Advertisement

Lipidome Abnormalities and Cardiovascular Disease Risk in HIV Infection

  • Emily Bowman
  • Nicholas T. FunderburgEmail author
HIV Pathogenesis and Treatment (AL Landay and NS Utay, Section Editors)
Part of the following topical collections:
  1. Topical Collection on HIV Pathogenesis and Treatment

Abstract

Purpose of Review

Human immunodeficiency virus (HIV) infection and its treatment with antiretroviral therapy (ART) are associated with lipid abnormalities that may enhance cardiovascular disease risk (CVD).

Recent Findings

Chronic inflammation persists in HIV+ individuals, and complex relationships exist among lipids and inflammation, as immune activation may be both a cause and a consequence of lipid abnormalities in HIV infection. Advances in mass spectrometry-based techniques now allow for detailed measurements of individual lipid species; improved lipid measurement might better evaluate CVD risk compared with the prognostic value of traditional assessments.

Summary

Lipidomic analyses have begun to characterize dynamic changes in lipid composition during HIV infection and following treatment with ART, and further investigation may identify novel lipid biomarkers predictive of adverse outcomes. Developing strategies to improve management of comorbidities in the HIV+ population is important, and statin therapy and lifestyle modifications, including diet and exercise, may help to improve lipid levels and mitigate CVD risk.

Keywords

Lipidome Free fatty acids HIV Cardiovascular disease Inflammation 

Notes

Compliance with Ethical Standards

Conflict of Interest

Dr. Bowman declares that she has no conflict of interest.

Dr. Funderburg serves as a consultant for Gilead.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. 1.
    Triant VA, Lee H, Hadigan C, Grinspoon SK. Increased acute myocardial infarction rates and cardiovascular risk factors among patients with human immunodeficiency virus disease. J Clin Endocrinol Metab. 2007;92(7):2506–12.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    • Shah ASV, Stelzle D, Lee KK, Beck EJ, Alam S, Clifford S, et al. Global burden of atherosclerotic cardiovascular disease in people living with HIV. Circulation. 2018;138(11):1100–12. This work provides a thorough description of CVD burden in the global HIV+ population, and discusses the importance of improving strategies for risk stratification and treatment. CrossRefPubMedGoogle Scholar
  3. 3.
    Grunfeld CPM, Doerrler W, Shigenaga J, Jensen P, Feingold KR. Lipids, lipoproteins, triglyceride clearance, and cytokines in human immunodeficiency virus infection and the acquired immunodeficiency syndrome. J Clin Endocrinol Metab. 1992;74(5):1045–52.PubMedGoogle Scholar
  4. 4.
    Lake JE, Currier JS. Metabolic disease in HIV infection. Lancet Infect Dis. 2013;13(11):964–75.CrossRefPubMedGoogle Scholar
  5. 5.
    Tall AR, Yvan-Charvet L. Cholesterol, inflammation and innate immunity. Nat Rev Immunol. 2015;15(2):104–16.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Grinspoon S, Carr A. Cardiovascular risk and body-fat abnormalities in HIV-infected adults. N Engl J Med. 2005;352(1):48–62.CrossRefPubMedGoogle Scholar
  7. 7.
    Rose H, Hoy J, Woolley I, Tchoua U, Bukrinsky M, Dart A, et al. HIV infection and high density lipoprotein metabolism. Atherosclerosis. 2008;199(1):79–86.CrossRefPubMedGoogle Scholar
  8. 8.
    Harayama T, Riezman H. Understanding the diversity of membrane lipid composition. Nat Rev Mol Cell Biol. 2018;19(5):281–96.CrossRefPubMedGoogle Scholar
  9. 9.
    Liu Q, Zhang J. Lipid metabolism in Alzheimer’s disease. Neurosci Bull. 2014;30(2):331–45.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Cassol EMV, Holman A, Kamat A, Morgello S, Gabuzda D. Plasma metabolomics identifies lipid abnormalities linked to markers of inflammation, microbial translocation, and hepatic function in HIV patients receiving protease inhibitors. BMC Infect Dis. 2013;13:203–20.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Hodge AMED, O'Dea K, Sinclair AJ, Makrides M, Gibson RA, Giles GG. Plasma phospholipid and dietary fatty acids as predictors of type 2 diabetes: interpreting the role of linoleic acid. Am J Clin Nutr. 2007;86:189–97.CrossRefPubMedGoogle Scholar
  12. 12.
    Suvitaival T, Bondia-Pons I, Yetukuri L, Poho P, Nolan JJ, Hyotylainen T, et al. Lipidome as a predictive tool in progression to type 2 diabetes in Finnish men. Metabolism. 2018;78:1–12.CrossRefPubMedGoogle Scholar
  13. 13.
    Tavares De Almeida I, Cortez-Pinto H, Fidalgo G, Rodrigues D, Camilo ME. Plasma total and free fatty acids composition in human non-alcoholic steatohepatitis. Clin Nutr. 2002;21(3):219–23.CrossRefPubMedGoogle Scholar
  14. 14.
    Akerele OA, Cheema SK. Fatty acyl composition of lysophosphatidylcholine is important in atherosclerosis. Med Hypotheses. 2015;85(6):754–60.CrossRefPubMedGoogle Scholar
  15. 15.
    Stamler JDM, Garside DB, Dyer AR, Greenland P, Neaton JD. Relationship of baseline serum cholesterol levels in 3 large cohorts of younger men to long-term coronary, cardiovascular, and all-cause mortality and to longevity. JAMA. 2000;284(3):311–8.CrossRefPubMedGoogle Scholar
  16. 16.
    Willig AL, Overton ET. Metabolic consequences of HIV: pathogenic insights. Curr HIV/AIDS Rep. 2014;11(1):35–44.CrossRefPubMedGoogle Scholar
  17. 17.
    Estrada VPJ. Dyslipidemia related to antiretroviral therapy. AIDS Rev. 2011;13:49–56.PubMedGoogle Scholar
  18. 18.
    Crane HM, Grunfeld C, Willig JH, Mugavero MJ, Van Rompaey S, Moore R, et al. Impact of NRTIs on lipid levels among a large HIV-infected cohort initiating antiretroviral therapy in clinical care. AIDS. 2011;25(2):185–95.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Schwartz GG, Olsson AG, Abt M, Ballantyne CM, Barter PJ, Brumm J, et al. Effects of dalcetrapib in patients with a recent acute coronary syndrome. N Engl J Med. 2012;367(22):2089–99.CrossRefPubMedGoogle Scholar
  20. 20.
    Barter PJ, Caulfield M, Eriksson M, Grundy SM, Kastelein JJP, Komajda M, et al. Effects of torcetrapib in patients at high risk for coronary events. N Engl J Med. 2007;357(21):2109–22.CrossRefGoogle Scholar
  21. 21.
    AIM-HIGH Investigators, Boden WE, Probstfield JL, Anderson T, Chaitman BR, Desvignes-Nickens P, et al. Niacin in patients with low HDL cholesterol levels receiving intensive statin therapy. N Engl J Med. 2011;365(24):2255–67.CrossRefGoogle Scholar
  22. 22.
    Rye KA, Barter PJ. Cardioprotective functions of HDLs. J Lipid Res. 2014;55(2):168–79.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Tso C, Martinic G, Fan WH, Rogers C, Rye KA, Barter PJ. High-density lipoproteins enhance progenitor-mediated endothelium repair in mice. Arterioscler Thromb Vasc Biol. 2006;26(5):1144–9.CrossRefPubMedGoogle Scholar
  24. 24.
    Triolo M, Annema W, Dullaart RPF, Tietge UJF. Assessing the functional properties of high-density lipoproteins: an emerging concept in cardiovascular research. Biomark Med. 2013;7(3):457–72.CrossRefPubMedGoogle Scholar
  25. 25.
    Khovidhunkit W, Memon RA, Feingold KR, Grunfeld C. Infection and inflammation-induced proatherogenic changes of lipoproteins. J Infect Dis. 2000;181(Supplement_3):S462–S72.CrossRefPubMedGoogle Scholar
  26. 26.
    Qiu C, Zhao X, Zhou Q, Zhang Z. High-density lipoprotein cholesterol efflux capacity is inversely associated with cardiovascular risk: a systematic review and meta-analysis. Lipids Health Dis. 2017;16(1):212.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Dullaart RP, Annema W, Tio RA, Tietge UJ. The HDL anti-inflammatory function is impaired in myocardial infarction and may predict new cardiac events independent of HDL cholesterol. Clin Chim Acta. 2014;433:34–8.CrossRefPubMedGoogle Scholar
  28. 28.
    Grunfeld C. Dyslipidemia and its treatment in HIV infection. Top HIV Med. 2010;18(3):112–8.PubMedPubMedCentralGoogle Scholar
  29. 29.
    McGillicuddy FC, de la Llera MM, Hinkle CC, Joshi MR, Chiquoine EH, Billheimer JT, et al. Inflammation impairs reverse cholesterol transport in vivo. Circulation. 2009;119(8):1135–45.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Brenchley JM, Douek DC. HIV infection and the gastrointestinal immune system. Mucosal Immunol. 2008;1(1):23–30.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Brenchley JM, Price DA, Schacker TW, Asher TE, Silvestri G, Rao S, et al. Microbial translocation is a cause of systemic immune activation in chronic HIV infection. Nat Med. 2006;12(12):1365–71.CrossRefPubMedGoogle Scholar
  32. 32.
    Maisa A, Hearps AC, Angelovich TA, Pereira CF, Zhou J, Shi MD, et al. Monocytes from HIV-infected individuals show impaired cholesterol efflux and increased foam cell formation after transendothelial migration. AIDS. 2015;29(12):1445–57.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Feeney ER, McAuley N, O'Halloran JA, Rock C, Low J, Satchell CS, et al. The expression of cholesterol metabolism genes in monocytes from HIV-infected subjects suggests intracellular cholesterol accumulation. J Infect Dis. 2013;207(4):628–37.CrossRefPubMedGoogle Scholar
  34. 34.
    Asztalos BF, Mujawar Z, Morrow MP, Grant A, Pushkarsky T, Wanke C, et al. Circulating Nef induces dyslipidemia in simian immunodeficiency virus-infected macaques by suppressing cholesterol efflux. J Infect Dis. 2010;202(4):614–23.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Mujawar Z, Rose H, Morrow MP, Pushkarsky T, Dubrovsky L, Mukhamedova N, et al. Human immunodeficiency virus impairs reverse cholesterol transport from macrophages. PLoS Biol. 2006;4(11):e365.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Sammalkorpi K, Valtonen V, Kerttula Y, Nikkilä E, Taskinen M-R. Changes in serum lipoprotein pattern induced by acute infections. Metab Clin Exp. 1988;37(9):859–65.CrossRefPubMedGoogle Scholar
  37. 37.
    Sarkissian T, Beyene J, Feldman B, McCrindle B, Silverman ED. Longitudinal examination of lipid profiles in pediatric systemic lupus erythematosus. Arthritis Rheum. 2007;56(2):631–8.CrossRefPubMedGoogle Scholar
  38. 38.
    Mostaza JM, Camino N, Gerique JG, Peña R, Baquero M, Lahoz C. C-reactive protein levels and prevalence of chronic infections in subjects with hypoalphalipoproteinemia. Metabolism. 2005;54(1):33–7.CrossRefPubMedGoogle Scholar
  39. 39.
    Friis-Moller N, Ryom L, Smith C, Weber R, Reiss P, Dabis F, et al. An updated prediction model of the global risk of cardiovascular disease in HIV-positive persons: the data-collection on adverse effects of anti-HIV drugs (D:A:D) study. Eur J Prev Cardiol. 2016;23(2):214–23.CrossRefPubMedGoogle Scholar
  40. 40.
    Duprez DA, Kuller LH, Tracy R, Otvos J, Cooper DA, Hoy J, et al. Lipoprotein particle subclasses, cardiovascular disease and HIV infection. Atherosclerosis. 2009;207(2):524–9.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Bucher HC, Richter W, Glass TR, Magenta L, Wang Q, Cavassini M, et al. Small dense lipoproteins, apolipoprotein B, and risk of coronary events in HIV-infected patients on antiretroviral therapy: the Swiss HIV Cohort Study. J Acquir Immune Defic Syndr. 2012;60(2):135–42.CrossRefPubMedGoogle Scholar
  42. 42.
    Mora S, Otvos JD, Rifai N, Rosenson RS, Buring JE, Ridker PM. Lipoprotein particle profiles by nuclear magnetic resonance compared with standard lipids and apolipoproteins in predicting incident cardiovascular disease in women. Circulation. 2009;119(7):931–9.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Gazi IF, Tsimihodimos V, Tselepis AD, Elisaf M, Mikhailidis DP. Clinical importance and therapeutic modulation of small dense low-density lipoprotein particles. Expert Opin Biol Ther. 2007;7(1):53–72.CrossRefPubMedGoogle Scholar
  44. 44.
    St-Pierre AC, Cantin B, Dagenais GR, Mauriege P, Bernard PM, Despres JP, et al. Low-density lipoprotein subfractions and the long-term risk of ischemic heart disease in men: 13-year follow-up data from the Quebec Cardiovascular Study. Arterioscler Thromb Vasc Biol. 2005;25(3):553–9.CrossRefPubMedGoogle Scholar
  45. 45.
    Munger AM, Chow DC, Playford MP, Parikh NI, Gangcuangco LM, Nakamoto BK, et al. Characterization of lipid composition and high-density lipoprotein function in HIV-infected individuals on stable antiretroviral regimens. AIDS Res Hum Retrovir. 2015;31(2):221–8.CrossRefPubMedGoogle Scholar
  46. 46.
    Andrade A, Rosenkranz SL, Cillo AR, Lu D, Daar ES, Jacobson JM, et al. Three distinct phases of HIV-1 RNA decay in treatment-naive patients receiving raltegravir-based antiretroviral therapy: ACTG A5248. J Infect Dis. 2013;208(6):884–91.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    • Funderburg NT, Xu D, Playford MP, Joshi AA, Andrade A, Kuritzkes DR, et al. Treatment of HIV infection with a raltegravir-based regimen increases LDL levels, but improves HDL cholesterol efflux capacity. Antivir Ther. 2017;22(1):71–5. This study examines longitudinal changes in lipid composition and function in HIV+ individuals initiating a raltegravir-based ART regimen. These analyses may better assess CVD risk than traditional lipid measurements.CrossRefPubMedGoogle Scholar
  48. 48.
    McCausland MR, Juchnowski SM, Zidar DA, Kuritzkes DR, Andrade A, Sieg SF, et al. Altered monocyte phenotype in HIV-1 infection tends to normalize with integrase-inhibitor-based antiretroviral therapy. PLoS One. 2015;10(10):e0139474.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Funderburg NT, Andrade A, Chan ES, Rosenkranz SL, Lu D, Clagett B, et al. Dynamics of immune reconstitution and activation markers in HIV+ treatment-naïve patients treated with raltegravir, tenofovir disoproxil fumarate and emtricitabine. PLoS One. 2013;8(12):e83514.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Lo J, Rosenberg ES, Fitzgerald ML, Bazner SB, Ihenachor EJ, Hawxhurst V, et al. High-density lipoprotein-mediated cholesterol efflux capacity is improved by treatment with antiretroviral therapy in acute human immunodeficiency virus infection. Open Forum Infect Dis. 2014;1(3):ofu108.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Lederman MM, Funderburg NT, Sekaly RP, Klatt NR, Hunt PW. Residual immune dysregulation syndrome in treated HIV infection. Adv Immunol. 2013;119:51–83.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    GK H. Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med. 2005;352:1685–95.CrossRefGoogle Scholar
  53. 53.
    Liao KP, Playford MP, Frits M, Coblyn JS, Iannaccone C, Weinblatt ME, et al. The association between reduction in inflammation and changes in lipoprotein levels and HDL cholesterol efflux capacity in rheumatoid arthritis. J Am Heart Assoc. 2015;4(2).Google Scholar
  54. 54.
    Kuller LH, Tracy R, Belloso W, De Wit S, Drummond F, Lane HC, et al. Inflammatory and coagulation biomarkers and mortality in patients with HIV infection. PLoS Med. 2008;5(10):e203.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Triant VA, Meigs JB, Grinspoon SK. Association of C-reactive protein and HIV infection with acute myocardial infarction. J Acquir Immune Defic Syndr. 2009;51(3):268–73.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Wikby A, Nilsson BO, Forsey R, Thompson J, Strindhall J, Lofgren S, et al. The immune risk phenotype is associated with IL-6 in the terminal decline stage: findings from the Swedish NONA immune longitudinal study of very late life functioning. Mech Ageing Dev. 2006;127(8):695–704.CrossRefPubMedGoogle Scholar
  57. 57.
    Harris TB, Ferrucci L, Tracy RP, Corti MC, Wacholder S, Ettinger WH, et al. Associations of elevated interleukin-6 and C-reactive protein levels with mortality in the elderly. Am J Med. 1999;106(5):506–12.CrossRefPubMedGoogle Scholar
  58. 58.
    Reuben DB, Cheh AI, Harris TB, Ferrucci L, Rowe JW, Tracy RP, et al. Peripheral blood markers of inflammation predict mortality and functional decline in high-functioning community-dwelling older persons. J Am Geriatr Soc. 2002;50(4):638–44.CrossRefPubMedGoogle Scholar
  59. 59.
    Baker JV, Neuhaus J, Duprez D, Cooper DA, Hoy J, Kuller L, et al. Inflammation predicts changes in high-density lipoprotein particles and apolipoprotein A1 following initiation of antiretroviral therapy. AIDS. 2011;25(17):2133–42.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Piconi S, Parisotto S, Rizzardini G, Passerini S, Meraviglia P, Schiavini M, et al. Atherosclerosis is associated with multiple pathogenic mechanisms in HIV-infected antiretroviral-naive or treated individuals. AIDS. 2013;27(3):381–9.CrossRefPubMedGoogle Scholar
  61. 61.
    Han X. Lipidomics for studying metabolism. Nat Rev Endocrinol. 2016;12(11):668–79.CrossRefPubMedGoogle Scholar
  62. 62.
    Watson AD. Thematic review series: systems biology approaches to metabolic and cardiovascular disorders. Lipidomics: a global approach to lipid analysis in biological systems. J Lipid Res. 2006;47(10):2101–11.CrossRefPubMedGoogle Scholar
  63. 63.
    Weir JM, Wong G, Barlow CK, Greeve MA, Kowalczyk A, Almasy L, et al. Plasma lipid profiling in a large population-based cohort. J Lipid Res. 2013;54(10):2898–908.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Yang K, Cheng H, Gross RW, Han X. Automated lipid identification and quantification by multidimensional mass spectrometry-based shotgun lipidomics. Anal Chem. 2009;81(11):4356–68.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Anand S, Young S, Esplin MS, Peaden B, Tolley HD, Porter TF, et al. Detection and confirmation of serum lipid biomarkers for preeclampsia using direct infusion mass spectrometry. J Lipid Res. 2016;57(4):687–96.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Gorden DL, Myers DS, Ivanova PT, Fahy E, Maurya MR, Gupta S, et al. Biomarkers of NAFLD progression: a lipidomics approach to an epidemic. J Lipid Res. 2015;56(3):722–36.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Hu C, Zhou J, Yang S, Li H, Wang C, Fang X, et al. Oxidative stress leads to reduction of plasmalogen serving as a novel biomarker for systemic lupus erythematosus. Free Radic Biol Med. 2016;101:475–81.CrossRefPubMedGoogle Scholar
  68. 68.
    Perrotti F, Rosa C, Cicalini I, Sacchetta P, Del Boccio P, Genovesi D, et al. Advances in lipidomics for cancer biomarkers discovery. Int J Mol Sci. 2016;17(12).Google Scholar
  69. 69.
    Li J, Ren S, Piao HL, Wang F, Yin P, Xu C, et al. Integration of lipidomics and transcriptomics unravels aberrant lipid metabolism and defines cholesteryl oleate as potential biomarker of prostate cancer. Sci Rep. 2016;6:20984.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Chen X, Chen H, Dai M, Ai J, Li Y, Mahon B, et al. Plasma lipidomics profiling identified lipid biomarkers in distinguishing early-stage breast cancer from benign lesions. Oncotarget. 2016;7(24):36622–31.PubMedPubMedCentralGoogle Scholar
  71. 71.
    Fernandez C, Sandin M, Sampaio JL, Almgren P, Narkiewicz K, Hoffmann M, et al. Plasma lipid composition and risk of developing cardiovascular disease. PLoS One. 2013;8(8):e71846.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Wong G, Trevillyan JM, Fatou B, Cinel M, Weir JM, Hoy JF, et al. Plasma lipidomic profiling of treated HIV-positive individuals and the implications for cardiovascular risk prediction. PLoS One. 2014;9(4):e94810.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Stegemann C, Pechlaner R, Willeit P, Langley SR, Mangino M, Mayr U, et al. Lipidomics profiling and risk of cardiovascular disease in the prospective population-based Bruneck study. Circulation. 2014;129(18):1821–31.CrossRefPubMedGoogle Scholar
  74. 74.
    Stegemann C, Drozdov I, Shalhoub J, Humphries J, Ladroue C, Didangelos A, et al. Comparative lipidomics profiling of human atherosclerotic plaques. Circ Cardiovasc Genet. 2011;4(3):232–42.CrossRefPubMedGoogle Scholar
  75. 75.
    Rhee EP, Cheng S, Larson MG, Walford GA, Lewis GD, McCabe E, et al. Lipid profiling identifies a triacylglycerol signature of insulin resistance and improves diabetes prediction in humans. J Clin Invest. 2011;121(4):1402–11.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Harchaoui KEL, Visser ME, Kastelein JJP, Stroes ES, Dallinga-Thie GM. Triglycerides and cardiovascular risk. Curr Cardiol Rev. 2009;5(3):216–22.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Haugaard SB, Andersen O, Pedersen SB, Dela F, Fenger M, Richelsen B, et al. Tumor necrosis factor alpha is associated with insulin-mediated suppression of free fatty acids and net lipid oxidation in HIV-infected patients with lipodystrophy. Metabolism. 2006;55(2):175–82.CrossRefPubMedGoogle Scholar
  78. 78.
    Moayyeri A, Hammond CJ, Valdes AM, Spector TD. Cohort Profile: TwinsUK and healthy ageing twin study. Int J Epidemiol. 2013;42(1):76–85.CrossRefPubMedGoogle Scholar
  79. 79.
    Tarasov K, Ekroos K, Suoniemi M, Kauhanen D, Sylvänne T, Hurme R, et al. Molecular lipids identify cardiovascular risk and are efficiently lowered by simvastatin and PCSK9 deficiency. J Clin Endocrinol Metab. 2014;99(1):E45–52.CrossRefPubMedGoogle Scholar
  80. 80.
    Wu D, Ren Z, Pae M, Guo W, Cui X, Merrill AH, et al. Aging up-regulates expression of inflammatory mediators in mouse adipose tissue. J Immunol. 2007;179(7):4829–39.CrossRefPubMedGoogle Scholar
  81. 81.
    Laaksonen R, Ekroos K, Sysi-Aho M, Hilvo M, Vihervaara T, Kauhanen D, et al. Plasma ceramides predict cardiovascular death in patients with stable coronary artery disease and acute coronary syndromes beyond LDL-cholesterol. Eur Heart J. 2016;37(25):1967–76.CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Yu J, Pan W, Shi R, Yang T, Li Y, Yu G, et al. Ceramide is upregulated and associated with mortality in patients with chronic heart failure. Can J Cardiol. 2015;31(3):357–63.CrossRefPubMedGoogle Scholar
  83. 83.
    Peterson LR, Xanthakis V, Duncan MS, Gross S, Friedrich N, Volzke H, et al. Ceramide remodeling and risk of cardiovascular events and mortality. J Am Heart Assoc. 2018;7(10).Google Scholar
  84. 84.
    Ueeda MDT, Takaya Y, Shinohata R, Katayma Y, Ohnishi N, Takaishi A, et al. Serum N-3 polyunsaturated fatty acid levels correlate with the extent of coronary plaques and calcifications in patients with acute myocardial infarction. Circ J. 2008;72:1836–43.CrossRefPubMedGoogle Scholar
  85. 85.
    Ellims AH, Wong G, Weir JM, Lew P, Meikle PJ, Taylor AJ. Plasma lipidomic analysis predicts non-calcified coronary artery plaque in asymptomatic patients at intermediate risk of coronary artery disease. Eur Heart J Cardiovasc Imaging. 2014;15(8):908–16.CrossRefPubMedGoogle Scholar
  86. 86.
    Kulkarni MM, Ratcliff AN, Bhat M, Alwarawrah Y, Hughes P, Arcos J, et al. Cellular fatty acid synthase is required for late stages of HIV-1 replication. Retrovirology. 2017;14(1):45.CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    • Belury MA, Bowman E, Gabriel J, Snyder B, Kulkarni M, Palettas M, et al. Prospective analysis of lipid composition changes with antiretroviral therapy and immune activation in persons living with HIV. Pathog Immun. 2017;2(3):376–403. This study examines longitudinal lipidome alterations in treatment-naïve HIV+ individuals at baseline, and after 48 weeks of a raltegravir-based ART regimen, and the relationships among pro-inflammatory lipid species and immune activation in this population. CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Funderburg NT. Prospective analysis of lipid compositional changes with antiretroviral therapy (ART) and immune activation in persons living with HIV. The 19th International Workshop on Co-morbidities and Adverse Drug Reactions in HIV; 2017 October 23–25; Milan, Italy.Google Scholar
  89. 89.
    Wells IPG, Vincent JK. Lecithin: cholesterol acyltransferase and Lysolecithin in coronary atherosclerosis. Exp Mol Pathol. 1986;45:303–10.CrossRefPubMedGoogle Scholar
  90. 90.
    Rabini RA, Galassi R, Fumelli P, Dousset N, Solera ML, Valdiguie P, et al. Reduced Na(+) -K(+)-ATPase activity and plasma lysophosphatidylcholine concentrations in diabetic patients. Diabetes. 1994;43(7):915–9.CrossRefPubMedGoogle Scholar
  91. 91.
    Sacks FM, Lichtenstein AH, Wu JHY, Appel LJ, Creager MA, Kris-Etherton PM, et al. Dietary fats and cardiovascular disease: a presidential advisory from the American Heart Association. Circulation. 2017;136(3):e1–e23.CrossRefPubMedGoogle Scholar
  92. 92.
    Robblee MM, Kim CC, Porter Abate J, Valdearcos M, Sandlund KL, Shenoy MK, et al. Saturated fatty acids engage an IRE1alpha-dependent pathway to activate the NLRP3 inflammasome in myeloid cells. Cell Rep. 2016;14(11):2611–23.CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Wen H, Gris D, Lei Y, Jha S, Zhang L, Huang MT, et al. Fatty acid-induced NLRP3-ASC inflammasome activation interferes with insulin signaling. Nat Immunol. 2011;12(5):408–15.CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Suganami T, Nishida J, Ogawa Y. A paracrine loop between adipocytes and macrophages aggravates inflammatory changes: role of free fatty acids and tumor necrosis factor alpha. Arterioscler Thromb Vasc Biol. 2005;25(10):2062–8.CrossRefPubMedGoogle Scholar
  95. 95.
    Suganami T, Tanimoto-Koyama K, Nishida J, Itoh M, Yuan X, Mizuarai S, et al. Role of the Toll-like receptor 4/NF-kappaB pathway in saturated fatty acid-induced inflammatory changes in the interaction between adipocytes and macrophages. Arterioscler Thromb Vasc Biol. 2007;27(1):84–91.CrossRefPubMedGoogle Scholar
  96. 96.
    Oh DY, Talukdar S, Bae EJ, Imamura T, Morinaga H, Fan W, et al. GPR120 is an omega-3 fatty acid receptor mediating potent anti-inflammatory and insulin-sensitizing effects. Cell. 2010;142(5):687–98.CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Yamada H, Yoshida M, Nakano Y, Suganami T, Satoh N, Mita T, et al. In vivo and in vitro inhibition of monocyte adhesion to endothelial cells and endothelial adhesion molecules by eicosapentaenoic acid. Arterioscler Thromb Vasc Biol. 2008;28(12):2173–9.CrossRefPubMedGoogle Scholar
  98. 98.
    Yan Y, Jiang W, Spinetti T, Tardivel A, Castillo R, Bourquin C, et al. Omega-3 fatty acids prevent inflammation and metabolic disorder through inhibition of NLRP3 inflammasome activation. Immunity. 2013;38(6):1154–63.CrossRefPubMedGoogle Scholar
  99. 99.
    Kim SJ, Zhang Z, Saha A, Sarkar C, Zhao Z, Xu Y, et al. Omega-3 and omega-6 fatty acids suppress ER- and oxidative stress in cultured neurons and neuronal progenitor cells from mice lacking PPT1. Neurosci Lett. 2010;479(3):292–6.CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    Pachikian BD, Essaghir A, Demoulin JB, Neyrinck AM, Catry E, De Backer FC, et al. Hepatic n-3 polyunsaturated fatty acid depletion promotes steatosis and insulin resistance in mice: genomic analysis of cellular targets. PLoS One. 2011;6(8):e23365.CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    Bensinger SJ, Tontonoz P. Integration of metabolism and inflammation by lipid-activated nuclear receptors. Nature. 2008;454(7203):470–7.CrossRefPubMedGoogle Scholar
  102. 102.
    Degirolamo C, Shelness GS, Rudel LL. LDL cholesteryl oleate as a predictor for atherosclerosis: evidence from human and animal studies on dietary fat. J Lipid Res. 2009;50(Suppl):S434–9.CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    • Trevillyan JM, Wong G, Puls R, Petoumenos K, Emery S, Mellett NA, et al. Changes in plasma lipidome following initiation of antiretroviral therapy. PLoS One. 2018;13(8):e0202944. This study describes ART-induced changes to the HIV+ lipidome, and compares lipid alterations unique to 3 distinct ART regimens. CrossRefPubMedPubMedCentralGoogle Scholar
  104. 104.
    Gotti D, Cesana BM, Albini L, Calabresi A, Izzo I, Focà E, et al. Increase in standard cholesterol and large HDL particle subclasses in antiretroviral-naïve patients prescribed efavirenz compared to atazanavir/ritonavir. HIV Clin Trials. 2012;13(5):245–55.CrossRefPubMedGoogle Scholar
  105. 105.
    Desai M, Joyce V, Bendavid E, Olshen RA, Hlatky M, Chow A, et al. Risk of cardiovascular events associated with current exposure to HIV antiretroviral therapies in a US veteran population. Clin Infect Dis. 2015;61(3):445–52.CrossRefPubMedPubMedCentralGoogle Scholar
  106. 106.
    Fink RI, Kolterman OG, Griffin J, Olefsky JM. Mechanisms of insulin resistance in aging. J Clin Invest. 1983;71(6):1523–35.CrossRefPubMedPubMedCentralGoogle Scholar
  107. 107.
    Petersen KF, Befroy D, Dufour S, Dziura J, Ariyan C, Rothman DL, et al. Mitochondrial dysfunction in the elderly: possible role in insulin resistance. Science. 2003;300(5622):1140–2.CrossRefPubMedPubMedCentralGoogle Scholar
  108. 108.
    Feinstein MJ, Achenbach CJ, Stone NJ, Lloyd-Jones DM. A systematic review of the usefulness of statin therapy in HIV-infected patients. Am J Cardiol. 2015;115(12):1760–6.CrossRefPubMedGoogle Scholar
  109. 109.
    Eckard AR, Jiang Y, Debanne SM, Funderburg NT, McComsey GA. Effect of 24 weeks of statin therapy on systemic and vascular inflammation in HIV-infected subjects receiving antiretroviral therapy. J Infect Dis. 2014;209(8):1156–64.CrossRefPubMedPubMedCentralGoogle Scholar
  110. 110.
    Funderburg NT, Jiang Y, Debanne SM, Labbato D, Juchnowski S, Ferrari B, et al. Rosuvastatin reduces vascular inflammation and T-cell and monocyte activation in HIV-infected subjects on antiretroviral therapy. J Acquir Immune Defic Syndr. 2015;68(4):396–404.CrossRefPubMedPubMedCentralGoogle Scholar
  111. 111.
    Funderburg NT, Jiang Y, Debanne SM, Storer N, Labbato D, Clagett B, et al. Rosuvastatin treatment reduces markers of monocyte activation in HIV-infected subjects on antiretroviral therapy. Clin Infect Dis. 2014;58(4):588–95.CrossRefPubMedGoogle Scholar
  112. 112.
    Longenecker CT, Hileman CO, Funderburg NT, McComsey GA. Rosuvastatin preserves renal function and lowers cystatin C in HIV-infected subjects on antiretroviral therapy: the SATURN-HIV trial. Clin Infect Dis. 2014;59(8):1148–56.CrossRefPubMedPubMedCentralGoogle Scholar
  113. 113.
    Sandler NG, Wand H, Roque A, Law M, Nason MC, Nixon DE, et al. Plasma levels of soluble CD14 independently predict mortality in HIV infection. J Infect Dis. 2011;203(6):780–90.CrossRefPubMedPubMedCentralGoogle Scholar
  114. 114.
    Nou E, Lu MT, Looby SE, Fitch KV, Kim EA, Lee H, et al. Serum oxidized low-density lipoprotein decreases in response to statin therapy and relates independently to reductions in coronary plaque in patients with HIV. AIDS. 2016;30(4):583–90.CrossRefPubMedPubMedCentralGoogle Scholar
  115. 115.
    Hileman CO, Turner R, Funderburg NT, Semba RD, McComsey GA. Changes in oxidized lipids drive the improvement in monocyte activation and vascular disease after statin therapy in HIV. AIDS. 2016;30(1):65–73.PubMedPubMedCentralGoogle Scholar
  116. 116.
    Nishi K, Itabe H, Uno M, Kitazato KT, Horiguchi H, Shinno K, et al. Oxidized LDL in carotid plaques and plasma associates with plaque instability. Arterioscler Thromb Vasc Biol. 2002;22(10):1649–54.CrossRefPubMedGoogle Scholar
  117. 117.
    Zanni MV, Fitch KV, Feldpausch M, Han A, Lee H, Lu MT, et al. 2013 American College of Cardiology/American Heart Association and 2004 Adult Treatment Panel III cholesterol guidelines applied to HIV-infected patients with/without subclinical high-risk coronary plaque. AIDS. 2014;28(14):2061–70.CrossRefPubMedPubMedCentralGoogle Scholar
  118. 118.
    Gilbert JM, Fitch KV, Grinspoon SK. HIV-related cardiovascular disease, statins, and the REPRIEVE trial. Top Antivir Med. 2016;23(4):146–9.Google Scholar
  119. 119.
    Mitka M. Exploring statins to decrease hiv-related heart disease risk. JAMA. 2015;314(7):657–9.CrossRefPubMedGoogle Scholar
  120. 120.
    Bergheanu SC, Reijmers T, Zwinderman AH, Bobeldijk I, Ramaker R, Liem A-H, et al. Lipidomic approach to evaluate rosuvastatin and atorvastatin at various dosages: investigating differential effects among statins. Curr Med Res Opin. 2008;24(9):2477–87.CrossRefPubMedGoogle Scholar
  121. 121.
    Central Committee for M, Community Program of the American Heart A. Dietary fat and its relation to heart attacks and strokes. JAMA. 1961;175(5):389–91.CrossRefGoogle Scholar
  122. 122.
    Mozaffarian D, Micha R, Wallace S. Effects on coronary heart disease of increasing polyunsaturated fat in place of saturated fat: a systematic review and meta-analysis of randomized controlled trials. PLoS Med. 2010;7(3):e1000252.CrossRefPubMedPubMedCentralGoogle Scholar
  123. 123.
    Calder PC. n-3 polyunsaturated fatty acids, inflammation, and inflammatory diseases. Am J Clin Nutr. 2006;83(6):1505S–19S.CrossRefPubMedGoogle Scholar
  124. 124.
    Davidson MH. Mechanisms for the hypotriglyceridemic effect of marine omega-3 fatty acids. Am J Cardiol. 2006;98(4A):27i–33i.CrossRefPubMedGoogle Scholar
  125. 125.
    Appel LJ, Miller ER III, Seidler AJ, Whelton PK. Does supplementation of diet with ‘fish oil’ reduce blood pressure? A meta-analysis of controlled clinical trials. Arch Intern Med. 1993;153(12):1429–38.CrossRefPubMedGoogle Scholar
  126. 126.
    Fedor D, Kelley DS. Prevention of insulin resistance by n-3 polyunsaturated fatty acids. Curr Opin Clin Nutr Metab Care. 2009;12(2):138–46.CrossRefPubMedGoogle Scholar
  127. 127.
    Chowdhury R, Warnakula S, Kunutsor S, Crowe F, Ward HA, Johnson L, et al. Association of dietary, circulating, and supplement fatty acids with coronary risk: a systematic review and meta-analysis. Ann Intern Med. 2014;160(6):398–406.CrossRefPubMedGoogle Scholar
  128. 128.
    Hileman CO, Carman TL, Storer NJ, Labbato DE, White CA, McComsey GA. Omega-3 fatty acids do not improve endothelial function in virologically suppressed HIV-infected men: a randomized placebo-controlled trial. AIDS Res Hum Retrovir. 2012;28(7):649–55.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Health and Rehabilitation Sciences, Division of Medical Laboratory ScienceOhio State University College of MedicineColumbusUSA

Personalised recommendations