Current Hypertension Reports

, Volume 2, Issue 2, pp 139–147 | Cite as

Pathophysiology of obesity hypertension

  • John E. Hall

Abstract

Excess weight gain is a major cause of essential hypertension, and abnormal kidney function appears to be a cause as well as a consequence of obesity hypertension. Excess renal sodium reabsorption and a hypertensive shift of pressure natriuresis play a major role in mediating increased blood pressure associated with weight gain. Activation of the renin-angiotensin and sympathetic nervous systems and physical compression of the kidneys appear to contribute to obesity-induced increases in sodium reabsorption and hypertension.

References and Recommended Reading

  1. 1.
    Flegal KM, Carroll MD, Kuczmarski RJ, et al.: Overweight and obesity in the United States: prevalence and trends, 1960–1994. Int J Obes Relat Metab Disord 1998, 22:39–47. This paper summarizes data from the National Health and Nutrition Examination Survey on obesity in the United States for the past 30 years.PubMedCrossRefGoogle Scholar
  2. 2.
    Kumanyika S: Obesity in black women. Epidemiol Rev 1987, 9:31–50.PubMedGoogle Scholar
  3. 3.
    Cooper RS, Rotimi CN, Ward R: The puzzle of hypertension in African-Americans. Sci Am 1999, 280:56–63.PubMedGoogle Scholar
  4. 4.
    Jones DW, Kim JS, Andrew ME, et al.: Body mass index and blood pressures in Korean men and women: the Korean National Blood Pressure Survey. J Hypertens 1994, 12:1433–1437.PubMedCrossRefGoogle Scholar
  5. 5.
    Garrison RJ, Kannel WB, Stokes J III, et al.: Incidence and precursors of hypertension in young adults: the Framingham Offspring Study. Prev Med 1987, 16:234–251.CrossRefGoogle Scholar
  6. 6.
    Van Vliet BN, Hall JE, Mizelle HL, et al.: Reduced parasympathetic control of heart rate in obese dogs. Am J Physiol 1995, 269:H629-H637.PubMedGoogle Scholar
  7. 7.
    Verwaerde P, Senard JM, Galinier M, et al.: Changes in shortterm variability of blood pressure and heart rate during the development of obesity-associated hypertension in high-fat fed dogs. J Hypertens 1999, 17:1135–1143.PubMedCrossRefGoogle Scholar
  8. 8.
    Hall JE, Brands MW, Henegar JR, et al.: Abnormal kidney function as a cause and a consequence of obesity hypertension. Clin Exp Pharmacol Physiol 1998, 25:58–64.PubMedGoogle Scholar
  9. 9.
    Carrol JF, Huang M, Hester RL, et al.: Hemodynamic alterations in hypertensive obese rabbits. Hypertension 1995, 26:465470.Google Scholar
  10. 10.
    Carroll JF, Summers RL, Dzielak DJ, et al.: Diastolic compliance is reduced in obese rabbits. Hypertension 1999, 33:811–815.PubMedGoogle Scholar
  11. 11.
    Gottdiener JS, Reda DJ, Materson BJ, et al.: Importance of obesity, race and age to the cardiac structural and functional effects of hypertension. J Am Coll Cardiol 1994, 24:1492–1498.PubMedCrossRefGoogle Scholar
  12. 12.
    Carroll JF, Braden DS, Henegar JR, et al.: Dietary sodium chloride (NaCl) worsens obesity-related cardiac hypertrophy. Fed Proc 1998, 12:A708.Google Scholar
  13. 13.
    Hall JE, Brands MW, Henegar JR: Mechanisms of hypertension and kidney disease in obesity. Ann N Y Acad Sci 1999, 892:91–107. This paper reviews the mechanisms by which obesity causes hypertension and abnormal kidney function.PubMedCrossRefGoogle Scholar
  14. 14.
    Rumantir MS, Vaz M, Jennings GL, et al.: Neural mechanisms in human obesity-related hypertension. J Hypertens 1999, 17:1125–1133.PubMedCrossRefGoogle Scholar
  15. 15.
    Grassi G, Servalle G, Cattaneo BM, et al.: Sympathetic activity in obese normotensive subjects. Hypertension 1995, 25:560–563.PubMedGoogle Scholar
  16. 16.
    Zappe DH, Kassab SE, Brands MW, et al.: Chronic adrenergic blockade attenuates the development of hypertension due to weight gain in dogs. FASEB J 1995, 9:A296.Google Scholar
  17. 17.
    Wofford MR, Adair C, Anderson DC, et al.: Alpha and beta adrenergic blockade in obese and lean hypertensive subjects. Hypertension 1998, 32:595.Google Scholar
  18. 18.
    Rocchini AP, Mao HZ, Babu K, et al.: Clonidine prevents insulin resistance and hypertension in obese dogs. Hypertension 1999, 33:548–553.PubMedGoogle Scholar
  19. 19.
    Kassab S, Kato T, Wilkins C, et al.: Renal denervation attenuates the sodium retention and hypertension associated with obesity. Hypertension 1995, 25:893–897.PubMedGoogle Scholar
  20. 20.
    Zappe DH, Capel WT, Keen HL, et al.: Role of renal afferent nerves in obesity-induced hypertension. Am J Hypertens 1996, 9:20A.CrossRefGoogle Scholar
  21. 21.
    Hall JE: Hyperinsulinemia: a link between obesity and hypertension? Kidney Int 1993, 43:1402–1417.PubMedGoogle Scholar
  22. 22.
    Hall JE, Brands MW, Zappe DH, et al.: Hemodynamic and renal responses to chronic hyperinsulinemia in obese, insulin resistant dogs. Hypertension 1995, 25:994–1002.PubMedGoogle Scholar
  23. 23.
    Hildebrandt DA, Smith MJ Jr, Hall JE: Cardiovascular regulation during acute and chronic vertebral artery insulin infusion in conscious dogs. J Hypertension 1999, 17:252–260. This study shows that chronic central nervous system hyperinsulinemia does not cause hypertension in dogs.Google Scholar
  24. 24.
    Stepniakowski KT, Goodfriend, Egan BM: Fatty acids enhance vascular a-adrenergic sensitivity. Hypertension 1995, 25:774–778.PubMedGoogle Scholar
  25. 25.
    Grekin RJ, Dumont CJ, Vollmer AP, et al.: Mechanisms in the pressor effects of hepatic portal venous fatty acid infusion. Am J Physiol 1997, 273:R324-R330.PubMedGoogle Scholar
  26. 26.
    Hildebrandt DA, Kirk D, Hall JE: Renal and cardiovascular responses to chronic increases in cerebrovascular free fatty acids. Fed Proc. 1999, 13:A780.Google Scholar
  27. 27.
    Hall JE, Shek EW, Brands MW: Is leptin a link between obesity and hypertension? Curr Opin Endocrinok Diabetes 1999, 6:225–229. This paper reviews the recent literature relevant to the hypothesis that leptin mediates increased sympathetic activity and hypertension in obesity.CrossRefGoogle Scholar
  28. 28.
    Haynes WG, Morgan DA, Walsh SA, et al.: Cardiovascular consequences of obesity: role of leptin. Clin Exp Pharmacol Physiol 1998, 25:65–69. This paper reviews evidence linking leptin to increased sympathetic activity in obesity hypertension.PubMedGoogle Scholar
  29. 29.
    Mark AL, Correia M, Morgan DA, et al.: Obesity-induced hypertension: new concepts from the emerging biology of obesity. Hypertension 1999, 33:537–541. This review focuses on the neurobiology of obesity and suggests that the effect of weight gain to raise blood pressure is critically dependent on genetic background and leptin-mediated sympathetic activation.PubMedGoogle Scholar
  30. 30.
    Flier JS, Maratos-Flier E: Obesity and the hypothalamus: novel peptides for new pathways. Cell 1998, 92:437–440. Leptin’s action in the hypothalamus and interactions with newly discovered neuropeptides are reviewed.PubMedCrossRefGoogle Scholar
  31. 31.
    Fan W, Boston BA, Kesterson RA, et al.: Role of melanocortinergic neurons in feeding and the agouti obesity syndrome. Nature 1997, 385:165–168.PubMedCrossRefGoogle Scholar
  32. 32.
    Haynes WG, Morgan DA, Djalali A, et al.: Interactions between the melanocortin system and leptin in control of sympathetic nerve traffic. Hypertension 1999, 33(Pt II):542–547. Short-term intracerebroventricular administration of leptin increased renal sympathetic nerve activity, but not brown adipose tissue sympathetic activity, through activation of hypothalamic melanocortin receptors.PubMedGoogle Scholar
  33. 33.
    Shek EW, Brands MW, Hall JE: Chronic leptin infusion increases arterial pressure. Hypertension 1998, 31(Pt II):409–414. This study shows that long-term carotid artery or intravenous infusion of leptin raises blood pressure in rats.PubMedGoogle Scholar
  34. 34.
    Ogawa Y, Masuzaki H, Aizawa M, et al.: Blood pressure elevation in transgenic mice over-expressing leptin, the obese gene product (abstract). J Hypertens 1998, 16:S7.Google Scholar
  35. 35.
    Shek EW, Kim PK, Hall JE: Adrenergic blockade prevents leptin-induced hypertension (abstract). Fed Proc 1999, 13:A456.Google Scholar
  36. 36.
    Lu H, Duanmu Z, Houck C, et al.: Obesity due to high fat diet decreases the sympathetic nervous and cardiovascular responses to intracerebroventricular leptin in rats. Brain Res Bull 1998, 47:331–335.PubMedCrossRefGoogle Scholar
  37. 37.
    Fruhbeck G: Pivotal role of nitric oxide in the control of blood pressure after leptin administration. Diabetes 1999, 48:903–908.PubMedCrossRefGoogle Scholar
  38. 38.
    Hirose H, Saito I, Tsujioka M, et al.: The obese gene product, leptin: possible role in obesity-related hypertension in adolescents. J Hypertens 1998, 16:2007–2012.PubMedCrossRefGoogle Scholar
  39. 39.
    Suter PM, Locher R, Häsler E, et al.: Is there a role for the ob gene product leptin in essential hypertension? Am J Hypertens 1998, 11:1305–1311.PubMedCrossRefGoogle Scholar
  40. 40.
    Hall JE, Henegar JR, Shek EW, et al.: Role of renin-angiotensin system in obesity hypertension (abstract). Circulation 1997, 96:I-33.Google Scholar
  41. 41.
    Robles RG, Villa E, Santirso R, et al.: Effects of captopril on sympathetic activity, lipid and carbohydrate metabolism in a model of obesity-induced hypertension in dogs. Am J Hypertens 1993, 6:1009–1019.PubMedGoogle Scholar
  42. 42.
    Reisen E, Weir M, Falkner B, et al.: Lisinopril versus hydrochlorothiazide in obese hypertensive patients. Hypertension 1997, 30:140–145.Google Scholar
  43. 43.
    Alonso-Galicia M, Dwyer TM, Herrera GA, et al.: Increased hyaluronic acid in the inner renal medulla of obese dogs. Hypertension 1995, 25:888–892.PubMedGoogle Scholar
  44. 44.
    Wesson DE, Kurtzman NA, Prommer JP: Massive obesity and nephrotic proteinuria with a normal renal biopsy. Nephron 1985, 40:235–237.PubMedCrossRefGoogle Scholar
  45. 45.
    Henegar JR, Shek EW, Henegar L, et al.: Renal functional and structural changes in the early stages of obesity (abstract). Hypertension 1997, 30:474.Google Scholar
  46. 46.
    The National Institutes of Health. United States Renal Data System: 1994 Annual Report. Ann Arbor, MI: University of Michigan; 1994.Google Scholar
  47. 47.
    Pugh JA, Medina RA, Cornell JC, et al.: NIDDM is the major cause of end-stage renal disease. More evidence from a tri-ethnic population. Diabetes 1995, 44:1375–1380.PubMedCrossRefGoogle Scholar

Copyright information

© Current Science Inc. 2000

Authors and Affiliations

  • John E. Hall
    • 1
  1. 1.Department of Physiology & BiophysicsUniversity of Mississippi Medical CenterJacksonUSA

Personalised recommendations