Current HIV/AIDS Reports

, Volume 12, Issue 2, pp 262–271 | Cite as

Compartmentalization, Viral Evolution, and Viral Latency of HIV in the CNS

  • Maria M. Bednar
  • Christa Buckheit Sturdevant
  • Lauren A. Tompkins
  • Kathryn Twigg Arrildt
  • Elena Dukhovlinova
  • Laura P. Kincer
  • Ronald Swanstrom
Central Nervous System and Cognition (SS Spudich, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Central Nervous System and Cognition


Human immunodeficiency virus type 1 (HIV-1) infection occurs throughout the body and can have dramatic physical effects, such as neurocognitive impairment in the central nervous system (CNS). Furthermore, examining the virus that resides in the CNS is challenging due to its location and can only be done using samples collected either at autopsy, indirectly form the cerebral spinal fluid (CSF), or through the use of animal models. The unique milieu of the CNS fosters viral compartmentalization as well as evolution of viral sequences, allowing for new cell types, such as macrophages and microglia, to be infected. Treatment must also cross the blood–brain barrier adding additional obstacles in eliminating viral populations in the CNS. These long-lived infected cell types and treatment barriers may affect functional cure strategies in people on highly active antiretroviral therapy (HAART).


Human immunodeficiency virus HIV Compartmentalization Tropism Latency Evolution Eradication CNS CSF Animal models 


Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Blackard JT. HIV compartmentalization: a review on a clinically important phenomenon. Curr HIV Res. 2012;10(2):133–42.PubMedGoogle Scholar
  2. 2.
    Churchill M, Nath A. Where does HIV hide? A focus on the central nervous system. Curr Opin HIV AIDS. 2013;8(3):165–9.PubMedGoogle Scholar
  3. 3.
    Arrildt K, Joseph SB, Swanstrom R. The HIV-1 ENV protein: a coat of many colors. Curr HIV/AIDS Rep. 2011;9(1):52–63.Google Scholar
  4. 4.
    Svicher V, Ceccherini-Silberstein F, Antinori A, Aquaro S, Perno CF. Understanding HIV compartments and reservoirs. Curr HIV/AIDS Rep. 2014;11(2):186–94. doi:10.1007/s11904-014-0207-y.PubMedGoogle Scholar
  5. 5.
    Battistini A, Sgarbanti M. HIV-1 latency: an update of molecular mechanisms and therapeutic strategies. Viruses. 2014;6(4):1715–58. doi:10.3390/v6041715.PubMedCentralPubMedGoogle Scholar
  6. 6.
    Rossi F, Querido B, Nimmagadda M, Cocklin S, Navas-Martin S, Martin-Garcia J. The V1-V3 region of a brain-derived HIV-1 envelope glycoprotein determines macrophage tropism, low CD4 dependence, increased fusogenicity and altered sensitivity to entry inhibitors. Retrovirology. 2008;5:89. doi:10.1186/1742-4690-5-89.PubMedCentralPubMedGoogle Scholar
  7. 7.
    Dunfee RL, Thomas ER, Gorry PR, Wang J, Taylor J, Kunstman K, et al. The HIV Env variant N283 enhances macrophage tropism and is associated with brain infection and dementia. Proc Natl Acad Sci U S A. 2006;103(41):15160–5. doi:10.1073/pnas.0605513103.PubMedCentralPubMedGoogle Scholar
  8. 8.
    Dunfee RL, Thomas ER, Wang J, Kunstman K, Wolinsky SM, Gabuzda D. Loss of the N-linked glycosylation site at position 386 in the HIV envelope V4 region enhances macrophage tropism and is associated with dementia. Virology. 2007;367(1):222–34. doi:10.1016/j.virol.2007.05.029.PubMedCentralPubMedGoogle Scholar
  9. 9.
    Ohagen A, Devitt A, Kunstman KJ, Gorry PR, Rose PP, Korber B, et al. Genetic and functional analysis of full-length human immunodeficiency virus type 1 env genes derived from brain and blood of patients with AIDS. J Virol. 2003;77(22):12336–45.PubMedCentralPubMedGoogle Scholar
  10. 10.
    Power C, McArthur JC, Johnson RT, Griffin DE, Glass JD, Perryman S, et al. Demented and nondemented patients with AIDS differ in brain-derived human immunodeficiency virus type 1 envelope sequences. J Virol. 1994;68(7):4643–9.PubMedCentralPubMedGoogle Scholar
  11. 11.
    Tang YW, Huong JT, Lloyd Jr RM, Spearman P, Haas DW. Comparison of human immunodeficiency virus type 1 RNA sequence heterogeneity in cerebrospinal fluid and plasma. J Clin Microbiol. 2000;38(12):4637–9.PubMedCentralPubMedGoogle Scholar
  12. 12.
    Lanier ER, Sturge G, McClernon D, Brown S, Halman M, Sacktor N, et al. HIV-1 reverse transcriptase sequence in plasma and cerebrospinal fluid of patients with AIDS dementia complex treated with abacavir. AIDS. 2001;15(6):747–51.PubMedGoogle Scholar
  13. 13.
    Strain MC, Letendre S, Pillai SK, Russell T, Ignacio CC, Gunthard HF, et al. Genetic composition of human immunodeficiency virus type 1 in cerebrospinal fluid and blood without treatment and during failing antiretroviral therapy. J Virol. 2005;79(3):1772–88.PubMedCentralPubMedGoogle Scholar
  14. 14.
    Pillai SK, Pond SL, Liu Y, Good BM, Strain MC, Ellis RJ, et al. Genetic attributes of cerebrospinal fluid-derived HIV-1 env. Brain J Neurol. 2006;129(Pt 7):1872–83. doi:10.1093/brain/awl136.Google Scholar
  15. 15.
    Schnell G, Price RW, Swanstrom R, Spudich S. Compartmentalization and clonal amplification of HIV-1 variants in the cerebrospinal fluid during primary infection. J Virol. 2010;84(5):2395–407.PubMedCentralPubMedGoogle Scholar
  16. 16.
    Schnell G, Joseph S, Spudich S, Price RW, Swanstrom R. HIV-1 replication in the central nervous system occurs in two distinct cell types. PLoS Pathog. 2011;7(10):e1002286. doi:10.1371/journal.ppat.1002286.PubMedCentralPubMedGoogle Scholar
  17. 17.
    Sturdevant CB, Dow A, Jabara CB, Joseph SB, Schnell G, Takamune N, et al. Central nervous system compartmentalization of HIV-1 subtype C variants early and late in infection in young children. PLoS Pathog. 2012;8(12):e1003094. doi:10.1371/journal.ppat.1003094.PubMedCentralPubMedGoogle Scholar
  18. 18.••
    Joseph SB, Arrildt KT, Swanstrom AE, Schnell G, Lee B, Hoxie JA, et al. Quantification of entry phenotypes of macrophage-tropic HIV-1 across a wide range of CD4 densities. J Virol. 2014;88(4):1858–69. This paper shows a direct correlation between the enhanced ability of macrophage-tropic viruses to use low levels of CD4, which is restrictive for T cell-tropic viruses, and the lower levels of CD4 expressed on MDM compared to memory T cells. This highlights receptor usage and not coreceptor use as the main determinant of macrophage tropism. PubMedCentralPubMedGoogle Scholar
  19. 19.
    Cu-Uvin S, Snyder B, Harwell JI, Hogan J, Chibwesha C, Hanley D, et al. Association between paired plasma and cervicovaginal lavage fluid HIV-1 RNA levels during 36 months. J Acquir Immune Defic Syndr. 2006;42(5):584–7. doi:10.1097/01.qai.0000229997.52246.95.PubMedGoogle Scholar
  20. 20.
    Homans J, Christensen S, Stiller T, Wang CH, Mack W, Anastos K, et al. Permissive and protective factors associated with presence, level, and longitudinal pattern of cervicovaginal HIV shedding. J Acquir Immune Defic Syndr. 2012;60(1):99–110. doi:10.1097/QAI.0b013e31824aeaaa.PubMedCentralPubMedGoogle Scholar
  21. 21.
    Baeten JM, Kahle E, Lingappa JR, Coombs RW, Delany-Moretlwe S, Nakku-Joloba E, et al. Genital HIV-1 RNA predicts risk of heterosexual HIV-1 transmission. Sci Transl Med. 2011;3(77):77ra29. doi:10.1126/scitranslmed.3001888.PubMedCentralPubMedGoogle Scholar
  22. 22.
    Cu-Uvin S, DeLong AK, Venkatesh KK, Hogan JW, Ingersoll J, Kurpewski J, et al. Genital tract HIV-1 RNA shedding among women with below detectable plasma viral load. AIDS. 2010;24(16):2489–97. doi:10.1097/QAD.0b013e32833e5043.PubMedGoogle Scholar
  23. 23.
    Spear GT, Zariffard MR, Chen HY, Anzinger JJ, Anastos K, Rusine J, et al. Positive association between HIV RNA and IL-6 in the genital tract of Rwandan women. AIDS Res Hum Retrovir. 2008;24(7):973–6. doi:10.1089/aid.2008.0004.PubMedCentralPubMedGoogle Scholar
  24. 24.
    Coombs RW, Reichelderfer PS, Landay AL. Recent observations on HIV type-1 infection in the genital tract of men and women. AIDS. 2003;17(4):455–80. doi:10.1097/01.aids.0000042970.95433.f9.PubMedGoogle Scholar
  25. 25.
    Kovacs A, Wasserman SS, Burns D, Wright DJ, Cohn J, Landay A, et al. Determinants of HIV-1 shedding in the genital tract of women. Lancet. 2001;358(9293):1593–601. doi:10.1016/S0140-6736(01)06653-3.PubMedGoogle Scholar
  26. 26.
    Kroodsma KL, Kozal MJ, Hamed KA, Winters MA, Merigan TC. Detection of drug resistance mutations in the human immunodeficiency virus type 1 (HIV-1) pol gene: differences in semen and blood HIV-1 RNA and proviral DNA. J Infect Dis. 1994;170(5):1292–5.PubMedGoogle Scholar
  27. 27.
    Byrn RA, Zhang D, Eyre R, McGowan K, Kiessling AA. HIV-1 in semen: an isolated virus reservoir. Lancet. 1997;350(9085):1141. doi:10.1016/S0140-6736(97)24042-0.PubMedGoogle Scholar
  28. 28.
    Byrn RA, Kiessling AA. Analysis of human immunodeficiency virus in semen: indications of a genetically distinct virus reservoir. J Reprod Immunol. 1998;41(1–2):161–76.PubMedGoogle Scholar
  29. 29.
    Zhu T, Wang N, Carr A, Nam DS, Moor-Jankowski R, Cooper DA, et al. Genetic characterization of human immunodeficiency virus type 1 in blood and genital secretions: evidence for viral compartmentalization and selection during sexual transmission. J Virol. 1996;70(5):3098–107.PubMedCentralPubMedGoogle Scholar
  30. 30.
    Delwart EL, Mullins JI, Gupta P, Learn Jr GH, Holodniy M, Katzenstein D, et al. Human immunodeficiency virus type 1 populations in blood and semen. J Virol. 1998;72(1):617–23.PubMedCentralPubMedGoogle Scholar
  31. 31.
    Diem K, Nickle DC, Motoshige A, Fox A, Ross S, Mullins JI, et al. Male genital tract compartmentalization of human immunodeficiency virus type 1 (HIV). AIDS Res Hum Retrovir. 2008;24(4):561–71. doi:10.1089/aid.2007.0115.PubMedGoogle Scholar
  32. 32.
    Abrahams MR, Anderson JA, Giorgi EE, Seoighe C, Mlisana K, Ping LH, et al. Quantitating the multiplicity of infection with human immunodeficiency virus type 1 subtype C reveals a non-poisson distribution of transmitted variants. J Virol. 2009;83(8):3556–67. doi:10.1128/JVI. 02132-08.PubMedCentralPubMedGoogle Scholar
  33. 33.
    Anderson JA, Ping LH, Dibben O, Jabara CB, Arney L, Kincer L, et al. HIV-1 populations in semen arise through multiple mechanisms. PLoS Pathog. 2010;6(8):e1001053. doi:10.1371/journal.ppat.1001053.PubMedCentralPubMedGoogle Scholar
  34. 34.
    Bull M, Learn G, Genowati I, McKernan J, Hitti J, Lockhart D, et al. Compartmentalization of HIV-1 within the female genital tract is due to monotypic and low-diversity variants not distinct viral populations. PLoS One. 2009;4(9):e7122. doi:10.1371/journal.pone.0007122.PubMedCentralPubMedGoogle Scholar
  35. 35.
    Kemal KS, Foley B, Burger H, Anastos K, Minkoff H, Kitchen C, et al. HIV-1 in genital tract and plasma of women: compartmentalization of viral sequences, coreceptor usage, and glycosylation. Proc Natl Acad Sci U S A. 2003;100(22):12972–7. doi:10.1073/pnas.2134064100.PubMedCentralPubMedGoogle Scholar
  36. 36.•
    Bull ME, Heath LM, McKernan-Mullin JL, Kraft KM, Acevedo L, Hitti JE, et al. Human immunodeficiency viruses appear compartmentalized to the female genital tract in cross-sectional analyses but genital lineages do not persist over time. J Infect Dis. 2013;207(8):1206–15. doi:10.1093/infdis/jit016. Shows the transient nature of comparmentalization in the female genital tract over a period of 1.5-4.5 years. PubMedCentralPubMedGoogle Scholar
  37. 37.•
    Price RW, Spudich SS, Peterson J, Joseph S, Fuchs D, Zetterberg H, et al. Evolving character of chronic central nervous system HIV infection. Semin Neurol. 2014;34(1):7–13. doi:10.1055/s-0034-1372337. The paper is a current review of the history of HIV-associated dementia (HAD). PubMedCentralPubMedGoogle Scholar
  38. 38.
    Spudich S, Gisslen M, Hagberg L, Lee E, Liegler T, Brew B, et al. Central nervous system immune activation characterizes primary human immunodeficiency virus 1 infection even in participants with minimal cerebrospinal fluid viral burden. J Infect Dis. 2011;204(5):753–60. doi:10.1093/infdis/jir387.PubMedCentralPubMedGoogle Scholar
  39. 39.
    Sturdevant CB, Joseph SB, Schnell G, Price RW, Swanstrom R, Spudich S. Compartmentalized replication of R5 T cell-tropic HIV-1 in the central nervous system early in the course of infection. PLoS Pathog. 2015;11(3):e1004720. doi:10.1371/journal.ppat.1004720.
  40. 40.
    Harrington PR, Schnell G, Letendre SL, Ritola K, Robertson K, Hall C, et al. Cross-sectional characterization of HIV-1 env compartmentalization in cerebrospinal fluid over the full disease course. AIDS. 2009;23(8):907–15. doi:10.1097/QAD.0b013e3283299129.PubMedCentralPubMedGoogle Scholar
  41. 41.
    Pomerantz RJ. Reservoirs, sanctuaries, and residual disease: the hiding spots of HIV-1. HIV Clin Trials. 2003;4(2):137–43.PubMedGoogle Scholar
  42. 42.
    Ping LH, Joseph SB, Anderson JA, Abrahams MR, Salazar-Gonzalez JF, Kincer LP, et al. Comparison of viral Env proteins from acute and chronic infections of subtype C human immunodeficiency virus type 1 identifies differences in glycosylation and CCR5 utilization and suggests a new strategy for immunogen design. J Virol. 2013. doi:10.1128/JVI. 03577-12.PubMedCentralPubMedGoogle Scholar
  43. 43.
    Russell ES, Kwiek JJ, Keys J, Barton K, Mwapasa V, Montefiori DC, et al. The genetic bottleneck in vertical transmission of subtype C HIV-1 is not driven by selection of especially neutralization-resistant virus from the maternal viral population. J Virol. 2011;85(16):8253–62.PubMedCentralPubMedGoogle Scholar
  44. 44.
    Davis LE, Hjelle BL, Miller VE, Palmer DL, Llewellyn AL, Merlin TL, et al. Early viral brain invasion in iatrogenic human immunodeficiency virus infection. Neurology. 1992;42(9):1736–9.PubMedGoogle Scholar
  45. 45.
    Tambussi G, Gori A, Capiluppi B, Balotta C, Papagno L, Morandini B, et al. Neurological symptoms during primary human immunodeficiency virus (HIV) infection correlate with high levels of HIV RNA in cerebrospinal fluid. Clin Infect Dis: Off Pub Infect Dis Soc Am. 2000;30(6):962–5. doi:10.1086/313810.Google Scholar
  46. 46.
    Pilcher CD, Shugars DC, Fiscus SA, Miller WC, Menezes P, Giner J, et al. HIV in body fluids during primary HIV infection: implications for pathogenesis, treatment and public health. AIDS. 2001;15(7):837–45.PubMedGoogle Scholar
  47. 47.
    Hecht FM, Busch MP, Rawal B, Webb M, Rosenberg E, Swanson M, et al. Use of laboratory tests and clinical symptoms for identification of primary HIV infection. AIDS. 2002;16(8):1119–29.PubMedGoogle Scholar
  48. 48.
    Taiwo BO, Hicks CB. Primary human immunodeficiency virus. South Med J. 2002;95(11):1312–7.PubMedGoogle Scholar
  49. 49.
    Stekler J, Collier AC. Primary HIV infection. Curr HIV/AIDS Rep. 2004;1(2):68–73.PubMedGoogle Scholar
  50. 50.
    Heaton RK, Clifford DB, Franklin Jr DR, Woods SP, Ake C, Vaida F, et al. HIV-associated neurocognitive disorders persist in the era of potent antiretroviral therapy: CHARTER study. Neurology. 2010;75(23):2087–96. doi:10.1212/WNL.0b013e318200d727.PubMedCentralPubMedGoogle Scholar
  51. 51.
    Heaton RK, Franklin DR, Ellis RJ, McCutchan JA, Letendre SL, Leblanc S, et al. HIV-associated neurocognitive disorders before and during the era of combination antiretroviral therapy: differences in rates, nature, and predictors. J Neurovirol. 2011;17(1):3–16. doi:10.1007/s13365-010-0006-1.PubMedCentralPubMedGoogle Scholar
  52. 52.
    Mellgren A, Antinori A, Cinque P, Price RW, Eggers C, Hagberg L, et al. Cerebrospinal fluid HIV-1 infection usually responds well to antiretroviral treatment. Antivir Ther. 2005;10(6):701–7.PubMedGoogle Scholar
  53. 53.
    Agsalda-Garcia M, Shiramizu B, Melendez L, Plaud M, Liang CY, Wojna V. Different levels of HIV DNA copy numbers in cerebrospinal fluid cellular subsets. J Health Care Poor Underserved. 2013;24(4 Suppl):8–16. doi:10.1353/hpu.2014.0010.PubMedGoogle Scholar
  54. 54.
    Eden A, Fuchs D, Hagberg L, Nilsson S, Spudich S, Svennerholm B, et al. HIV-1 viral escape in cerebrospinal fluid of subjects on suppressive antiretroviral treatment. J Infect Dis. 2010;202(12):1819–25. doi:10.1086/657342.PubMedCentralPubMedGoogle Scholar
  55. 55.
    Spudich SS. CROI 2014: neurologic complications of HIV infection. Top Antivir Med. 2014;22(2):594–601.PubMedGoogle Scholar
  56. 56.
    Peluso MJ, Meyerhoff DJ, Price RW, Peterson J, Lee E, Young AC, et al. Cerebrospinal fluid and neuroimaging biomarker abnormalities suggest early neurological injury in a subset of individuals during primary HIV infection. J Infect Dis. 2013;207(11):1703–12. doi:10.1093/infdis/jit088.PubMedCentralPubMedGoogle Scholar
  57. 57.
    Wei X, Ghosh SK, Taylor ME, Johnson VA, Emini EA, Deutsch P, et al. Viral dynamics in human immunodeficiency virus type 1 infection. Nature. 1995;373(6510):117–22.PubMedGoogle Scholar
  58. 58.
    Ho DD, Neumann AU, Perelson AS, Chen W, Leonard JM, Markowitz M. Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection. Nature. 1995;373(6510):123–6.PubMedGoogle Scholar
  59. 59.
    Ellis RJ, Gamst AC, Capparelli E, Spector SA, Hsia K, Wolfson T, et al. Cerebrospinal fluid HIV RNA originates from both local CNS and systemic sources. Neurology. 2000;54(4):927–36.PubMedGoogle Scholar
  60. 60.
    Haas DW, Clough LA, Johnson BW, Harris VL, Spearman P, Wilkinson GR, et al. Evidence of a source of HIV type 1 within the central nervous system by ultraintensive sampling of cerebrospinal fluid and plasma. AIDS Res Hum Retrovir. 2000;16(15):1491–502. doi:10.1089/088922200750006010.PubMedGoogle Scholar
  61. 61.
    Olivieri KC, Agopian KA, Mukerji J, Gabuzda D. Evidence for adaptive evolution at the divergence between lymphoid and brain HIV-1 nef genes. AIDS Res Hum Retrovir. 2010;26(4):495–500. doi:10.1089/aid.2009.0257.PubMedCentralPubMedGoogle Scholar
  62. 62.
    Finzi D, Hermankova M, Pierson T, Carruth LM, Buck C, Chaisson RE, et al. Identification of a reservoir for HIV-1 in patients on highly active antiretroviral therapy. Science. 1997;278(5341):1295–300.PubMedGoogle Scholar
  63. 63.
    Schnell G, Spudich S, Harrington P, Price RW, Swanstrom R. Compartmentalized human immunodeficiency virus type 1 originates from long-lived cells in some subjects with HIV-1-associated dementia. PLoS Pathog. 2009;5(4):e1000395.PubMedCentralPubMedGoogle Scholar
  64. 64.
    Burdo TH, Lackner A, Williams KC. Monocyte/macrophages and their role in HIV neuropathogenesis. Immunol Rev. 2013;254(1):102–13. doi:10.1111/imr.12068.PubMedCentralPubMedGoogle Scholar
  65. 65.
    Williams KC, Hickey WF. Central nervous system damage, monocytes and macrophages, and neurological disorders in AIDS. Annu Rev Neurosci. 2002;25:537–62. doi:10.1146/annurev.neuro.25.112701.142822.PubMedGoogle Scholar
  66. 66.
    Gray LR, Roche M, Flynn JK, Wesselingh SL, Gorry PR, Churchill MJ. Is the central nervous system a reservoir of HIV-1? Curr Opin HIV AIDS. 2014;9(6):552–8. doi:10.1097/COH.0000000000000108.PubMedGoogle Scholar
  67. 67.•
    Chauhan A, Mehla R, Vijayakumar TS, Handy I. Endocytosis-mediated HIV-1 entry and its significance in the elusive behavior of the virus in astrocytes. Virology. 2014;456–457:1–19. doi:10.1016/j.virol.2014.03.002. In cell culture, this paper shows infection of astrocytes is primarily though endocytosis. PubMedGoogle Scholar
  68. 68.
    Allers K, Hutter G, Hofmann J, Loddenkemper C, Rieger K, Thiel E, et al. Evidence for the cure of HIV infection by CCR5∆32/∆32 stem cell transplantation. Blood. 2011;117(10):2791–9. doi:10.1182/blood-2010-09-309591.PubMedGoogle Scholar
  69. 69.
    Hutter G, Nowak D, Mossner M, Ganepola S, Mussig A, Allers K, et al. Long-term control of HIV by CCR5 Delta32/Delta32 stem-cell transplantation. N Engl J Med. 2009;360(7):692–8. doi:10.1056/NEJMoa0802905.PubMedGoogle Scholar
  70. 70.
    Yukl SA, Boritz E, Busch M, Bentsen C, Chun TW, Douek D, et al. Challenges in detecting HIV persistence during potentially curative interventions: a study of the Berlin patient. PLoS Pathog. 2013;9(5):e1003347. doi:10.1371/journal.ppat.1003347.PubMedCentralPubMedGoogle Scholar
  71. 71.
    Trono D, Van Lint C, Rouzioux C, Verdin E, Barre-Sinoussi F, Chun TW, et al. HIV persistence and the prospect of long-term drug-free remissions for HIV-infected individuals. Science. 2010;329(5988):174–80. doi:10.1126/science.1191047.PubMedGoogle Scholar
  72. 72.
    International ASSWGoHIVC, Deeks SG, Autran B, Berkhout B, Benkirane M, Cairns S, et al. Towards an HIV cure: a global scientific strategy. Nat Rev Immunol. 2012;12(8):607–14. doi:10.1038/nri3262.Google Scholar
  73. 73.
    Deeks SG. HIV: shock and kill. Nature. 2012;487(7408):439–40. doi:10.1038/487439a.PubMedGoogle Scholar
  74. 74.
    Cillo AR, Sobolewski MD, Bosch RJ, Fyne E, Piatak Jr M, Coffin JM, et al. Quantification of HIV-1 latency reversal in resting CD4+ T cells from patients on suppressive antiretroviral therapy. Proc Natl Acad Sci U S A. 2014;111(19):7078–83. doi:10.1073/pnas.1402873111.PubMedCentralPubMedGoogle Scholar
  75. 75.••
    Ho YC, Shan L, Hosmane NN, Wang J, Laskey SB, Rosenbloom DI, et al. Replication-competent noninduced proviruses in the latent reservoir increase barrier to HIV-1 cure. Cell. 2013;155(3):540–51. doi:10.1016/j.cell.2013.09.020. This paper nicely illustrates how important it is to have continued progress in all areas of HIV research, including viral measurement. It highlights the difference in reservoir size between induced latent provirus, and intact noninduced proviruses, and how that may be effecting cure strategies. PubMedCentralPubMedGoogle Scholar
  76. 76.
    Archin NM, Keedy KS, Espeseth A, Dang H, Hazuda DJ, Margolis DM. Expression of latent human immunodeficiency type 1 is induced by novel and selective histone deacetylase inhibitors. AIDS. 2009;23(14):1799–806. doi:10.1097/QAD.0b013e32832ec1dc.PubMedGoogle Scholar
  77. 77.
    Archin NM, Liberty AL, Kashuba AD, Choudhary SK, Kuruc JD, Crooks AM, et al. Administration of vorinostat disrupts HIV-1 latency in patients on antiretroviral therapy. Nature. 2012;487(7408):482–5. doi:10.1038/nature11286.PubMedCentralPubMedGoogle Scholar
  78. 78.
    Spivak AM, Andrade A, Eisele E, Hoh R, Bacchetti P, Bumpus NN, et al. A pilot study assessing the safety and latency-reversing activity of disulfiram in HIV-1-infected adults on antiretroviral therapy. Clin Infect Dis: Off Pub Infect Dis Soc Am. 2014;58(6):883–90. doi:10.1093/cid/cit813.Google Scholar
  79. 79.
    Nowacek A, Gendelman HE. NanoART, neuroAIDS and CNS drug delivery. Nanomedicine. 2009;4(5):557–74. doi:10.2217/nnm.09.38.PubMedCentralPubMedGoogle Scholar
  80. 80.
    Nowacek A, Kosloski LM, Gendelman HE. Neurodegenerative disorders and nanoformulated drug development. Nanomedicine. 2009;4(5):541–55. doi:10.2217/nnm.09.37.PubMedCentralPubMedGoogle Scholar
  81. 81.
    Nowacek AS, Miller RL, McMillan J, Kanmogne G, Kanmogne M, Mosley RL, et al. NanoART synthesis, characterization, uptake, release and toxicology for human monocyte-macrophage drug delivery. Nanomedicine. 2009;4(8):903–17. doi:10.2217/nnm.09.71.PubMedCentralPubMedGoogle Scholar
  82. 82.
    Letendre SL, Ellis RJ, Ances BM, McCutchan JA. Neurologic complications of HIV disease and their treatment. Top HIV Med Pub Int AIDS Soc USA. 2010;18(2):45–55.Google Scholar
  83. 83.
    Douek DC, Brenchley JM, Betts MR, Ambrozak DR, Hill BJ, Okamoto Y, et al. HIV preferentially infects HIV-specific CD4+ T cells. Nature. 2002;417(6884):95–8. doi:10.1038/417095a.PubMedGoogle Scholar
  84. 84.
    Brenchley JM, Hill BJ, Ambrozak DR, Price DA, Guenaga FJ, Casazza JP, et al. T-cell subsets that harbor human immunodeficiency virus (HIV) in vivo: implications for HIV pathogenesis. J Virol. 2004;78(3):1160–8.PubMedCentralPubMedGoogle Scholar
  85. 85.
    Isaacman-Beck J, Hermann EA, Yi Y, Ratcliffe SJ, Mulenga J, Allen S, et al. Heterosexual transmission of human immunodeficiency virus type 1 subtype C: macrophage tropism, alternative coreceptor use, and the molecular anatomy of CCR5 utilization. J Virol. 2009;83(16):8208–20. doi:10.1128/JVI. 00296-09.PubMedCentralPubMedGoogle Scholar
  86. 86.
    Alexander M, Lynch R, Mulenga J, Allen S, Derdeyn CA, Hunter E. Donor and recipient envs from heterosexual human immunodeficiency virus subtype C transmission pairs require high receptor levels for entry. J Virol. 2010;84(8):4100–4. doi:10.1128/JVI. 02068-09.PubMedCentralPubMedGoogle Scholar
  87. 87.
    Koot M, Keet IP, Vos AH, de Goede RE, Roos MT, Coutinho RA, et al. Prognostic value of HIV-1 syncytium-inducing phenotype for rate of CD4+ cell depletion and progression to AIDS. Ann Intern Med. 1993;118(9):681–8.PubMedGoogle Scholar
  88. 88.
    Blaak H, van’t Wout AB, Brouwer M, Hooibrink B, Hovenkamp E, Schuitemaker H. In vivo HIV-1 infection of CD45RA(+)CD4(+) T cells is established primarily by syncytium-inducing variants and correlates with the rate of CD4(+) T cell decline. Proc Natl Acad Sci U S A. 2000;97(3):1269–74.PubMedCentralPubMedGoogle Scholar
  89. 89.
    Ho SH, Shek L, Gettie A, Blanchard J, Cheng-Mayer C. V3 loop-determined coreceptor preference dictates the dynamics of CD4+ -T-cell loss in simian-human immunodeficiency virus-infected macaques. J Virol. 2005;79(19):12296–303. doi:10.1128/JVI. 79.19.12296-12303.2005.PubMedCentralPubMedGoogle Scholar
  90. 90.
    Nishimura Y, Igarashi T, Donau OK, Buckler-White A, Buckler C, Lafont BA, et al. Highly pathogenic SHIVs and SIVs target different CD4+ T cell subsets in rhesus monkeys, explaining their divergent clinical courses. Proc Natl Acad Sci U S A. 2004;101(33):12324–9. doi:10.1073/pnas.0404620101.PubMedCentralPubMedGoogle Scholar
  91. 91.
    Gorry PR, Taylor J, Holm GH, Mehle A, Morgan T, Cayabyab M, et al. Increased CCR5 affinity and reduced CCR5/CD4 dependence of a neurovirulent primary human immunodeficiency virus type 1 isolate. J Virol. 2002;76(12):6277–92. doi:10.1128/jvi. 76.12.6277-6292.2002.PubMedCentralPubMedGoogle Scholar
  92. 92.
    Martin-Garcia J, Cao W, Varela-Robena A, Plassmeyer ML, Gonzalez-Scarano F. HIV-1 tropism for the central nervous system: brain-denved envelope glycoproteins with lower CD4 dependence and reduced sensitivity to a fusion inhibitor. Virology. 2006;346(1):169–79. doi:10.1016/j.virol.2005.10.031.PubMedGoogle Scholar
  93. 93.
    Peters PJ, Sullivan WM, Duenas-Decamp MJ, Bhattacharya J, Ankghuambom C, Brown R, et al. Non-macrophage-tropic human immunodeficiency virus type 1 R5 envelopes predominate in blood, lymph nodes, and semen: implications for transmission and pathogenesis. J Virol. 2006;80(13):6324–32. doi:10.1128/jvi. 02328-05.PubMedCentralPubMedGoogle Scholar
  94. 94.
    Peters PJ, Duenas-Decamp MJ, Sullivan WM, Brown R, Ankghuambom C, Luzuriaga K, et al. Variation in HIV-1 R5 macrophage-tropism correlates with sensitivity to reagents that block envelope: CD4 interactions but not with sensitivity to other entry inhibitors. Retrovirology. 2008;5:5. doi:10.1186/1742-4690-5-5.PubMedCentralPubMedGoogle Scholar
  95. 95.
    Joseph SB, Arrildt KT, Swanstrom AE, Schnell G, Lee B, Hoxie JA, et al. Quantification of entry phenotypes of macrophage-tropic HIV-1 across a wide range of CD4 densities. J Virol. 2014;88(4):1858–69. doi:10.1128/JVI. 02477-13.PubMedCentralPubMedGoogle Scholar
  96. 96.
    Roche M, Jakobsen MR, Sterjovski J, Ellett A, Posta F, Lee B, et al. HIV-1 escape from the CCR5 antagonist maraviroc associated with an altered and less-efficient mechanism of gp120-CCR5 engagement that attenuates macrophage tropism. J Virol. 2011;85(9):4330–42. doi:10.1128/JVI. 00106-11.PubMedCentralPubMedGoogle Scholar
  97. 97.
    Lee B, Sharron M, Montaner LJ, Weissman D, Doms RW. Quantification of CD4, CCR5, and CXCR4 levels on lymphocyte subsets, dendritic cells, and differentially conditioned monocyte-derived macrophages. Proc Natl Acad Sci U S A. 1999;96(9):5215–20.PubMedCentralPubMedGoogle Scholar
  98. 98.
    Harrington PR, Nelson JAE, Kitrinos KM, Swanstrom R. Independent evolution of human immunodeficiency virus type 1 env V1/V2 and V4/V5 hypervariable regions during chronic infection. J Virol. 2007;81(10):5413–7. doi:10.1128/jvi. 02554-06.PubMedCentralPubMedGoogle Scholar
  99. 99.
    Milich L, Margolin BH, Swanstrom R. Patterns of amino acid variability in NSI-like and SI-like V3 sequences and a linked change in the CD4-binding domain of the HIV-1 Env protein. Virology. 1997;239(1):108–18. doi:10.1006/viro.1997.8821.PubMedGoogle Scholar
  100. 100.
    De Jong JJ, De Ronde A, Keulen W, Tersmette M, Goudsmit J. Minimal requirements for the human immunodeficiency virus type 1 V3 domain to support the syncytium-inducing phenotype: analysis by single amino acid substitution. J Virol. 1992;66(11):6777–80.PubMedCentralPubMedGoogle Scholar
  101. 101.
    Evans DT, Silvestri G. Nonhuman primate models in AIDS research. Curr Opin HIV AIDS. 2013;8(4):255–61. doi:10.1097/COH.0b013e328361cee8.PubMedCentralPubMedGoogle Scholar
  102. 102.
    Gorantla S, Makarov E, Finke-Dwyer J, Castanedo A, Holguin A, Gebhart CL, et al. Links between progressive HIV-1 infection of humanized mice and viral neuropathogenesis. Am J Pathol. 2010;177(6):2938–49. doi:10.2353/ajpath.2010.100536.PubMedCentralPubMedGoogle Scholar
  103. 103.
    Dash PK, Gorantla S, Gendelman HE, Knibbe J, Casale GP, Makarov E, et al. Loss of neuronal integrity during progressive HIV-1 infection of humanized mice. J Neurosci Off J Soc Neurosci. 2011;31(9):3148–57. doi:10.1523/JNEUROSCI. 5473-10.2011.Google Scholar
  104. 104.
    Ginhoux F, Lim S, Hoeffel G, Low D, Huber T. Origin and differentiation of microglia. Front Cell Neurosci. 2013;7:45. doi:10.3389/fncel.2013.00045.PubMedCentralPubMedGoogle Scholar
  105. 105.
    Hirsch V, Adger-Johnson D, Campbell B, Goldstein S, Brown C, Elkins WR, et al. A molecularly cloned, pathogenic, neutralization-resistant simian immunodeficiency virus, SIVsmE543-3. J Virol. 1997;71(2):1608–20.PubMedCentralPubMedGoogle Scholar
  106. 106.
    Dang Q, Goeken RM, Brown CR, Plishka RJ, Buckler-White A, Byrum R, et al. Adaptive evolution of simian immunodeficiency viruses isolated from 2 conventional-progressor macaques with encephalitis. J Infect Dis. 2008;197(12):1695–700. doi:10.1086/588671.PubMedCentralPubMedGoogle Scholar
  107. 107.
    Matsuda K, Brown CR, Foley B, Goeken R, Whitted S, Dang Q, et al. Laser capture microdissection assessment of virus compartmentalization in the central nervous systems of macaques infected with neurovirulent simian immunodeficiency virus. J Virol. 2013;87(16):8896–908. doi:10.1128/JVI. 00874-13.PubMedCentralPubMedGoogle Scholar
  108. 108.
    Petito CK, Chen H, Mastri AR, Torres-Munoz J, Roberts B, Wood C. HIV infection of choroid plexus in AIDS and asymptomatic HIV-infected patients suggests that the choroid plexus may be a reservoir of productive infection. J Neurovirol. 1999;5(6):670–7.PubMedGoogle Scholar
  109. 109.
    Burkala EJ, He J, West JT, Wood C, Petito CK. Compartmentalization of HIV-1 in the central nervous system: role of the choroid plexus. AIDS. 2005;19(7):675–84.PubMedGoogle Scholar
  110. 110.
    Chen MF, Westmoreland S, Ryzhova EV, Martin-Garcia J, Soldan SS, Lackner A, et al. Simian immunodeficiency virus envelope compartmentalizes in brain regions independent of neuropathology. J Neurovirol. 2006;12(2):73–89. doi:10.1080/13550280600654565.PubMedGoogle Scholar
  111. 111.
    Babas T, Dewitt JB, Mankowski JL, Tarwater PM, Clements JE, Zink MC. Progressive selection for neurovirulent genotypes in the brain of SIV-infected macaques. AIDS. 2006;20(2):197–205. doi:10.1097/01.aids.0000198078.24584.21.PubMedGoogle Scholar
  112. 112.
    Harrington PR, Connell MJ, Meeker RB, Johnson PR, Swanstrom R. Dynamics of simian immunodeficiency virus populations in blood and cerebrospinal fluid over the full course of infection. J Infect Dis. 2007;196(7):1058–67. doi:10.1086/520819.PubMedGoogle Scholar
  113. 113.
    Broussard SR, Staprans SI, White R, Whitehead EM, Feinberg MB, Allan JS. Simian immunodeficiency virus replicates to high levels in naturally infected African green monkeys without inducing immunologic or neurologic disease. J Virol. 2001;75(5):2262–75. doi:10.1128/JVI. 75.5.2262-2275.2001.PubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Maria M. Bednar
    • 1
  • Christa Buckheit Sturdevant
    • 2
  • Lauren A. Tompkins
    • 3
  • Kathryn Twigg Arrildt
    • 3
  • Elena Dukhovlinova
    • 1
  • Laura P. Kincer
    • 1
  • Ronald Swanstrom
    • 1
    • 3
    • 4
  1. 1.Lineberger Comprehensive Cancer CenterUniversity of North Carolina at Chapel HillChapel HillUSA
  2. 2.Department of SurgeryDuke University Medical CenterDurhamUSA
  3. 3.Department of Microbiology and ImmunologyUniversity of North Carolina at Chapel HillChapel HillUSA
  4. 4.Department of Biochemistry and Biophysics, Lineberger Comprehensive Cancer CenterUniversity of North Carolina at Chapel HillChapel HillUSA

Personalised recommendations