Advertisement

Current HIV/AIDS Reports

, Volume 14, Issue 3, pp 93–100 | Cite as

Inflammation, Immune Activation, and Antiretroviral Therapy in HIV

  • Corrilynn O. Hileman
  • Nicholas T. Funderburg
HIV Pathogenesis and Treatment (AL Landay and N Utay, Section Editors)
Part of the following topical collections:
  1. Topical Collection on HIV Pathogenesis and Treatment

Abstract

Purpose of Review

This review focuses on the differential effects of contemporary antiretrovirals on systemic inflammation as heightened immune activation is linked to important co-morbidities and mortality with HIV infection.

Recent Findings

Antiretroviral therapy (ART) reduces dramatically systemic inflammation and immune activation, but not to levels synchronous with HIV-uninfected populations. In one ART initiation trial, integrase inhibitors appear to reduce inflammation to a greater degree than non-nucleoside reverse transcriptase inhibitors (NNRTIs); however, it is not clear that there are beneficial effects on inflammation resulting from treatment with integrase inhibitors compared to PIs, between PIs and NNRTIs, between specific nucleoside reverse transcriptase inhibitors, or with maraviroc in ART-naïve patients. In ART switch studies, changing to an integrase inhibitor from a PI-, NNRTI-, or enfuvirtide-containing regimen has resulted in improvement in several markers of inflammation.

Summary

Additional research is needed to conclusively state whether there are clear differences in effects of specific antiretrovirals on inflammation and immune activation in HIV.

Keywords

Antiretroviral therapy Inflammation Immune activation HIV infection 

Notes

Acknowledgements

This manuscript was supported by the National Institutes of Health.

Compliance with Ethical Standards

Conflict of Interest

Corrilynn O. Hileman has received grant support from the National Institutes of Health (K23HL116209) and has served as consultant to Gilead Sciences.

Nicholas T. Funderburg has received grant support from the National Institutes of Health (R01HL134544).

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. 1.
    Samji H, Cescon A, Hogg RS, Modur SP, Althoff KN, Buchacz K, et al. Closing the gap: increases in life expectancy among treated HIV-positive individuals in the United States and Canada. PLoS One. 2013;8(12):e81355.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Lewden C, Bouteloup V, De Wit S, Sabin C, Mocroft A, Wasmuth JC, et al. All-cause mortality in treated HIV-infected adults with CD4 ≥500/mm3 compared with the general population: evidence from a large European observational cohort collaboration. Int J Epidemiol. 2012;41(2):433–45.CrossRefPubMedGoogle Scholar
  3. 3.
    Life expectancy of individuals on combination antiretroviral therapy in high-income countries: a collaborative analysis of 14 cohort studies. Lancet. 2008;372(9635):293–9Google Scholar
  4. 4.
    Freiberg MS, Chang CC, Kuller LH, Skanderson M, Lowy E, Kraemer KL, et al. HIV infection and the risk of acute myocardial infarction. JAMA Intern Med. 2013;173(8):614–22.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Brown TT, Cole SR, Li X, Kingsley LA, Palella FJ, Riddler SA, et al. Antiretroviral therapy and the prevalence and incidence of diabetes mellitus in the multicenter AIDS cohort study. Arch Intern Med. 2005;165(10):1179–84.CrossRefPubMedGoogle Scholar
  6. 6.
    Brown TT, Qaqish RB. Antiretroviral therapy and the prevalence of osteopenia and osteoporosis: a meta-analytic review. AIDS. 2006;20(17):2165–74.CrossRefPubMedGoogle Scholar
  7. 7.
    Heaton RK, Clifford DB, Franklin Jr DR, Woods SP, Ake C, Vaida F, et al. HIV-associated neurocognitive disorders persist in the era of potent antiretroviral therapy: CHARTER Study. Neurology. 2010;75(23):2087–96.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Chen CH, Chung CY, Wang LH, Lin C, Lin HL, Lin HC. Risk of cancer among HIV-infected patients from a population-based nested case-control study: implications for cancer prevention. BMC Cancer. 2015;15:133.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Kooij KW, Wit FW, Schouten J, van der Valk M, Godfried MH, Stolte IG, et al. HIV infection is independently associated with frailty in middle-aged HIV type 1-infected individuals compared with similar but uninfected controls. AIDS. 2016;30(2):241–50.CrossRefPubMedGoogle Scholar
  10. 10.
    Lifson AR, Lando HA. Smoking and HIV: prevalence, health risks, and cessation strategies. Curr HIV/AIDS Rep. 2012;9(3):223–30.CrossRefPubMedGoogle Scholar
  11. 11.
    Kotler DP. HIV and antiretroviral therapy: lipid abnormalities and associated cardiovascular risk in HIV-infected patients. J Acquir Immune Defic Syndr. 2008;49(Suppl 2):S79–85.CrossRefPubMedGoogle Scholar
  12. 12.
    Oh JY, Greene K, He H, Schafer S, Hedberg K. Population-based study of risk factors for coronary heart disease among HIV-infected persons. Open AIDS J. 2012;6:177–80.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Friis-Moller N, Reiss P, Sabin CA, Weber R, Monforte A, El-Sadr W, et al. Class of antiretroviral drugs and the risk of myocardial infarction. N Engl J Med. 2007;356(17):1723–35.CrossRefPubMedGoogle Scholar
  14. 14.
    Sabin CA, Worm SW, Weber R, Reiss P, El-Sadr W, Dabis F, et al. Use of nucleoside reverse transcriptase inhibitors and risk of myocardial infarction in HIV-infected patients enrolled in the D:A:D study: a multi-cohort collaboration. Lancet. 2008;371(9622):1417–26.CrossRefPubMedGoogle Scholar
  15. 15.
    Obel N, Farkas DK, Kronborg G, Larsen CS, Pedersen G, Riis A, et al. Abacavir and risk of myocardial infarction in HIV-infected patients on highly active antiretroviral therapy: a population-based nationwide cohort study. HIV Med. 2010;11(2):130–6.CrossRefPubMedGoogle Scholar
  16. 16.
    •• Bahrami H, Budoff M, Haberlen SA, Rezaeian P, Ketlogetswe K, Tracy R, et al. Inflammatory markers associated with subclinical coronary artery disease: the multicenter AIDS cohort study. J Am Heart Assoc. 2016;5(6):e003371. Large cross-sectional study from the MACS evaluating associations between inflammatory markers and subclinical vascular disease showing that higher IL-6, sICAM-1, sTNF-RI and –RII levels are associated with coronary stenosis in HIV-infected men.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Tang N, Sun B, Gupta A, Rempel H, Pulliam L. Monocyte exosomes induce adhesion molecules and cytokines via activation of NF-kappaB in endothelial cells. FASEB J. 2016;30(9):3097–106.CrossRefPubMedGoogle Scholar
  18. 18.
    Kelesidis T, Kendall MA, Yang OO, Hodis HN, Currier JS. Biomarkers of microbial translocation and macrophage activation: association with progression of subclinical atherosclerosis in HIV-1 infection. J Infect Dis. 2012;206(10):1558–67.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Subramanian S, Tawakol A, Burdo TH, Abbara S, Wei J, Vijayakumar J, et al. Arterial inflammation in patients with HIV. JAMA. 2012;308(4):379–86.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Ross AC, Rizk N, O’Riordan MA, Dogra V, El-Bejjani D, Storer N, et al. Relationship between inflammatory markers, endothelial activation markers, and carotid intima-media thickness in HIV-infected patients receiving antiretroviral therapy. Clin Infect Dis. 2009;49(7):1119–27.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Shaked I, Hanna DB, Gleissner C, Marsh B, Plants J, Tracy D, et al. Macrophage inflammatory markers are associated with subclinical carotid artery disease in women with human immunodeficiency virus or hepatitis C virus infection. Arterioscler Thromb Vasc Biol. 2014;34(5):1085–92.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Kuller LH, Tracy R, Belloso W, De Wit S, Drummond F, Lane HC, et al. Inflammatory and coagulation biomarkers and mortality in patients with HIV infection. PLoS Med. 2008;5(10):e203.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Triant VA, Meigs JB, Grinspoon SK. Association of C-reactive protein and HIV infection with acute myocardial infarction. J Acquir Immune Defic Syndr. 2009Google Scholar
  24. 24.
    Maisa A, Hearps AC, Angelovich TA, Pereira CF, Zhou J, Shi MD, et al. Monocytes from HIV-infected individuals show impaired cholesterol efflux and increased foam cell formation after transendothelial migration. AIDS. 2015;29(12):1445–57.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Funderburg NT, Jiang Y, Debanne SM, Labbato D, Juchnowski S, Ferrari B, et al. Rosuvastatin reduces vascular inflammation and T-cell and monocyte activation in HIV-infected subjects on antiretroviral therapy. J Acquir Immune Defic Syndr. 2015;68(4):396–404.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Hileman CO, Carman TL, Gripshover BM, O’Riordan M, Storer NJ, Harrill DE, et al. Salsalate is poorly tolerated and fails to improve endothelial function in virologically suppressed HIV-infected adults. AIDS. 2010;24(12):1958–61.CrossRefPubMedGoogle Scholar
  27. 27.
    Gupta SK, Dube MP, Stein JH, Clauss MA, Liu Z. A pilot trial of pentoxifylline on endothelial function and inflammation in HIV-infected patients initiating antiretroviral therapy. AIDS. 2016;30(13):2139–42.CrossRefPubMedGoogle Scholar
  28. 28.
    Neuhaus J, Jacobs Jr DR, Baker JV, Calmy A, Duprez D, La Rosa A, et al. Markers of inflammation, coagulation, and renal function are elevated in adults with HIV infection. J Infect Dis. 2010;201(12):1788–95.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Lederman MM, Calabrese L, Funderburg NT, Clagett B, Medvik K, Bonilla H, et al. Immunologic failure despite suppressive antiretroviral therapy is related to activation and turnover of memory CD4 cells. J Infect Dis. 2011;204(8):1217–26.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Sandler NG, Wand H, Roque A, Law M, Nason MC, Nixon DE, et al. Plasma levels of soluble CD14 independently predict mortality in HIV infection. J Infect Dis. 2011;203(6):780–90.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Jong E, Louw S, van Gorp EC, Meijers JC, ten Cate H, Jacobson BF. The effect of initiating combined antiretroviral therapy on endothelial cell activation and coagulation markers in South African HIV-infected individuals. Thromb Haemost. 2010;104(6):1228–34.CrossRefPubMedGoogle Scholar
  32. 32.
    Lederman MM, Funderburg NT, Sekaly RP, Klatt NR, Hunt PW. Residual immune dysregulation syndrome in treated HIV infection. Adv Immunol. 2013;119:51–83.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    •• Crowell TA, Fletcher JL, Sereti I, Pinyakorn S, Dewar R, Krebs SJ, et al. Initiation of antiretroviral therapy before detection of colonic infiltration by HIV reduces viral reservoirs, inflammation and immune activation. J Int AIDS Soc. 2016;19(1):21163. Study of virologic and immunologic correlates of detectable colonic HIV RNA during acute HIV infection showing that presence of detectable colonic HIV RNA at time of ART initiation is associated with higher levels of proviral DNA after 24 weeks of ART; however, measures of immune activation and inflammation were similar with or without detectable colonic HIV RNA at ART initiation.PubMedPubMedCentralGoogle Scholar
  34. 34.
    Funderburg NT. Markers of coagulation and inflammation often remain elevated in ART-treated HIV-infected patients. Curr Opin HIV AIDS. 2014;9(1):80–6.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    •• Mccausland MR, Juchnowski SM, Zidar DA, Kuritzkes DR, Andrade A, Sieg SF, et al. Altered monocyte phenotype in HIV-1 infection tends to normalize with integrase-inhibitor-based antiretroviral therapy. PLoS One. 2015;10(10):e0139474. Study showing perturbations in monocyte subset phenotypes in untreated HIV-1 infection tend to attenuate after ART initiation with open label RAL, FTC, and TDF.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Sax PE, DeJesus E, Mills A, Zolopa A, Cohen C, Wohl D, et al. Co-formulated elvitegravir, cobicistat, emtricitabine, and tenofovir versus co-formulated efavirenz, emtricitabine, and tenofovir for initial treatment of HIV-1 infection: a randomised, double-blind, phase 3 trial, analysis of results after 48 weeks. Lancet. 2012;379(9835):2439–48.CrossRefPubMedGoogle Scholar
  37. 37.
    •• Hileman CO, Kinley B, Scharen-Guivel V, Melbourne K, Szwarcberg J, Robinson J, et al. Differential reduction in monocyte activation and vascular inflammation with integrase inhibitor-based initial antiretroviral therapy among HIV-infected individuals. The Journal of infectious diseases. 2015. One of first studies comparing changes in inflammation and monocyte activation markers after initiating integrase inhibitor-based ART or NNRTI-based ART showing that hsCRP, sCD14 and Lp-PLA2 changes favored the integrase inhibitor-based ART.Google Scholar
  38. 38.
    Lennox JL, Landovitz RJ, Ribaudo HJ, Ofotokun I, Na LH, Godfrey C, et al. Efficacy and tolerability of 3 nonnucleoside reverse transcriptase inhibitor-sparing antiretroviral regimens for treatment-naive volunteers infected with HIV-1: a randomized, controlled equivalence trial. Ann Intern Med. 2014;161(7):461–71.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    •• Kelesidis T, Tran TT, Stein JH, Brown TT, Moser C, Ribaudo HJ, et al. Changes in inflammation and immune activation with atazanavir-, raltegravir-, darunavir-based initial antiviral therapy: ACTG 5260s. Clin Infect Dis. 2015;61(4):651–60. Large study comparing changes in inflammation and immune activation markers after ART initiation with TDF/FTC plus RAL or ATV/r or DRV/r showing decreases in most markers in all groups.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Martinez E, Larrousse M, Llibre JM, Gutierrez F, Saumoy M, Antela A, et al. Substitution of raltegravir for ritonavir-boosted protease inhibitors in HIV-infected patients: the SPIRAL study. AIDS. 2010;24(11):1697–707.CrossRefPubMedGoogle Scholar
  41. 41.
    Patterson KB, Prince HA, Stevens T, Shaheen NJ, Dellon ES, Madanick RD, et al. Differential penetration of raltegravir throughout gastrointestinal tissue: implications for eradication and cure. AIDS. 2013;27(9):1413–9.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Brown TT, McComsey GA, King MS, Qaqish RB, Bernstein BM, da Silva BA. Loss of bone mineral density after antiretroviral therapy initiation, independent of antiretroviral regimen. J Acquir Immune Defic Syndr. 2009;51(5):554–61.CrossRefPubMedGoogle Scholar
  43. 43.
    Kumar P, DeJesus E, Huhn G, Sloan L, Small CB, Edelstein H, et al. Evaluation of cardiovascular biomarkers in a randomized trial of fosamprenavir/ritonavir vs. efavirenz with abacavir/lamivudine in underrepresented, antiretroviral-naive, HIV-infected patients (SUPPORT): 96-week results. BMC Infect Dis. 2013;13:269.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    McComsey GA, Kitch D, Daar ES, Tierney C, Jahed NC, Melbourne K, et al. Inflammation markers after randomization to abacavir/lamivudine or tenofovir/emtricitabine with efavirenz or atazanavir/ritonavir. AIDS. 2012;26(11):1371–85.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Hattab S, Guihot A, Guiguet M, Fourati S, Carcelain G, Caby F, et al. Comparative impact of antiretroviral drugs on markers of inflammation and immune activation during the first two years of effective therapy for HIV-1 infection: an observational study. BMC Infect Dis. 2014;14:122.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    •• Rudy BJ, Kapogiannis BG, Worrell C, Squires K, Bethel J, Li S, et al. Immune reconstitution but persistent activation after 48 weeks of antiretroviral therapy in youth with pre-therapy CD4 >350 in ATN 061. J Acquir Immune Defic Syndr. 2015;69(1):52–60. ART initiation single arm study of TDF/FTC and ATV/r in young adults showing decreased CD8+ cell activation, but persistent monocyte activation at levels higher than uninfected controls.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Calza L, Magistrelli E, Danese I, Colangeli V, Borderi M, Bon I, et al. Changes in serum markers of inflammation and endothelial activation in HIV-infected antiretroviral naive patients starting a treatment with abacavir-lamivudine or tenofovir-emtricitabine plus efavirenz. Curr HIV Res. 2016;14(1):61–70.CrossRefPubMedGoogle Scholar
  48. 48.
    Hileman CO, Wohl DA, Tisch DJ, Debanne SM, McComsey GA. Short communication: initiation of an abacavir-containing regimen in HIV-infected adults is associated with a smaller decrease in inflammation and endothelial activation markers compared to non-abacavir-containing regimens. AIDS Res Hum Retrovir. 2012;28(12):1561–4.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Funderburg NT, McComsey GA, Kulkarni M, Bannerman T, Mantini J, Thornton B, et al. Equivalent decline in inflammation markers with tenofovir disoproxil fumarate vs. tenofovir alafenamide. EBioMedicine. 2016Google Scholar
  50. 50.
    Martinez E, D’Albuquerque PM, Llibre JM, Gutierrez F, Podzamczer D, Antela A, et al. Changes in cardiovascular biomarkers in HIV-infected patients switching from ritonavir-boosted protease inhibitors to raltegravir. AIDS. 2012;26(18):2315–26.CrossRefPubMedGoogle Scholar
  51. 51.
    Silva EF, Charreau I, Gourmel B, Mourah S, Kalidi I, Guillon B, et al. Decreases in inflammatory and coagulation biomarkers levels in HIV-infected patients switching from enfuvirtide to raltegravir: ANRS 138 substudy. J Infect Dis. 2013;208(6):892–7.CrossRefPubMedGoogle Scholar
  52. 52.
    Lake J, McComsey G, Hulgan T, Wanke C, Mangili A, Walmsley S, et al. Switch to raltegravir decreases soluble CD14 in virologically suppressed overweight women: the Women, Integrase and Fat Accumulation Trial. HIV medicine. 2014Google Scholar
  53. 53.
    Palella Jr FJ, Fisher M, Tebas P, Gazzard B, Ruane P, Van Lunzen J, et al. Simplification to rilpivirine/emtricitabine/tenofovir disoproxil fumarate from ritonavir-boosted protease inhibitor antiretroviral therapy in a randomized trial of HIV-1 RNA-suppressed participants. AIDS (London, England). 2014;28(3):335–44.CrossRefGoogle Scholar
  54. 54.
    Zidar DA, Juchnowski S, Ferrari B, Clagett B, Pilch-Cooper HA, Rose S, et al. Oxidized LDL levels are increased in HIV infection and may drive monocyte activation. J Acquir Immune Defic Syndr. 2015;69(2):154–60.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    •• Kelesidis T, Jackson N, McComsey GA, Wang X, Elashoff D, Dube MP, et al. Oxidized lipoproteins are associated with markers of inflammation and immune activation in HIV-1 infection. AIDS. 2016;30(17):2625–33. Large study evaluating changes in oxidized lipids over 96 weeks of initial ART showing positive associations at baseline and over time between oxHDL and most markers of inflammation and immune activation.CrossRefPubMedGoogle Scholar
  56. 56.
    Piconi S, Parisotto S, Rizzardini G, Passerini S, Meraviglia P, Schiavini M, et al. Atherosclerosis is associated with multiple pathogenic mechanisms in HIV-infected antiretroviral-naive or treated individuals. AIDS. 2013;27(3):381–9.CrossRefPubMedGoogle Scholar
  57. 57.
    Pozniak A, Markowitz M, Mills A, Stellbrink HJ, Antela A, Domingo P, et al. Switching to coformulated elvitegravir, cobicistat, emtricitabine, and tenofovir versus continuation of non-nucleoside reverse transcriptase inhibitor with emtricitabine and tenofovir in virologically suppressed adults with HIV (STRATEGY-NNRTI): 48 week results of a randomised, open-label, phase 3b non-inferiority trial. Lancet Infect Dis. 2014;14(7):590–9.CrossRefPubMedGoogle Scholar
  58. 58.
    Arribas JR, Pialoux G, Gathe J, Di Perri G, Reynes J, Tebas P, et al. Simplification to coformulated elvitegravir, cobicistat, emtricitabine, and tenofovir versus continuation of ritonavir-boosted protease inhibitor with emtricitabine and tenofovir in adults with virologically suppressed HIV (STRATEGY-PI): 48 week results of a randomised, open-label, phase 3b, non-inferiority trial. Lancet Infect Dis. 2014;14(7):581–9.CrossRefPubMedGoogle Scholar
  59. 59.
    Gulick RM, Lalezari J, Goodrich J, Clumeck N, DeJesus E, Horban A, et al. Maraviroc for previously treated patients with R5 HIV-1 infection. N Engl J Med. 2008;359(14):1429–41.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Hunt PW, Shulman NS, Hayes TL, Dahl V, Somsouk M, Funderburg NT, et al. The immunologic effects of maraviroc intensification in treated HIV-infected individuals with incomplete CD4+ T-cell recovery: a randomized trial. Blood. 2013;121(23):4635–46.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    •• Cillo AR, Hilldorfer BB, Lalama CM, McKinnon JE, Coombs RW, Tenorio AR, et al. Virologic and immunologic effects of adding maraviroc to suppressive antiretroviral therapy in individuals with suboptimal CD4+ T-cell recovery. AIDS (London, England). 2015;29(16):2121–9. Study showing that MVC intensification in individuals on suppressive ART with incomplete CD4+ count recovery did not effect measures of HIV persistence, but did decrease CD4+ T cell activation.CrossRefGoogle Scholar
  62. 62.
    van Lelyveld SF, Drylewicz J, Krikke M, Veel EM, Otto SA, Richter C, et al. Maraviroc intensification of cART in patients with suboptimal immunological recovery: a 48-week, placebo-controlled randomized trial. PloS One. 2015;10(7):e0132430.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Funderburg N, Kalinowska M, Eason J, Goodrich J, Heera J, Mayer H, et al. Effects of maraviroc and efavirenz on markers of immune activation and inflammation and associations with CD4+ cell rises in HIV-infected patients. PLoS One. 2010;5(10):e13188.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    •• Serrano-Villar S, Sainz T, Ma ZM, Utay NS, Chun TW, Mann S, et al. Effects of combined CCR5/integrase inhibitors-based regimen on mucosal immunity in HIV-infected patients naive to antiretroviral therapy: a pilot randomized trial. PLoS Pathog. 2016;12(1):e1005381. Study that showed combined CCR5 and integrase inhibitor-based ART in treatment-naïve patients may more effectively reconstitute duodenal immunity, decrease inflammatory markers and impact on HIV persistence. Additionally, MVC showed the highest drug concentration in gut tissue.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    •• Chan ES, Landay AL, Brown TT, Ribaudo HJ, Mirmonsef P, Ofotokun I, et al. Differential CD4+ cell count increase and CD4+ : CD8+ ratio normalization with maraviroc compared with tenofovir. AIDS (London, England). 2016;30(13):2091–7. Study that showed MVC containing ART resulted in less improvement in CD4:CD8 ratio and that indices of inflammation and immune activation were not different between MVC and TDF.CrossRefGoogle Scholar
  66. 66.
    Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet. 2016;388(10053):1459–544Google Scholar
  67. 67.
    Teeraananchai S, Kerr SJ, Amin J, Ruxrungtham K, Law MG. Life expectancy of HIV-positive people after starting combination antiretroviral therapy: a meta-analysis. HIV medicine. 2016Google Scholar
  68. 68.
    Chun TW, Nickle DC, Justement JS, Meyers JH, Roby G, Hallahan CW, et al. Persistence of HIV in gut-associated lymphoid tissue despite long-term antiretroviral therapy. J Infect Dis. 2008;197(5):714–20.CrossRefPubMedGoogle Scholar
  69. 69.
    Maldarelli F, Palmer S, King MS, Wiegand A, Polis MA, Mican J, et al. ART suppresses plasma HIV-1 RNA to a stable set point predicted by pretherapy viremia. PLoS Pathog. 2007;3(4):e46.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Cory TJ, Schacker TW, Stevenson M, Fletcher CV. Overcoming pharmacologic sanctuaries. Curr Opin HIV AIDS. 2013;8(3):190–5.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Chun TW, Nickle DC, Justement JS, Large D, Semerjian A, Curlin ME, et al. HIV-infected individuals receiving effective antiviral therapy for extended periods of time continually replenish their viral reservoir. J Clin Invest. 2005;115(11):3250–5.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Meier A, Alter G, Frahm N, Sidhu H, Li B, Bagchi A, et al. MyD88-dependent immune activation mediated by human immunodeficiency virus type 1-encoded Toll-like receptor ligands. J Virol. 2007;81(15):8180–91.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Crane M, Avihingsanon A, Rajasuriar R, Velayudham P, Iser D, Solomon A, et al. Lipopolysaccharide, immune activation, and liver abnormalities in HIV/hepatitis B virus (HBV)-coinfected individuals receiving HBV-active combination antiretroviral therapy. The Journal of infectious diseases. 2014Google Scholar
  74. 74.
    Naeger DM, Martin JN, Sinclair E, Hunt PW, Bangsberg DR, Hecht F, et al. Cytomegalovirus-specific T cells persist at very high levels during long-term antiretroviral treatment of HIV disease. PLoS One. 2010;5(1):e8886.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Yurochko AD, Huang ES. Human cytomegalovirus binding to human monocytes induces immunoregulatory gene expression. J Immunol. 1999;162(8):4806–16.PubMedGoogle Scholar
  76. 76.
    Nazli A, Chan O, Dobson-Belaire WN, Ouellet M, Tremblay MJ, Gray-Owen SD, et al. Exposure to HIV-1 directly impairs mucosal epithelial barrier integrity allowing microbial translocation. PLoS Pathog. 2010;6(4):e1000852.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Estes JD, Harris LD, Klatt NR, Tabb B, Pittaluga S, Paiardini M, et al. Damaged intestinal epithelial integrity linked to microbial translocation in pathogenic simian immunodeficiency virus infections. PLoS Pathog. 2010;6(8):e1001052.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Jiang W, Lederman MM, Hunt P, Sieg SF, Haley K, Rodriguez B, et al. Plasma levels of bacterial DNA correlate with immune activation and the magnitude of immune restoration in persons with antiretroviral-treated HIV infection. J Infect Dis. 2009;199(8):1177–85.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Brenchley JM, Price DA, Schacker TW, Asher TE, Silvestri G, Rao S, et al. Microbial translocation is a cause of systemic immune activation in chronic HIV infection. Nat Med. 2006;12(12):1365–71.CrossRefPubMedGoogle Scholar
  80. 80.
    Gordon SN, Cervasi B, Odorizzi P, Silverman R, Aberra F, Ginsberg G, et al. Disruption of intestinal CD4+ T cell homeostasis is a key marker of systemic CD4+ T cell activation in HIV-infected individuals. J Immunol. 2010;185(9):5169–79.CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Chege D, Sheth PM, Kain T, Kim CJ, Kovacs C, Loutfy M, et al. Sigmoid Th17 populations, the HIV latent reservoir, and microbial translocation in men on long-term antiretroviral therapy. AIDS. 2011;25(6):741–9.CrossRefPubMedGoogle Scholar
  82. 82.
    Lester RT, Yao XD, Ball TB, McKinnon LR, Omange WR, Kaul R, et al. HIV-1 RNA dysregulates the natural TLR response to subclinical endotoxemia in Kenyan female sex-workers. PLoS One. 2009;4(5):e5644.CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Yi TJ, Walmsley S, Szadkowski L, Raboud J, Rajwans N, Shannon B, et al. A randomized controlled pilot trial of valacyclovir for attenuating inflammation and immune activation in HIV/herpes simplex virus 2-coinfected adults on suppressive antiretroviral therapy. Clin Infect Dis. 2013;57(9):1331–8.CrossRefPubMedGoogle Scholar
  84. 84.
    Sandler NG, Zhang X, Bosch RJ, Funderburg NT, Choi AI, Robinson JK, et al. Sevelamer does not decrease lipopolysaccharide or soluble CD14 levels but decreases soluble tissue factor, low-density lipoprotein (LDL) cholesterol, and oxidized LDL cholesterol levels in individuals with untreated HIV infection. J Infect Dis. 2014;210(10):1549–54.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Corrilynn O. Hileman
    • 1
    • 2
  • Nicholas T. Funderburg
    • 3
  1. 1.Case Western Reserve University School of MedicineClevelandUSA
  2. 2.Department of Medicine, Division of Infectious DiseasesMetroHealth Medical CenterClevelandUSA
  3. 3.School of Health and Rehabilitation Sciences, Division of Medical Laboratory ScienceOhio State UniversityColumbusUSA

Personalised recommendations