Sorescu D, Ushio-Fukai M: NAD(P)H oxidase: role in cardiovascular biology and disease. Circ Res 2000, 86:494–501. This is an excellent review of NAD(P)H oxidase and its role in cardiovascular biology.PubMedGoogle Scholar
  20. 20.
    Xia Y, Tsai AL, Berka V, et al.: Superoxide generation from endothelial nitric-oxide synthase. A Ca2+/calmodulindependent and tetrahydrobiopterin regulatory process. J Biol Chem 1998, 273:25804–25808.PubMedCrossRefGoogle Scholar
  21. 21.
    Vasquez-Vivar J, Kalyanaraman B, Martasek P, et al.: Superoxide generation by endothelial nitric oxide synthase: the influence of cofactors. Proc Natl Acad Sci U S A 1998, 95:9220–9225.PubMedCrossRefGoogle Scholar
  22. 22.
    Vergnani L, Hatrik S, Ricci F, et al.: Effect of native and oxidized low-density lipoprotein on endothelial nitric oxide and superoxide production: key role of L-arginine availability. Circulation 2000, 101:1261–1266. The authors describe that native LDL and oxidized LDL are able to uncouple NO synthase, and that this effect is reversed by pretreatment with L-arginine.PubMedGoogle Scholar
  23. 23.
    Milstien S, Katusic Z: Oxidation of tetrahydrobiopterin by peroxynitrite: implications for vascular endothelial function. Biochem Biophys Res Commun 1999, 263:681–684.PubMedCrossRefGoogle Scholar
  24. 24.
    Tsikas D, Boger RH, Sandmann J, et al.: Endogenous nitric oxide synthase inhibitors are responsible for the L-arginine paradox. FEBS Lett 2000, 478:1–3.PubMedCrossRefGoogle Scholar
  25. 25.
    Boger RH, Bode-Boger SM, Szuba A, et al.: Asymmetric dimethylarginine (ADMA): a novel risk factor for endothelial dysfunction: its role in hypercholesterolemia. Circulation 1998, 98:1842–1847. This in vitro study describes the stimulatory effect of LDL cholesterol on the formation of the NO synthase inhibitor ADMA, an observation that may explain the L-arginine paradox, eg, why L-arginine is able to improve endothelial dysfunction in hypercholesterolemia.PubMedGoogle Scholar
  26. 26.
    Hambrecht R, Wolf A, Gielen S, et al.: Effect of exercise on coronary endothelial function in patients with coronary artery disease [see comments]. N Engl J Med 2000, 342:454–460.PubMedCrossRefGoogle Scholar
  27. 27.
    Ohara Y, Peterson TE, Sayegh HS, et al.: Dietary correction of hypercholesterolemia in the rabbit normalizes endothelial superoxide anion production. Circulation 1995, 92:898–903.PubMedGoogle Scholar
  28. 28.
    Treasure CB, Klein JL, Weintraub WS: Beneficial effects of cholesterol-lowering therapy on the coronary endothelium in patients with coronary artery disease [see comments]. N Engl J Med 1995, 332:481–487.PubMedCrossRefGoogle Scholar
  29. 29.
    Anderson TJ, Meredith I, Yeung AC, et al.: The effect of cholesterol-lowering and antioxidant therapy on endothelium-dependent coronary vasomotion [see comments]. N Engl J Med 1995, 332:488–494.PubMedCrossRefGoogle Scholar
  30. 30.
    Vita JA, Yeung AC, Winniford M, et al.: Effect of cholesterollowering therapy on coronary endothelial vasomotor function in patients with coronary artery disease [see comments]. Circulation 2000, 102:846–851.PubMedGoogle Scholar
  31. 31.
    Laufs U, Liao JK: Post-transcriptional regulation of endothelial nitric oxide synthase mRNA stability by Rho GTPase. J Biol Chem 1998, 273:24266–24271. First study that describes effects of statins on NO synthase expression independent of their cholesterol-lowering effects.PubMedCrossRefGoogle Scholar
  32. 32.
    Wagner AH, Kohler T, Ruckschloss U, et al.: Improvement of nitric oxide-dependent vasodilatation by HMG-CoA reductase inhibitors through attenuation of endothelial superoxide anion formation. Arterioscler Thromb Vasc Biol 2000, 20:61–69.PubMedGoogle Scholar
  33. 33.
    Frei B, England L, Ames BN: Ascorbate is an outstanding antioxidant in human blood plasma. Proc Natl Acad Sci 1989, 86:6377–3781.PubMedCrossRefGoogle Scholar
  34. 34.
    Levine GN, Frei B, Koulouris SN, et al.: Ascorbic acid reverses endothelial vasomotor dysfunction in patients with coronary artery disease. Circulation 1996, 93:1107–1113.PubMedGoogle Scholar
  35. 35.
    Ting HH, Timimi FK, Boles KS, et al.: Vitamin C improves endothelium-dependent vasodilation in patients with non-insulin-dependent diabetes mellitus. J Clin Invest 1996, 97:22–28.PubMedGoogle Scholar
  36. 36.
    Heitzer T, Just H, Munzel T: Antioxidant vitamin C improves endothelial dysfunction in chronic smokers. Circulation 1996, 94:6–9.PubMedGoogle Scholar
  37. 37.
    Solzbach U, Hornig B, Jeserich M, et al.: Vitamin C improves endothelial dysfunction of epicardial coronary arteries in hypertensive patients [see comments]. Circulation 1997, 96:1513–1519.PubMedGoogle Scholar
  38. 38.
    Huang A, Venema RC, Vita JA, et al.: Ascorbic acid enhances endothelial nitric oxide production in a tetrahydrobiopterindependent manner [abstract]. Circulation 1999, 100:I-702.Google Scholar
  39. 39.
    Stephens NG, Parsons A, Schofield PM, et al.: Randomised controlled trial of vitamin E in patients with coronary disease: Cambridge Heart Antioxidant Study (CHAOS) [see comments]. Lancet 1996, 347:781–786.PubMedCrossRefGoogle Scholar
  40. 40.
    The effect of vitamin E and beta carotene on the incidence of lung cancer and other cancers in male smokers. The Alpha-Tocopherol, Beta Carotene Cancer Prevention Study Group [see comments]. N Engl J Med 1994, 330:1029–1035.CrossRefGoogle Scholar
  41. 41.
    Dietary supplementation with n-3 polyunsaturated fatty acids and vitamin E after myocardial infarction: results of the GISSI-Prevenzione trial. Gruppo Italiano per lo Studio della Sopravvivenza nell‘Infarto miocardico [see comments]. Lancet 1999, 354:447–455.CrossRefGoogle Scholar
  42. 42.
    Vitamin E supplementation and cardiovascular events in high-risk patients. N Engl J Med 2000, 342:154–160.Google Scholar
  43. 43.
    Thomas SR, Stocker R: Molecular action of vitamin E in lipoprotein oxidation: implications for atherosclerosis [in process citation]. Free Radic Biol Med 2000, 28:1795–1805.PubMedCrossRefGoogle Scholar
  44. 44.
    Keaney JF, Jr., Gaziano JM, Xu A, et al.: Low-dose alpha-tocopherol improves and high-dose alpha-tocopherol worsens endothelial vasodilator function in cholesterol-fed rabbits. J Clin Invest 1994, 93:844–851.PubMedGoogle Scholar
  45. 45.
    Pieper GM: Acute amelioration of diabetic endothelial dysfunction with a derivative of the nitric oxide synthase cofactor tetrahydrobiopterin. J Cardiovasc Pharmacol 1997, 29:8–15.PubMedCrossRefGoogle Scholar
  46. 46.
    Cosentino F, Patton S, d‘Uscio LV, et al.: Tetrahydrobiopterin alters superoxide and nitric oxide release in prehypertensive rats. J Clin Invest 1998, 101:1530–1537.PubMedGoogle Scholar
  47. 47.
    Stroes E, Kastelein J, Cosentino F, et al.: Tetrahydrobiopterin restores endothelial function in hypercholesterolemia. J Clin Invest 1997, 99:41–46.PubMedCrossRefGoogle Scholar
  48. 48.
    Heitzer T, Brockhoff C, Mayer B, et al.: Tetrahydrobiopterin improves endothelium-dependent vasodilation in chronic smokers: evidence for a dysfunctional nitric oxide synthase. Circ Res 2000, 86:E36-E41. This study demonstrates NO synthase uncoupling in chronic smokers as one mechanism leading to endothelial dysfunction.PubMedGoogle Scholar
  49. 49.
    Beckman JS, Ye ZY, Anderson PG, et al.: Extensive nitration of protein tyrosines in human atherosclerosis detected by immunohistochemistry. Biolog Chem Hoppe-Seyler 1994, 375:81–88.Google Scholar
  50. 50.
    Petruzzelli S, Puntoni R, Mimotti P, et al.: Plasma 3-nitrotyrosine in cigarette smokers. Am J Respir Crit Care Med 1997, 156:1902–1907.PubMedGoogle Scholar
  51. 51.
    Pritchard KA, Jr., Groszek L, Smalley DM, et al.: Native lowdensity lipoprotein increases endothelial cell nitric oxide synthase generation of superoxide anion. Circ Res 1995, 77:510–518.PubMedGoogle Scholar
  52. 52.
    Boger RH, Bode-Boger SM, Brandes RP, et al.: Dietary Larginine reduces the progression of atherosclerosis in cholesterol-fed rabbits: comparison with lovastatin. Circulation 1997, 96:1282–1290.PubMedGoogle Scholar
  53. 53.
    Boger RH, Bode-Boger SM, Phivthong-ngam L, et al.: Dietary L-arginine and alpha-tocopherol reduce vascular oxidative stress and preserve endothelial function in hypercholesterolemic rabbits via different mechanisms. Atherosclerosis 1998, 141:31–43.PubMedCrossRefGoogle Scholar
  54. 54.
    Drexler H, Zeiher AM, Meinzer K, et al.: Correction of endothelial dysfunction in coronary microcirculation of hypercholesterolaemic patients by L-arginine. Lancet 1991, 338:1546–1550.PubMedCrossRefGoogle Scholar
  55. 55.
    Becker RH, Wiemer G, Linz W: Preservation of endothelial function by ramipril in rabbits on a long-term atherogenic diet. J Cardiovasc Pharmacol 1991, 18:S110-S115.PubMedGoogle Scholar
  56. 56.
    Mancini GB, Henry GC, Macaya C, et al.: Angiotensin-converting enzyme inhibition with quinapril improves endothelial vasomotor dysfunction in patients with coronary artery disease. The TREND (Trial on Reversing ENdothelial Dysfunction) Study [see comments]. Circulation 1996, 94:258–265.PubMedGoogle Scholar
  57. 57.
    Prasad A, Tupas-Habib T, Schenke WH, et al.: Acute and chronic angiotensin-1 receptor antagonism reverses endothelial dysfunction in atherosclerosis [in process citation]. Circulation 2000, 101:2349–2354.PubMedGoogle Scholar
  58. 58.
    Effects of an angiotensin-converting-enzyme inhibitor, ramipril, on cardiovascular events in high-risk patients. N Engl J Med 2000, 342:145–153.Google Scholar
  59. 59.
    Nickenig G, Sachinidis A, Michaelsen F, et al.: Upregulation of vascular angiotensin II receptor gene expression by low-density lipoprotein in vascular smooth muscle cells. Circulation 1997, 95:473–478.PubMedGoogle Scholar
  60. 60.
    Nickenig G, Bohm M: Regulation of the angiotensin AT1 receptor expression by hypercholesterolemia. Eur J Med Res 1997, 2:285–289.PubMedGoogle Scholar
  61. 61.
    Nickenig G, Baumer AT, Temur Y, et al.: Statin-sensitive dysregulated AT1 receptor function and density in hypercholesterolemic men. Circulation 1999, 100:2131–2134.PubMedGoogle Scholar
  62. 62.
    Prevention of cardiovascular events and death with pravastatin in patients with coronary heart disease and a broad range of initial cholesterol levels. The Long-Term Intervention with Pravastatin in Ischaemic Disease (LIPID) Study Group [see comments]. N Engl J Med 1998, 339:1349–1357.CrossRefGoogle Scholar

Copyright information

© Current Science Inc 2001

Authors and Affiliations

  • Ascan Warnholtz
    • 1
  • Hanke Mollnau
    • 1
  • Mathias Oelze
    • 1
  • Maria Wendt
    • 1
  • Thomas Münzel
    • 1
  1. 1.Abteilung för KardiologieUniversitätsklinik EppendorfHamburgGermany

Personalised recommendations