Skip to main content

Advertisement

Log in

From Berlin to London: HIV-1 Reservoir Reduction Following Stem Cell Transplantation

  • HIV Pathogenesis and Treatment (AL Landay and NS Utay, Section Editors)
  • Published:
Current HIV/AIDS Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Few interventional strategies lead to significant reductions in HIV-1 reservoir size or prolonged antiretroviral (ART)-free remission. Allogeneic stem cell transplantations (SCT) with or without donor cells harboring genetic mutations preventing functional expression of CCR5, an HIV coreceptor, lead to dramatic reductions in residual HIV burden. However, the mechanisms by which SCT reduces viral reservoirs and leads to a potential functional HIV cure are not well understood.

Recent Findings

A growing number of studies involving allogeneic SCT in people with HIV are emerging, including those with and without transplants involving CCR5Δ32/Δ32 mutations. Donor cells resistant to HIV entry are likely required in order to achieve permanent ART-free viral remission. However, dramatic reductions in the HIV reservoir secondary to beneficial graft-versus-host effects may lead to loss of HIV detection in blood and various tissues and lead to prolonged time to HIV rebound in individuals with wild-type CCR5 donors. Studies of SCT recipients and those who started very early ART during hyperacute infection suggest that dramatic reductions in reservoir size or restriction of initial reservoir seeding may lead to 8–10 months of time prior to eventual, and rapid, HIV recrudescence.

Summary

Studies of allogeneic SCT in people with HIV have provided important insights into the size and nature of the HIV reservoir, and have invigorated other gene therapies to achieve HIV cure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Siliciano JD, Kajdas J, Finzi D, Quinn TC, Chadwick K, Margolick JB, et al. Long-term follow-up studies confirm the stability of the latent reservoir for HIV-1 in resting CD4(+) T cells. Nat Med. 2003;9(6):727–8.

    CAS  PubMed  Google Scholar 

  2. Palmer S, Maldarelli F, Wiegand A, Bernstein B, Hanna GJ, Brun SC, et al. Low-level viremia persists for at least 7 years in patients on suppressive antiretroviral therapy. Proc Natl Acad Sci U S A. 2008;105(10):3879–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Richman DD, Margolis DM, Delaney M, Greene WC, Hazuda D, Pomerantz RJ. The challenge of finding a cure for HIV infection. Science. 2009;323(5919):1304–7.

    CAS  PubMed  Google Scholar 

  4. Siliciano RF. What do we need to do to cure HIV infection. Top HIV Med. 2010;18(3):104–8.

    PubMed  Google Scholar 

  5. Persaud D, Gay H, Ziemniak C, Chen YH, Piatak M Jr, Chun TW, et al. Absence of detectable HIV-1 viremia after treatment cessation in an infant. N Engl J Med. 2013;369(19):1828–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. • Henrich TJ, Hatano H, Bacon O, Hogan LE, Rutishauser R, Hill A, et al. HIV-1 persistence following extremely early initiation of antiretroviral therapy (ART) during acute HIV-1 infection: an observational study. PLoS Med. 2017;14(11):e1002417. This paper presents a case of very early treated infection that aborted reservoir seeding. HIV rebound was delayed 8 months following cessation of ART during ATI. This length of time off ART is similar to what is observed in allogeneic SCT participants involving susceptible donor cells.

    PubMed  PubMed Central  Google Scholar 

  7. Hutter G, Nowak D, Mossner M, Ganepola S, Mussig A, Allers K, et al. Long-term control of HIV by CCR5 Delta32/Delta32 stem-cell transplantation. N Engl J Med. 2009;360(7):692–8.

    PubMed  Google Scholar 

  8. Henrich TJ, Hanhauser E, Marty FM, Sirignano MN, Keating S, Lee TH, et al. Antiretroviral-free HIV-1 remission and viral rebound after allogeneic stem cell transplantation: report of 2 cases. Ann Intern Med. 2014;161:319–27.

    PubMed  PubMed Central  Google Scholar 

  9. Simonelli C, Zanussi S, Pratesi C, Rupolo M, Talamini R, Caffau C, et al. Immune recovery after autologous stem cell transplantation is not different for HIV-infected versus HIV-uninfected patients with relapsed or refractory lymphoma. Clin Infect Dis. 2010;50(12):1672–9.

    CAS  PubMed  Google Scholar 

  10. Henrich TJ, Hobbs KS, Hanhauser E, Scully E, Hogan LE, Robles YP, et al. Human immunodeficiency virus type 1 persistence following systemic chemotherapy for malignancy. J Infect Dis. 2017;216(2):254–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Cillo AR, Krishnan S, McMahon DK, Mitsuyasu RT, Para MF, Mellors JW. Impact of chemotherapy for HIV-1 related lymphoma on residual viremia and cellular HIV-1 DNA in patients on suppressive antiretroviral therapy. PLoS One. 2014;9(3):e92118.

    PubMed  PubMed Central  Google Scholar 

  12. Huzicka I. Could bone marrow transplantation cure AIDS?: review. Med Hypotheses. 1999;52(3):247–57.

    CAS  PubMed  Google Scholar 

  13. Holland HK, Saral R, Rossi JJ, Donnenberg AD, Burns WH, Beschorner WE, et al. Allogeneic bone marrow transplantation, zidovudine, and human immunodeficiency virus type 1 (HIV-1) infection. Studies in a patient with non-Hodgkin lymphoma. Ann Intern Med. 1989;111(12):973–81.

    CAS  PubMed  Google Scholar 

  14. Contu L, La Nasa G, Arras M, Pizzati A, Vacca A, Carcassi C, et al. Allogeneic bone marrow transplantation combined with multiple anti-HIV-1 treatment in a case of AIDS. Bone Marrow Transplant. 1993;12(6):669–71.

    CAS  PubMed  Google Scholar 

  15. Woolfrey AE, Malhotra U, Harrington RD, McNevin J, Manley TJ, Riddell SR, et al. Generation of HIV-1-specific CD8+ cell responses following allogeneic hematopoietic cell transplantation. Blood. 2008;112(8):3484–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Avettand-Fenoel V, Mahlaoui N, Chaix ML, Milliancourt C, Burgard M, Cavazzana-Calvo M, et al. Failure of bone marrow transplantation to eradicate HIV reservoir despite efficient HAART. Aids. 2007;21(6):776–7.

    PubMed  Google Scholar 

  17. Kuritzkes DR. Hematopoietic stem cell transplantation for HIV cure. J Clin Invest. 2016;126(2):432–7.

    PubMed  PubMed Central  Google Scholar 

  18. Allers K, Hutter G, Hofmann J, Loddenkemper C, Rieger K, Thiel E, et al. Evidence for the cure of HIV infection by CCR5{Delta}32/{Delta}32 stem cell transplantation. Blood. 2011 Mar 10;117(10):2791–9.

  19. Yukl SA, Chun T, Strain MC, Siliciano J, Eisele E, Buckeit R, et al. Challenges inherent in detecting HIV persistence during potentially curative interventions. Antivir Ther. 2012;17(Supplement 1):A47.

    Google Scholar 

  20. •• Gupta RK, Abdul-Jawad S, McCoy LE, Mok HP, Peppa D, Salgado M, et al. HIV-1 remission following CCR5Delta32/Delta32 haematopoietic stem-cell transplantation. Nature. 2019; 568(7751):244–248. This study reports on the second long-term ART-free HIV remission following allogeneic SCT with CCR5 Δ32/Δ32 donor cells.

  21. • Gupta RK, Peppa D, Hill AL, Galvez C, Salgado M, Pace M, et al. Evidence for HIV-1 cure after CCR5Delta32/Delta32 allogeneic haemopoietic stem-cell transplantation 30 months post analytical treatment interruption: a case report. Lancet HIV. 2020; 7(5):e340–e347. This follow-up study to the case of the “London Patient” demonstrates that residual HIV DNA can be detected despite achieving a functional cure. This is similar to the case of Timothy Ray Brown (the “Berlin Patient”) and likely represents residual infected host cells that may survive through homeostatic or antigen-driven proliferation.

  22. Symons J, Vandekerckhove L, Hutter G, Wensing AM, van Ham PM, Deeks SG, et al. Dependence on the CCR5 coreceptor for viral replication explains the lack of rebound of CXCR4-predicted HIV variants in the Berlin patient. Clin Infect Dis. 2014;59(4):596–600.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Dean M, Carrington M, Winkler C, Huttley GA, Smith MW, Allikmets R, et al. Genetic restriction of HIV-1 infection and progression to AIDS by a deletion allele of the CKR5 structural gene. Hemophilia growth and development Study, Multicenter AIDS Cohort Study, Multicenter Hemophilia Cohort Study, San Francisco City Cohort, ALIVE study. Science. 1996;273(5283):1856–62.

    CAS  PubMed  Google Scholar 

  24. Ribeiro RM, Hazenberg MD, Perelson AS, Davenport MP. Naive and memory cell turnover as drivers of CCR5-to-CXCR4 tropism switch in human immunodeficiency virus type 1: implications for therapy. J Virol. 2006;80(2):802–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Daar ES, Kesler KL, Petropoulos CJ, Huang W, Bates M, Lail AE, et al. Baseline HIV type 1 coreceptor tropism predicts disease progression. Clin Infect Dis. 2007;45(5):643–9.

    PubMed  Google Scholar 

  26. Kordelas L, Verheyen J, Beelen DW, Horn PA, Heinold A, Kaiser R, et al. Shift of HIV tropism in stem-cell transplantation with CCR5 Delta32 mutation. N Engl J Med. 2014;371(9):880–2.

    PubMed  Google Scholar 

  27. Verheyen J, Esser S, Kordelas L. More on shift of HIV tropism in stem-cell transplantation with CCR5 delta32/delta32 mutation. N Engl J Med. 2014;371(25):2438.

    PubMed  Google Scholar 

  28. Duarte RF, Salgado M, Sanchez-Ortega I, Arnan M, Canals C, Domingo-Domenech E, et al. CCR5 Delta32 homozygous cord blood allogeneic transplantation in a patient with HIV: a case report. Lancet HIV. 2015;2(6):e236–42.

    PubMed  Google Scholar 

  29. Yukl SA, Boritz E, Busch M, Bentsen C, Chun TW, Douek D, et al. Challenges in detecting HIV persistence during potentially curative interventions: a study of the Berlin patient. PLoS Pathog. 2013;9(5):e1003347.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Ambinder RF, Wu J, Logan B, Durand CM, Shields R, Popat UR, et al. Allogeneic hematopoietic cell transplant for HIV patients with hematologic malignancies: the BMT CTN-0903/AMC-080 trial. Biol Blood Marrow Transplant. 2019;25(11):2160–6.

    PubMed  Google Scholar 

  31. Arslan S, Litzow MR, Cummins NW, Rizza SA, Badley AD, Navarro W, et al. Risks and outcomes of allogeneic hematopoietic stem cell transplantation for hematologic malignancies in patients with HIV infection. Biol Blood Marrow Transplant. 2019;25(8):e260–e7.

    PubMed  PubMed Central  Google Scholar 

  32. Kwon M, Bailen R, Balsalobre P, Jurado M, Bermudez A, Badiola J, et al. Allogeneic stem-cell transplantation in HIV-1-infected patients with high-risk hematological disorders. AIDS. 2019;33(9):1441–7.

    CAS  PubMed  Google Scholar 

  33. Salgado M, Kwon M, Galvez C, Badiola J, Nijhuis M, Bandera A, et al. Mechanisms that contribute to a profound reduction of the HIV-1 reservoir after allogeneic stem cell transplant. Ann Intern Med. 2018;169(10):674–83.

    PubMed  Google Scholar 

  34. Kanellopoulos A, Kaparou M, Xenou E, Paneesha S, Kishore B, Lovell R, et al. Graft-versus-leukaemia effect post fludarabine, melphalan and alemtuzumab reduced intensity allogeneic stem cell transplantat in HIV-infected patient with acute myeloid leukaemia. Bone Marrow Transplant. 2018;53(12):1518–21.

    CAS  PubMed  Google Scholar 

  35. • Cummins NW, Rizza S, Litzow MR, Hua S, Lee GQ, Einkauf K, et al. Extensive virologic and immunologic characterization in an HIV-infected individual following allogeneic stem cell transplant and analytic cessation of antiretroviral therapy: a case study. PLoS Med. 2017;14(11):e1002461. This study reports on prolonged ART-free HIV remission with time to rebound over 9 months since stopping ART. In addition to the prior reported experiences of the Boston Participants, the study suggests that there is limited time off ART that results from dramatic reservoir size reduction.

    PubMed  PubMed Central  Google Scholar 

  36. Koelsch KK, Rasmussen TA, Hey-Nguyen WJ, Pearson C, Xu Y, Bailey M, et al. Impact of allogeneic hematopoietic stem cell transplantation on the HIV reservoir and immune response in 3 HIV-infected individuals. J Acquir Immune Defic Syndr. 2017;75(3):328–37.

    PubMed  PubMed Central  Google Scholar 

  37. Mulanovich VE, Desai PA, Popat UR. Allogeneic stem cell transplantation for HIV-positive patients with hematologic malignancies. AIDS. 2016;30(17):2653–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Hutter G. More on shift of HIV tropism in stem-cell transplantation with CCR5 delta32/delta32 mutation. N Engl J Med. 2014;371(25):2437–8.

    PubMed  Google Scholar 

  39. Henrich TJ, Hu Z, Li JZ, Sciaranghella G, Busch MP, Keating SM, et al. Long-term reduction in peripheral blood HIV-1 reservoirs following reduced-intensity conditioning allogeneic stem cell transplantation. J Infect Dis. 2013;207:1694–702.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Allers K, Hutter G, Hofmann J, Loddenkemper C, Rieger K, Thiel E, et al. Evidence for the cure of HIV infection by CCR5Delta32/Delta32 stem cell transplantation. Blood. 2011;117(10):2791–9.

    CAS  PubMed  Google Scholar 

  41. Koelsch KK, Hey-Cunningham W, Sasson SC, Pearson C, Marks KH, Xu Y, et al. Allogeneic bone marrow transplantation in two HIV-1 infected patients shows no detectable HIV-1 RNA or DNA, and a profound reduction in HIV-1 antibodies. 20th International AIDS Conference 20–25 July, 2014 Melbourne Abstract LBPE21. 2014.

  42. Hill AL, Rosenbloom DI, Goldstein E, Hanhauser E, Kuritzkes DR, Siliciano RF, et al. Real-time predictions of reservoir size and rebound time during antiretroviral therapy interruption trials for HIV. PLoS Pathog. 2016;12(4):e1005535.

    PubMed  PubMed Central  Google Scholar 

  43. Little RF, Pittaluga S, Grant N, Steinberg SM, Kavlick MF, Mitsuya H, et al. Highly effective treatment of acquired immunodeficiency syndrome-related lymphoma with dose-adjusted EPOCH: impact of antiretroviral therapy suspension and tumor biology. Blood. 2003;101(12):4653–9.

    CAS  PubMed  Google Scholar 

  44. Watanabe N, De Rosa SC, Cmelak A, Hoppe R, Herzenberg LA, Roederer M. Long-term depletion of naive T cells in patients treated for Hodgkin’s disease. Blood. 1997;90(9):3662–72.

    CAS  PubMed  Google Scholar 

  45. Afonso A. Immune reconstitution in patients with B-non Hodgkin lymphoma (B-NHL) treated with rituximab, chemotherapy or both - a cohort study. Haematologica. 2010;95:1559.

    Google Scholar 

  46. Irie E, Shirota Y, Suzuki C, Tajima Y, Ishizawa K, Kameoka J, et al. Severe hypogammaglobulinemia persisting for 6 years after treatment with rituximab combined chemotherapy due to arrest of B lymphocyte differentiation together with alteration of T lymphocyte homeostasis. Int J Hematol. 2010;91(3):501–8.

    CAS  PubMed  Google Scholar 

  47. Serrano D, Miralles P, Balsalobre P, Diez-Martin JL, Berenguer J. Hematopoietic stem cell transplantation in patients infected with HIV. Curr HIV/AIDS Rep. 2010;7(3):175–84.

    PubMed  Google Scholar 

  48. Re A, Michieli M, Casari S, Allione B, Cattaneo C, Rupolo M, et al. High-dose therapy and autologous peripheral blood stem cell transplantation as salvage treatment for AIDS-related lymphoma: long-term results of the Italian Cooperative Group on AIDS and Tumors (GICAT) study with analysis of prognostic factors. Blood. 2009;114(7):1306–13.

    CAS  PubMed  Google Scholar 

  49. Krishnan A, Forman SJ. Hematopoietic stem cell transplantation for AIDS-related malignancies. Curr Opin Oncol. 2010;22(5):456–60.

    PubMed  PubMed Central  Google Scholar 

  50. Diez-Martin JL, Balsalobre P, Re A, Michieli M, Ribera JM, Canals C, et al. Comparable survival between HIV+ and HIV- non-Hodgkin and Hodgkin lymphoma patients undergoing autologous peripheral blood stem cell transplantation. Blood. 2009;113(23):6011–4.

    CAS  PubMed  Google Scholar 

  51. Gabarre J, Marcelin AG, Azar N, Choquet S, Levy V, Levy Y, et al. High-dose therapy plus autologous hematopoietic stem cell transplantation for human immunodeficiency virus (HIV)-related lymphoma: results and impact on HIV disease. Haematologica. 2004;89(9):1100–8.

    PubMed  Google Scholar 

  52. Mavigner M, Watkins B, Lawson B, Lee ST, Chahroudi A, Kean L, et al. Persistence of virus reservoirs in ART-treated SHIV-infected rhesus macaques after autologous hematopoietic stem cell transplant. PLoS Pathog. 2014;10(9):e1004406.

    PubMed  PubMed Central  Google Scholar 

  53. Miller JS, Cooley S, Parham P, Farag SS, Verneris MR, McQueen KL, et al. Missing KIR ligands are associated with less relapse and increased graft-versus-host disease (GVHD) following unrelated donor allogeneic HCT. Blood. 2007;109(11):5058–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Kim S, Poursine-Laurent J, Truscott SM, Lybarger L, Song YJ, Yang L, et al. Licensing of natural killer cells by host major histocompatibility complex class I molecules. Nature. 2005;436(7051):709–13.

    CAS  PubMed  Google Scholar 

  55. Dignan FL, Amrolia P, Clark A, Cornish J, Jackson G, Mahendra P, et al. Diagnosis and management of chronic graft-versus-host disease. Br J Haematol. 2012;158(1):46–61.

    CAS  PubMed  Google Scholar 

  56. Koreth J, Ritz J. Tregs, HSCT, and acute GVHD: up close and personal. Blood. 2013;122(10):1690–1.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Socie G, Ritz J. Current issues in chronic graft-versus-host disease. Blood. 2014;124(3):374–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Koreth J, Matsuoka K, Kim HT, McDonough SM, Bindra B, Alyea EP 3rd, et al. Interleukin-2 and regulatory T cells in graft-versus-host disease. N Engl J Med. 2011;365(22):2055–66.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Hogan LE, Korner C, Hobbs K, Simoneau CR, Thanh C, Gibson EA, et al. NK-cell activation is associated with increased HIV transcriptional activity following allogeneic hematopoietic cell transplantation. Blood Adv. 2018;2(12):1412–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Moretta L, Pietra G, Montaldo E, Vacca P, Pende D, Falco M, et al. Human NK cells: from surface receptors to the therapy of leukemias and solid tumors. Front Immunol. 2014;5:87.

    PubMed  PubMed Central  Google Scholar 

  61. van Besien K. Allogeneic transplantation for AML and MDS: GVL versus GVHD and disease recurrence. Hematology Am Soc Hematol Educ Program. 2013;2013:56–62.

    PubMed  Google Scholar 

  62. Yu J, Venstrom JM, Liu XR, Pring J, Hasan RS, O’Reilly RJ, et al. Breaking tolerance to self, circulating natural killer cells expressing inhibitory KIR for non-self HLA exhibit effector function after T cell-depleted allogeneic hematopoietic cell transplantation. Blood. 2009;113(16):3875–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Kim S, Sunwoo JB, Yang L, Choi T, Song YJ, French AR, et al. HLA alleles determine differences in human natural killer cell responsiveness and potency. Proc Natl Acad Sci U S A. 2008;105(8):3053–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Hsu KC, Gooley T, Malkki M, Pinto-Agnello C, Dupont B, Bignon JD, et al. KIR ligands and prediction of relapse after unrelated donor hematopoietic cell transplantation for hematologic malignancy. Biol Blood Marrow Transplant. 2006;12(8):828–36.

    CAS  PubMed  Google Scholar 

  65. Hsu KC, Keever-Taylor CA, Wilton A, Pinto C, Heller G, Arkun K, et al. Improved outcome in HLA-identical sibling hematopoietic stem-cell transplantation for acute myelogenous leukemia predicted by KIR and HLA genotypes. Blood. 2005;105(12):4878–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Murphy WJ, Parham P, Miller JS. NK cells--from bench to clinic. Biol Blood Marrow Transplant. 2012;18(1 Suppl):S2–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Elze MC, Ciocarlie O, Heinze A, Kloess S, Gardlowski T, Esser R, et al. Dendritic cell reconstitution is associated with relapse-free survival and acute GVHD severity in children after allogeneic stem cell transplantation. Bone Marrow Transplant. 2015;50(2):266–73.

    CAS  PubMed  Google Scholar 

  68. Bosch M, Dhadda M, Hoegh-Petersen M, Liu Y, Hagel LM, Podgorny P, et al. Immune reconstitution after anti-thymocyte globulin-conditioned hematopoietic cell transplantation. Cytotherapy. 2012;14(10):1258–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Bosch M, Khan FM, Storek J. Immune reconstitution after hematopoietic cell transplantation. Curr Opin Hematol. 2012;19(4):324–35.

    PubMed  Google Scholar 

  70. Seggewiss R, Einsele H. Immune reconstitution after allogeneic transplantation and expanding options for immunomodulation: an update. Blood. 2010;115(19):3861–8.

    CAS  PubMed  Google Scholar 

  71. Storek J, Geddes M, Khan F, Huard B, Helg C, Chalandon Y, et al. Reconstitution of the immune system after hematopoietic stem cell transplantation in humans. Semin Immunopathol. 2008;30(4):425–37.

    PubMed  Google Scholar 

  72. Peggs KS. Reconstitution of adaptive and innate immunity following allogeneic hematopoietic stem cell transplantation in humans. Cytotherapy. 2006;8(5):427–36.

    CAS  PubMed  Google Scholar 

  73. Molldrem JJ. Vaccinating transplant recipients. Nat Med. 2005;11(11):1162–3.

    CAS  PubMed  Google Scholar 

  74. Henrich T, Hu Z, Li J, Sciaranghella G, Busch M, Keating S, et al. Long-term reduction in peripheral blood HIV-1 reservoirs following reduced-intensity conditioning allogeneic stem cell transplantation. J Infect Dis. 2013; 207(11):1694–702.

  75. Hirsch MS, Black PH, Tracy GS, Leibowitz S, Schwartz RS. Leukemia virus activation in chronic allogeneic disease. Proc Natl Acad Sci U S A. 1970;67(4):1914–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Hirsch MS, Ellis DA, Black PH, Monaco AP, Wood ML. Leukemia virus activation during homograft rejection. Science. 1973;180(4085):500–2.

    CAS  PubMed  Google Scholar 

  77. Hirsch MS, Phillips SM, Solnik C, Black PH, Schwartz RS, Carpenter CB. Activation of leukemia viruses by graft-versus-host and mixed lymphocyte reactions in vitro. Proc Natl Acad Sci U S A. 1972;69(5):1069–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Martin MP, Carrington M. Immunogenetics of HIV disease. Immunol Rev. 2013;254(1):245–64.

    PubMed  PubMed Central  Google Scholar 

  79. Bashirova AA, Thomas R, Carrington M. HLA/KIR restraint of HIV: surviving the fittest. Annu Rev Immunol. 2011;29:295–317.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Martin MP, Qi Y, Gao X, Yamada E, Martin JN, Pereyra F, et al. Innate partnership of HLA-B and KIR3DL1 subtypes against HIV-1. Nat Genet. 2007;39(6):733–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Niu JW, Pan T, Zhang B, Chen H. The effect of CCR5Delta32 on the risk of grade 3–4 acute graft-versus-host disease after allogeneic hematopoietic stem cell transplantation: a systematic review and meta-analysis. Clin Transpl. 2017;31(11).

  82. Moy RH, Huffman AP, Richman LP, Crisalli L, Wang XK, Hoxie JA, et al. Clinical and immunologic impact of CCR5 blockade in graft-versus-host disease prophylaxis. Blood. 2017;129(7):906–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Khandelwal P, Fukuda T, Mizuno K, Teusink-Cross A, Mehta PA, Marsh RA, et al. A pharmacokinetic and pharmacodynamic study of maraviroc as acute graft-versus-host disease prophylaxis in pediatric allogeneic stem cell transplant recipients with nonmalignant diagnoses. Biol Blood Marrow Transplant. 2016;22(10):1829–35.

    CAS  PubMed  Google Scholar 

  84. Tang B, Ren H, Liu H, Shi Y, Liu W, Dong Y, et al. CCR5 blockade combined with cyclosporine A attenuates liver GVHD by impairing T cells function. Inflamm Res. 2016;65(11):917–24.

    CAS  PubMed  Google Scholar 

  85. Miao M, De Clercq E, Li G. Clinical significance of chemokine receptor antagonists. Expert Opin Drug Metab Toxicol. 2020;16(1):11–30.

    PubMed  Google Scholar 

  86. Almeida MJ, Matos A. Designer nucleases: gene-editing therapies using CCR5 as an emerging target in HIV. Curr HIV Res. 2019;17(5):306–23.

    CAS  PubMed  Google Scholar 

  87. • Xu L, Wang J, Liu Y, Xie L, Su B, Mou D, et al. CRISPR-edited stem cells in a patient with hiv and acute lymphocytic leukemia. N Engl J Med. 2019;381(13):1240–7. This study is one of the first to use CRISPR technology to modify stem cells followed by autologous SCT in a human participant. Modified cell frequencies were overall low and unlikely to impact HIV reservoir size, but is an important proof of concept study.

    CAS  PubMed  Google Scholar 

  88. Daley GQ, Lovell-Badge R, Steffann J. After the storm - a responsible path for genome editing. N Engl J Med. 2019;380(10):897–9.

    PubMed  Google Scholar 

  89. Reardon S. Gene edits to ‘CRISPR babies’ might have shortened their life expectancy. Nature. 2019;570(7759):16–7.

    CAS  PubMed  Google Scholar 

  90. Rosenbaum L. The future of gene editing - toward scientific and social consensus. N Engl J Med. 2019;380(10):971–5.

    PubMed  Google Scholar 

Download references

Funding

NIH/NIAID AI141003 and NIH/NIAID AI116205 (to TJH).

Author information

Authors and Affiliations

Authors

Contributions

CAP and TJH conceived and wrote the manuscript, JD aided with manuscript writing and literature reviews; TJH obtained funding.

Corresponding author

Correspondence to Timothy J. Henrich.

Ethics declarations

Competing Interests

TJH receives grant support from Gilead Biosciences and Bristol-Meyers Squibb, and has consulted with Merck & Co.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on HIV Pathogenesis and Treatment

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prator, C.A., Donatelli, J. & Henrich, T.J. From Berlin to London: HIV-1 Reservoir Reduction Following Stem Cell Transplantation. Curr HIV/AIDS Rep 17, 385–393 (2020). https://doi.org/10.1007/s11904-020-00505-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11904-020-00505-2

Keywords

Navigation