Advertisement

Current HIV/AIDS Reports

, Volume 12, Issue 1, pp 41–53 | Cite as

Type I Interferon: Understanding Its Role in HIV Pathogenesis and Therapy

  • Steven E. Bosinger
  • Netanya S. Utay
HIV Pathogenesis and Treatment (AL Landay, Section Editor)
Part of the following topical collections:
  1. Topical Collection on HIV Pathogenesis and Treatment

Abstract

Despite over 30 years of research, the contribution of type I interferons (IFN-Is) to both the control of HIV replication and initiation of immunologic damage remains debated. In acute infection, IFN-Is, likely from plasmacytoid dendritic cells (pDCs), activate NK cells and upregulate restriction factors targeting virtually the entire HIV life cycle. In chronic infection, IFN-Is may also contribute to CD4 T cell loss and immune exhaustion. pDCs subsequently infiltrate lymphoid and mucosal tissues, and their circulating populations wane in chronic infection; IFN-I may be produced by other cells. Data from nonhuman primates indicate prompt IFN-I signaling is critical in acute infection. Whereas some studies showed IFN-I administration without combination antiretroviral therapy (cART) is beneficial, others suggest that stimulating or blocking IFN-I signaling in chronic ART-suppressed HIV infection has had positive results. Here, we describe the history of HIV and IFN-I, IFN-I’s sources, IFN-I’s effects on HIV control and host defense, and recent interventional studies in SIV and HIV infection.

Keywords

HIV SIV Acute HIV infection Chronic HIV infection Type I interferon IFN ISG 

Notes

Compliance with Ethics Guidelines

Conflict of Interest

Steven E. Bosinger and Netanya S. Utay declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    DeStefano E, Friedman RM, Friedman-Kien AE, Goedert JJ, Henriksen D, Preble OT, et al. Acid-labile human leukocyte interferon in homosexual men with Kaposi’s sarcoma and lymphadenopathy. J Infect Dis. 1982;146(4):451–9.PubMedGoogle Scholar
  2. 2.
    Buimovici-Klein E, Lange M, Klein RJ, Cooper LZ, Grieco MH. Is presence of interferon predictive for AIDS? Lancet. 1983;2(8345):344.PubMedGoogle Scholar
  3. 3.
    Gringeri A, Musicco M, Hermans P, Bentwich Z, Cusini M, Bergamasco A, et al. Active anti-interferon-alpha immunization: a European-Israeli, randomized, double-blind, placebo-controlled clinical trial in 242 HIV-1-infected patients (the EURIS study). J Acquir Immune Defic Syndr Hum Retrovirol Off Publ Int Retrovirol Assoc. 1999;20(4):358–70.Google Scholar
  4. 4.
    Gringeri A, Santagostino E, Cusini M, Muca-Perja M, Marinoni A, Mannucci PM, et al. Absence of clinical, virological, and immunological signs of progression in HIV-1-infected patients receiving active anti-interferon-alpha immunization: a 30-month follow-up report. J Acquir Immune Defic Syndr Hum Retrovirol Off Publ Int Retrovirol Assoc. 1996;13(1):55–67.Google Scholar
  5. 5.
    Jacquelin B, Mayau V, Targat B, Liovat AS, Kunkel D, Petitjean G, et al. Nonpathogenic SIV infection of African green monkeys induces a strong but rapidly controlled type I IFN response. J Clin Invest. 2009;119(12):3544–55. doi: 10.1172/jci40093.PubMedCentralPubMedGoogle Scholar
  6. 6.
    Bosinger SE, Li Q, Gordon SN, Klatt NR, Duan L, Xu L, et al. Global genomic analysis reveals rapid control of a robust innate response in SIV-infected sooty mangabeys. J Clin Invest. 2009;119(12):3556–72. doi: 10.1172/jci40115.PubMedCentralPubMedGoogle Scholar
  7. 7.
    Sandler NG, Douek DC. Microbial translocation in HIV infection: causes, consequences and treatment opportunities. Nat Rev Microbiol. 2012;10(9):655–66. doi: 10.1038/nrmicro2848.PubMedGoogle Scholar
  8. 8.
    Handley SA, Thackray LB, Zhao G, Presti R, Miller AD, Droit L, et al. Pathogenic simian immunodeficiency virus infection is associated with expansion of the enteric virome. Cell. 2012;151(2):253–66.PubMedCentralPubMedGoogle Scholar
  9. 9.
    Fitzgerald-Bocarsly P, Jacobs ES. Plasmacytoid dendritic cells in HIV infection: striking a delicate balance. J Leukoc Biol. 2010;87(4):609–20. doi: 10.1189/jlb.0909635.PubMedCentralPubMedGoogle Scholar
  10. 10.
    Sabado RL, O'Brien M, Subedi A, Qin L, Hu N, Taylor E, et al. Evidence of dysregulation of dendritic cells in primary HIV infection. Blood. 2010;116(19):3839–52. doi: 10.1182/blood-2010-03-273763.PubMedCentralPubMedGoogle Scholar
  11. 11.
    O'Brien M, Manches O, Sabado RL, Baranda SJ, Wang Y, Marie I, et al. Spatiotemporal trafficking of HIV in human plasmacytoid dendritic cells defines a persistently IFN-alpha-producing and partially matured phenotype. J Clin Invest. 2011;121(3):1088–101. doi: 10.1172/jci44960.PubMedCentralPubMedGoogle Scholar
  12. 12.
    Barratt-Boyes SM, Wijewardana V, Brown KN. In acute pathogenic SIV infection plasmacytoid dendritic cells are depleted from blood and lymph nodes despite mobilization. J Med Primatol. 2010;39(4):235–42. doi: 10.1111/j.1600-0684.2010.00428.x.PubMedCentralPubMedGoogle Scholar
  13. 13.
    Reeves RK, Evans TI, Gillis J, Wong FE, Kang G, Li Q, et al. SIV infection induces accumulation of plasmacytoid dendritic cells in the gut mucosa. J Infect Dis. 2012;206(9):1462–8. doi: 10.1093/infdis/jis408.PubMedCentralPubMedGoogle Scholar
  14. 14.
    Li H, Gillis J, Johnson RP, Reeves RK. Multi-functional plasmacytoid dendritic cells redistribute to gut tissues during simian immunodeficiency virus infection. Immunology. 2013;140(2):244–9. doi: 10.1111/imm.12132.PubMedCentralPubMedGoogle Scholar
  15. 15.
    Lehmann C, Jung N, Forster K, Koch N, Leifeld L, Fischer J, et al. Longitudinal analysis of distribution and function of plasmacytoid dendritic cells in peripheral blood and gut mucosa of HIV infected patients. J Infect Dis. 2014;209(6):940–9. doi: 10.1093/infdis/jit612.PubMedGoogle Scholar
  16. 16.•
    Kwa S, Kannanganat S, Nigam P, Siddiqui M, Shetty RD, Armstrong W, et al. Plasmacytoid dendritic cells are recruited to the colorectum and contribute to immune activation during pathogenic SIV infection in rhesus macaques. Blood. 2011;118(10):2763–73. doi: 10.1182/blood-2011-02-339515. This study demonstrates that pDCs rapidly migrate to the intestinal and lymphoid tissues after acute SIV infection and are decreased in the peripheral blood. This may result in local inflammation with IFN-I production, suggesting targeting pDCs may attenuate HIV disease.PubMedCentralPubMedGoogle Scholar
  17. 17.
    O'Brien M, Manches O, Bhardwaj N. Plasmacytoid dendritic cells in HIV infection. Adv Exp Med Biol. 2013;762:71–107. doi: 10.1007/978-1-4614-4433-6_3.PubMedCentralPubMedGoogle Scholar
  18. 18.
    Bruel T, Dupuy S, Demoulins T, Rogez-Kreuz C, Dutrieux J, Corneau A, et al. Plasmacytoid dendritic cell dynamics tune interferon-alfa production in SIV-infected cynomolgus macaques. PLoS Pathog. 2014;10(1):e1003915. doi: 10.1371/journal.ppat.1003915.PubMedCentralPubMedGoogle Scholar
  19. 19.
    Kader M, Smith AP, Guiducci C, Wonderlich ER, Normolle D, Watkins SC, et al. Blocking TLR7- and TLR9-mediated IFN-alpha production by plasmacytoid dendritic cells does not diminish immune activation in early SIV infection. PLoS Pathog. 2013;9(7):e1003530. doi: 10.1371/journal.ppat.1003530.PubMedCentralPubMedGoogle Scholar
  20. 20.
    Swiecki M, Wang Y, Gilfillan S, Colonna M. Plasmacytoid dendritic cells contribute to systemic but not local antiviral responses to HSV infections. PLoS Pathog. 2013;9(10):e1003728. doi: 10.1371/journal.ppat.1003728.PubMedCentralPubMedGoogle Scholar
  21. 21.
    Harris LD, Tabb B, Sodora DL, Paiardini M, Klatt NR, Douek DC, et al. Downregulation of robust acute type I interferon responses distinguishes nonpathogenic simian immunodeficiency virus (SIV) infection of natural hosts from pathogenic SIV infection of rhesus macaques. J Virol. 2010;84(15):7886–91. doi: 10.1128/jvi. 02612-09.PubMedCentralPubMedGoogle Scholar
  22. 22.
    Li G, Cheng M, Nunoya J, Cheng L, Guo H, Yu H, et al. Plasmacytoid dendritic cells suppress HIV-1 replication but contribute to HIV-1 induced immunopathogenesis in humanized mice. PLoS Pathog. 2014;10(7):e1004291. doi: 10.1371/journal.ppat.1004291.PubMedCentralPubMedGoogle Scholar
  23. 23.
    Bosinger SE, Johnson ZP, Folkner KA, Patel N, Hashempour T, Jochems SP, et al. Intact type I interferon production and IRF7 function in sooty mangabeys. PLoS Pathog. 2013;9(8):e1003597. doi: 10.1371/journal.ppat.1003597.PubMedCentralPubMedGoogle Scholar
  24. 24.
    Jochems SP, Petitjean G, Kunkel D, Liovat AS, Ploquin MJ, Barre-Sinoussi F et al. Modulation of type I interferon-associated viral sensing during acute simian immunodefiency virus (SIV) infection in African green monkeys. J Virol. 2014Google Scholar
  25. 25.
    Stremlau M, Owens CM, Perron MJ, Kiessling M, Autissier P, Sodroski J. The cytoplasmic body component TRIM5alpha restricts HIV-1 infection in Old World monkeys. Nature. 2004;427(6977):848–53. doi: 10.1038/nature02343.PubMedGoogle Scholar
  26. 26.
    Sheehy AM, Gaddis NC, Choi JD, Malim MH. Isolation of a human gene that inhibits HIV-1 infection and is suppressed by the viral Vif protein. Nature. 2002;418(6898):646–50. doi: 10.1038/nature00939.PubMedGoogle Scholar
  27. 27.
    Neil SJ, Zang T, Bieniasz PD. Tetherin inhibits retrovirus release and is antagonized by HIV-1 Vpu. Nature. 2008;451(7177):425–30.PubMedGoogle Scholar
  28. 28.
    Perez-Caballero D, Zang T, Ebrahimi A, McNatt MW, Gregory DA, Johnson MC, et al. Tetherin inhibits HIV-1 release by directly tethering virions to cells. Cell. 2009;139(3):499–511. doi: 10.1016/j.cell.2009.08.039.PubMedCentralPubMedGoogle Scholar
  29. 29.
    Van Damme N, Goff D, Katsura C, Jorgenson RL, Mitchell R, Johnson MC, et al. The interferon-induced protein BST-2 restricts HIV-1 release and is downregulated from the cell surface by the viral Vpu protein. Cell Host Microbe. 2008;3(4):245–52. doi: 10.1016/j.chom.2008.03.001.PubMedCentralPubMedGoogle Scholar
  30. 30.
    Baldauf HM, Pan X, Erikson E, Schmidt S, Daddacha W, Burggraf M, et al. SAMHD1 restricts HIV-1 infection in resting CD4(+) T cells. Nat Med. 2012;18(11):1682–7. doi: 10.1038/nm.2964.PubMedGoogle Scholar
  31. 31.
    Zhang R, Bloch N, Nguyen LA, Kim B, Landau NR. SAMHD1 restricts HIV-1 replication and regulates interferon production in mouse myeloid cells. PLoS ONE. 2014;9(2):e89558. doi: 10.1371/journal.pone.0089558.PubMedCentralPubMedGoogle Scholar
  32. 32.••
    Goujon C, Moncorge O, Bauby H, Doyle T, Ward CC, Schaller T, et al. Human MX2 is an interferon-induced post-entry inhibitor of HIV-1 infection. Nature. 2013;502(7472):559–62. doi: 10.1038/nature12542. In this study, MX2 was demonstrated to suppress HIV and SIV infection, likely by preventing cDNA integration, suggesting its induction may facilitate virus control.PubMedGoogle Scholar
  33. 33.••
    Kane M, Yadav SS, Bitzegeio J, Kutluay SB, Zang T, Wilson SJ, et al. MX2 is an interferon-induced inhibitor of HIV-1 infection. Nature. 2013;502(7472):563–6. doi: 10.1038/nature12653. This study demonstrates that MX2 is an IFN-inducible antiviral factor that works by inhibiting nuclear import of HIV, thereby preventing cDNA integration. This study furthers the data indicating that MX2 is a pivotal antiviral gene.PubMedCentralPubMedGoogle Scholar
  34. 34.
    Sironi M, Biasin M, Cagliani R, Gnudi F, Saulle I, Ibba S, et al. Evolutionary analysis identifies an MX2 haplotype associated with natural resistance to HIV-1 infection. Mol Biol Evol. 2014;31(9):2402–14. doi: 10.1093/molbev/msu193.PubMedGoogle Scholar
  35. 35.•
    Abdel-Mohsen M, Raposo RA, Deng X, Li M, Liegler T, Sinclair E, et al. Expression profile of host restriction factors in HIV-1 elite controllers. Retrovirology. 2013;10:106. doi: 10.1186/1742-4690-10-106. In this study, genes differentiating elite controllers, untreated non-controllers, non-controllers on ART, and uninfected subjects were identified. A score including an array of antiviral genes was derived to assess IFN-I expression, and increased SLFN11 expression distinguished elite controllers.PubMedCentralPubMedGoogle Scholar
  36. 36.•
    Li M, Kao E, Gao X, Sandig H, Limmer K, Pavon-Eternod M, et al. Codon-usage-based inhibition of HIV protein synthesis by human schlafen 11. Nature. 2012;491(7422):125–8. doi: 10.1038/nature11433. This study identifies SLFN11 as a gene that prevents the altered transfer RNA pool induced by HIV and prevents protein translation.PubMedCentralPubMedGoogle Scholar
  37. 37.
    Pincetic A, Kuang Z, Seo EJ, Leis J. The interferon-induced gene ISG15 blocks retrovirus release from cells late in the budding process. J Virol. 2010;84(9):4725–36. doi: 10.1128/JVI. 02478-09.PubMedCentralPubMedGoogle Scholar
  38. 38.••
    Schoggins JW, Wilson SJ, Panis M, Murphy MY, Jones CT, Bieniasz P, et al. A diverse range of gene products are effectors of the type I interferon antiviral response. Nature. 2011;472(7344):481–5. In this study, over 380 ISGs were screened to determine the antiviral factors that contribute to control of numerous viral infections, demonstrating that IRF1, cGAS, RIG-I act on many viruses and other genes such as MX2 and IFITM3 are more targeted to HIV.PubMedCentralPubMedGoogle Scholar
  39. 39.••
    Litvak V, Ratushny AV, Lampano AE, Schmitz F, Huang AC, Raman A, et al. A FOXO3-IRF7 gene regulatory circuit limits inflammatory sequelae of antiviral responses. Nature. 2012;490(7420):421–5. In this study, FOXO3 was shown to downregulate multiple ISGs, including HIV restriction factors, by decreasing expression of IRF7, the master regulator of IFN-I signaling. This may be relevant to the study of vaccines that stimulate IFN-I production.PubMedCentralPubMedGoogle Scholar
  40. 40.
    Honda K, Yanai H, Negishi H, Asagiri M, Sato M, Mizutani T, et al. IRF-7 is the master regulator of type-I interferon-dependent immune responses. Nature. 2005;434(7034):772–7. doi: 10.1038/nature03464.PubMedGoogle Scholar
  41. 41.
    Chang J, Lindsay RJ, Kulkarni S, Lifson JD, Carrington M, Altfeld M. Polymorphisms in interferon regulatory factor 7 reduce interferon-alpha responses of plasmacytoid dendritic cells to HIV-1. AIDS (London, England). 2011;25(5):715–7. doi: 10.1097/QAD.0b013e328343c186.Google Scholar
  42. 42.
    Pertel T, Hausmann S, Morger D, Zuger S, Guerra J, Lascano J, et al. TRIM5 is an innate immune sensor for the retrovirus capsid lattice. Nature. 2011;472(7343):361–5. doi: 10.1038/nature09976.PubMedCentralPubMedGoogle Scholar
  43. 43.••
    Schoggins JW, MacDuff DA, Imanaka N, Gainey MD, Shrestha B, Eitson JL, et al. Pan-viral specificity of IFN-induced genes reveals new roles for cGAS in innate immunity. Nature. 2014;505(7485):691–5. doi: 10.1038/nature12862. This paper demonstrates that cGAS is essential for control of both DNA and RNA viruses, suggesting its specific upregulation may be a therapeutic goal for HIV infection.PubMedCentralPubMedGoogle Scholar
  44. 44.••
    Gao D, Wu J, Wu YT, Du F, Aroh C, Yan N, et al. Cyclic GMP-AMP synthase is an innate immune sensor of HIV and other retroviruses. Science (New York, NY). 2013;341(6148):903–6. doi: 10.1126/science.1240933. This study is among the first to demonstrate that cGAS recognizes HIV DNA and stimulates IFNβ production, suggesting it may be key to viral control.Google Scholar
  45. 45.••
    Sun L, Wu J, Du F, Chen X, Chen ZJ. Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science (New York, NY). 2013;339(6121):786–91. doi: 10.1126/science.1232458. In this study, cGAS was shown to respond to DNA the cytoplasm and to be necessary for IFNβ production upon stimulation by viral DNA.Google Scholar
  46. 46.
    Unterholzner L, Keating SE, Baran M, Horan KA, Jensen SB, Sharma S, et al. IFI16 is an innate immune sensor for intracellular DNA. Nat Immunol. 2010;11(11):997–1004.PubMedCentralPubMedGoogle Scholar
  47. 47.
    Thompson MR, Sharma S, Atianand M, Jensen SB, Carpenter S, Knipe DM, et al. Interferon gamma-inducible protein (IFI) 16 transcriptionally regulates type I interferons and other interferon-stimulated genes and controls the interferon response to both DNA and RNA viruses. J Biol Chem. 2014;289(34):23568–81. doi: 10.1074/jbc.M114.554147.PubMedGoogle Scholar
  48. 48.
    Nissen SK, Hojen JF, Andersen KL, Kofod-Olsen E, Berg RK, Paludan SR, et al. Innate DNA sensing is impaired in HIV patients and IFI16 expression correlates with chronic immune activation. Clin Exp Immunol. 2014;177(1):295–309. doi: 10.1111/cei.12317.PubMedGoogle Scholar
  49. 49.••
    Monroe KM, Yang Z, Johnson JR, Geng X, Doitsh G, Krogan NJ, et al. IFI16 DNA sensor is required for death of lymphoid CD4 T cells abortively infected with HIV. Science (New York, NY). 2014;343(6169):428–32. In this study, the ISG IFI16, which can recognize HIV DNA, was identified as critical for bystander cell death, reflecting the connection between IFN-I signaling and CD4 T cell depletion.Google Scholar
  50. 50.•
    Doitsh G, Galloway NL, Geng X, Yang Z, Monroe KM, Zepeda O, et al. Cell death by pyroptosis drives CD4 T-cell depletion in HIV-1 infection. Nature. 2014;505(7484):509–14. In this study, pyroptosis that occurs as a result of the recognition of HIV DNA transcripts by the ISG IFI16 was highlighted as a cause of CD4 T cell death, connecting the IFN-I signaling pathway with CD4 T cell depletion.PubMedCentralPubMedGoogle Scholar
  51. 51.
    Cook KD, Whitmire JK. The depletion of NK cells prevents T cell exhaustion to efficiently control disseminating virus infection. J Immunol (Baltimore, Md : 1950). 2013;190(2):641–9.Google Scholar
  52. 52.
    Nguyen KB, Salazar-Mather TP, Dalod MY, Van Deusen JB, Wei XQ, Liew FY, et al. Coordinated and distinct roles for IFN-alpha beta, IL-12, and IL-15 regulation of NK cell responses to viral infection. J Immunol (Baltimore, Md : 1950). 2002;169(8):4279–87.Google Scholar
  53. 53.
    Stackaruk ML, Lee AJ, Ashkar AA. Type I interferon regulation of natural killer cell function in primary and secondary infections. Expert Rev Vaccines. 2012;12(8):875–84.Google Scholar
  54. 54.
    Zanoni I, Spreafico R, Bodio C, Di Gioia M, Cigni C, Broggi A, et al. IL-15 cis presentation is required for optimal NK cell activation in lipopolysaccharide-mediated inflammatory conditions. Cell Rep. 2014;4(6):1235–49.Google Scholar
  55. 55.
    Waggoner SN, Cornberg M, Selin LK, Welsh RM. Natural killer cells act as rheostats modulating antiviral T cells. Nature. 2012;481(7381):394–8.Google Scholar
  56. 56.
    Waggoner SN, Daniels KA, Welsh RM. Therapeutic depletion of natural killer cells controls persistent infection. J Virol. 2014;88(4):1953–60.PubMedCentralPubMedGoogle Scholar
  57. 57.•
    Xu HC, Grusdat M, Pandyra AA, Polz R, Huang J, Sharma P, et al. Type I interferon protects antiviral CD8+ T cells from NK cell cytotoxicity. Immunity. 2014;40(6):949–60. This study demonstrates that IFN-I induces upregulation of an NK cell inhibitory ligand on CD8 T cells, facilitating their survival NK cell activation by IFN-I.PubMedGoogle Scholar
  58. 58.•
    Crouse J, Bedenikovic G, Wiesel M, Ibberson M, Xenarios I, Von Laer D, et al. Type I interferons protect T cells against NK cell attack mediated by the activating receptor NCR1. Immunity. 2014;40(6):961–73. This study uses an IFNAR−/− T cells to demonstrate that IFN-I signaling through T cells modulates their susceptibility to NK cell attack by downregulating an NK cell activating ligand, suggesting that IFN-I can activate NK cells without widespread T cell death.PubMedGoogle Scholar
  59. 59.
    Barber DL, Wherry EJ, Masopust D, Zhu B, Allison JP, Sharpe AH, et al. Restoring function in exhausted CD8 T cells during chronic viral infection. Nature. 2006;439(7077):682–7.PubMedGoogle Scholar
  60. 60.•
    Wilson EB, Yamada DH, Elsaesser H, Herskovitz J, Deng J, Cheng G, et al. Blockade of chronic type I interferon signaling to control persistent LCMV infection. Science (New York, NY). 2013;340(6129):202–7. In this study of IFN-I blockade, decreased PD-L1 and IL-10 expression, preserved splenic organization, and increased LCMV control was achieved, suggesting that immune exhaustion and lymphatic tissue destruction in chronic viral infections such as HIV could be attenuated by decreasing IFN-I signaling.Google Scholar
  61. 61.
    Crawford A, Angelosanto JM, Kao C, Doering TA, Odorizzi PM, Barnett BE, et al. Molecular and transcriptional basis of CD4(+) T cell dysfunction during chronic infection. Immunity. 2014;40(2):289–302.PubMedCentralPubMedGoogle Scholar
  62. 62.••
    Teijaro JR, Ng C, Lee AM, Sullivan BM, Sheehan KC, Welch M, et al. Persistent LCMV infection is controlled by blockade of type I interferon signaling. Science (New York, NY). 2013;340(6129):207–11. In this mouse model of chronic LCMV viremia and TLR activation, type I IFNs were shown to suppress antigen-specific CD4 T cell responses, and IFN-I-blockade suppressed virus replication. These results suggest that a similar approach may be beneficial in other situations of chronic viremia, such as HIV.Google Scholar
  63. 63.
    Velu V, Titanji K, Zhu B, Husain S, Pladevega A, Lai L, et al. Enhancing SIV-specific immunity in vivo by PD-1 blockade. Nature. 2009;458(7235):206–10. doi: 10.1038/nature07662.PubMedCentralPubMedGoogle Scholar
  64. 64.
    Seung E, Dudek TE, Allen TM, Freeman GJ, Luster AD, Tager AM. PD-1 blockade in chronically HIV-1-infected humanized mice suppresses viral loads. PLoS ONE. 2013;8(10):e77780.PubMedCentralPubMedGoogle Scholar
  65. 65.
    Krown SE, Real FX, Krim M, Cunningham-Rundles S, Koziner B, Myskowski PL, et al. Recombinant leukocyte A interferon in Kaposi’s sarcoma. Ann N Y Acad Sci. 1984;437:431–8.PubMedGoogle Scholar
  66. 66.
    Lane HC, Kovacs JA, Feinberg J, Herpin B, Davey V, Walker R, et al. Anti-retroviral effects of interferon-alpha in AIDS-associated Kaposi’s sarcoma. Lancet. 1988;2(8622):1218–22.PubMedGoogle Scholar
  67. 67.
    Lane HC, Davey V, Kovacs JA, Feinberg J, Metcalf JA, Herpin B, et al. Interferon-alpha in patients with asymptomatic human immunodeficiency virus (HIV) infection. A randomized, placebo-controlled trial. Ann Intern Med. 1990;112(11):805–11.PubMedGoogle Scholar
  68. 68.
    Rivero J, Fraga M, Cancio I, Cuervo J, Lopez-Saura P. Long-term treatment with recombinant interferon alpha-2b prolongs survival of asymptomatic HIV-infected individuals. Biotherapy. 1997;10(2):107–13.PubMedGoogle Scholar
  69. 69.
    Asmuth DM, Murphy RL, Rosenkranz SL, Lertora JJ, Kottilil S, Cramer Y, et al. Safety, tolerability, and mechanisms of antiretroviral activity of pegylated interferon Alfa-2a in HIV-1-monoinfected participants: a phase II clinical trial. J Infect Dis. 2010;201(11):1686–96. doi: 10.1086/652420.PubMedCentralPubMedGoogle Scholar
  70. 70.
    Manion M, Rodriguez B, Medvik K, Hardy G, Harding CV, Schooley RT, et al. Interferon-alpha administration enhances CD8+ T cell activation in HIV infection. PLoS ONE. 2012;7(1):e30306. doi: 10.1371/journal.pone.0030306.PubMedCentralPubMedGoogle Scholar
  71. 71.
    Obel AO, Koech DK. Outcome of intervention with or without low dose oral interferon alpha in thirty-two HIV-1 seropositive patients in a referral hospital. East Afr Med J. 1990;67(7 Suppl 2):SS71–6.PubMedGoogle Scholar
  72. 72.
    Koech DK, Obel AO. Efficacy of Kemron (low dose oral natural human interferon alpha) in the management of HIV-1 infection and acquired immune deficiency syndrome (AIDS). East Afr Med J. 1990;67(7 Suppl 2):SS64–70.PubMedGoogle Scholar
  73. 73.
    Babiuch L, Mian M, Kaminska E, Szymanska B, Georgiades JA. An interim report on the effect of natural human interferon alpha (IFN-alpha) lozenges in patients seropositive for the human immunodeficiency virus type 1 (HIV-1). Arch Immunol Ther Exp (Warsz). 1993;41(3–4):213–9.Google Scholar
  74. 74.
    Jordan WC. Three open-label studies of oral interferon alpha in the treatment of HIV disease. J Natl Med Assoc. 1994;86(4):257–62.PubMedCentralPubMedGoogle Scholar
  75. 75.
    Wright SE, Hutcheson DP, Cummins JM. Low dose oral interferon alpha 2a in HIV-1 seropositive patients: a double-blind, placebo-controlled trial. Biotherapy. 1998;11(4):229–34.PubMedGoogle Scholar
  76. 76.
    Katabira ET, Sewankambo NK, Mugerwa RD, Belsey EM, Mubiru FX, Othieno C, et al. Lack of efficacy of low dose oral interferon alfa in symptomatic HIV-1 infection: a randomised, double blind, placebo controlled trial. Sex Transm Infect. 1998;74(4):265–70.PubMedCentralPubMedGoogle Scholar
  77. 77.
    Alston B, Ellenberg JH, Standiford HC, Muth K, Martinez A, Greaves W, et al. A multicenter, randomized, controlled trial of three preparations of low-dose oral alpha-interferon in HIV-infected patients with CD4+ counts between 50 and 350 cells/mm(3). Division of AIDS Treatment Research Initiative (DATRI) 022 Study Group. J Acquir Immune Defic Syndr. 1999;22(4):348–57.PubMedGoogle Scholar
  78. 78.
    de Wit R, Danner SA, Bakker PJ, Lange JM, Eeftinck Schattenkerk JK, Veenhof CH. Combined zidovudine and interferon-alpha treatment in patients with AIDS-associated Kaposi’s sarcoma. J Intern Med. 1991;229(1):35–40.PubMedGoogle Scholar
  79. 79.
    Kovacs JA, Deyton L, Davey R, Falloon J, Zunich K, Lee D, et al. Combined zidovudine and interferon-alpha therapy in patients with Kaposi sarcoma and the acquired immunodeficiency syndrome (AIDS). Ann Intern Med. 1989;111(4):280–7.PubMedGoogle Scholar
  80. 80.
    Baumann R, Tauber MG, Opravil M, Hirschel B, Kinloch S, Chave JP, et al. Combined treatment with zidovudine and lymphoblast interferon-alpha in patients with HIV-related Kaposi’s sarcoma. Klin Wochenschr. 1991;69(8):360–7.PubMedGoogle Scholar
  81. 81.
    Edlin BR, Weinstein RA, Whaling SM, Ou CY, Connolly PJ, Moore JL, et al. Zidovudine-interferon-alpha combination therapy in patients with advanced human immunodeficiency virus type 1 infection: biphasic response of p24 antigen and quantitative polymerase chain reaction. J Infect Dis. 1992;165(5):793–8.PubMedGoogle Scholar
  82. 82.
    Mildvan D, Bassiakos Y, Zucker ML, Hyslop Jr N, Krown SE, Sacks HS, et al. Synergy, activity and tolerability of zidovudine and interferon-alpha in patients with symptomatic HIV-1 infection: AIDS Clinical Trial Group 068. Antivir Ther. 1996;1(2):77–88.PubMedGoogle Scholar
  83. 83.
    Haas DW, Lavelle J, Nadler JP, Greenberg SB, Frame P, Mustafa N, et al. A randomized trial of interferon alpha therapy for HIV type 1 infection. AIDS Res Hum Retrovir. 2000;16(3):183–90. doi: 10.1089/088922200309278.PubMedGoogle Scholar
  84. 84.
    Angel JB, Greaves W, Long J, Ward D, Rodriguez AE, Scevola D, et al. Virologic and immunologic activity of PegIntron in HIV disease. AIDS (London, England). 2009;23(18):2431–8.Google Scholar
  85. 85.
    Tavel JA, Huang CY, Shen J, Metcalf JA, Dewar R, Shah A, et al. Interferon-alpha produces significant decreases in HIV load. J Interf Cytokine Res Off J Int Soc Interf Cytokine Res. 2010;30(7):461–4.Google Scholar
  86. 86.
    Sun H, Buzon MJ, Shaw A, Berg RK, Yu XG, Ferrando-Martinez S, et al. Hepatitis C therapy with interferon-alpha and ribavirin reduces CD4 T-cell-associated HIV-1 DNA in HIV-1/hepatitis C virus-coinfected patients. J Infect Dis. 2014;209(9):1315–20.PubMedGoogle Scholar
  87. 87.
    Boue F, Reynes J, Rouzioux C, Emilie D, Souala F, Tubiana R, et al. Alpha interferon administration during structured interruptions of combination antiretroviral therapy in patients with chronic HIV-1 infection: INTERVAC ANRS 105 trial. AIDS (London, England). 2011;25(1):115–8.Google Scholar
  88. 88.
    Goujard C, Emilie D, Roussillon C, Godot V, Rouzioux C, Venet A, et al. Continuous versus intermittent treatment strategies during primary HIV-1 infection: the randomized ANRS INTERPRIM Trial. AIDS (London, England). 2012;26(15):1895–905.Google Scholar
  89. 89.
    Jacquelin B, Petitjean G, Kunkel D, Liovat AS, Jochems SP, Rogers KA, et al. Innate immune responses and rapid control of inflammation in African green monkeys treated or not with interferon-alpha during primary SIVagm infection. PLoS Pathog. 2014;10(7):e1004241. doi: 10.1371/journal.ppat.1004241.PubMedCentralPubMedGoogle Scholar
  90. 90.•
    Vanderford TH, Slichter C, Rogers KA, Lawson BO, Obaede R, Else J, et al. Treatment of SIV-infected sooty mangabeys with a type-I IFN agonist results in decreased virus replication without inducing hyperimmune activation. Blood. 2012;119(24):5750–7. doi: 10.1182/blood-2012-02-411496. In an attempt to increase inflammation in natural hosts, recombinant IFNα2 was administered to sooty mangabees with chronic SIV infection. Despite decreasing viral load, immune activation and CD4 T cell counts were not affected, suggesting that increased IFN signaling may not be sufficient to drive disease progression.PubMedCentralPubMedGoogle Scholar
  91. 91.
    Vaccari M, Fenizia C, Ma ZM, Hryniewicz A, Boasso A, Doster MN, et al. Transient increase of interferon-stimulated genes and no clinical benefit by chloroquine treatment during acute simian immunodeficiency virus infection of macaques. AIDS Res Hum Retrovir. 2014;30(4):355–62. doi: 10.1089/AID.2013.0218.PubMedGoogle Scholar
  92. 92.
    Paton NI, Goodall RL, Dunn DT, Franzen S, Collaco-Moraes Y, Gazzard BG, et al. Effects of hydroxychloroquine on immune activation and disease progression among HIV-infected patients not receiving antiretroviral therapy: a randomized controlled trial. JAMA. 2012;308(4):353–61.PubMedGoogle Scholar
  93. 93.
    Murray SM, Down CM, Boulware DR, Stauffer WM, Cavert WP, Schacker TW, et al. Reduction of immune activation with chloroquine therapy during chronic HIV infection. J Virol. 2010;84(22):12082–6. doi: 10.1128/jvi. 01466-10.PubMedCentralPubMedGoogle Scholar
  94. 94.
    Piconi S, Parisotto S, Rizzardini G, Passerini S, Terzi R, Argenteri B, et al. Hydroxychloroquine drastically reduces immune activation in HIV-infected, antiretroviral therapy-treated immunologic nonresponders. Blood. 2011;118(12):3263–72.PubMedGoogle Scholar
  95. 95.
    Routy JP, Angel J, Patel M, Kanagaratham C, Radzioch D, Kema I et al. Assessment of chloroquine as a modulator of immune activation to improve CD4 recovery in immune nonresponding HIV-infected patients receiving antiretroviral therapy. HIV Med. 2014.Google Scholar
  96. 96.••
    Sandler NG, Bosinger SE, Estes JD, Zhu RT, Tharp GK, Boritz E, et al. Type I interferon responses in rhesus macaques prevent SIV infection and slow disease progression. Nature. 2014;511(7511):601–5. doi: 10.1038/nature13554. This study demonstrates that blockade of IFN-I signaling, whether by administration of an IFN receptor antagonist or induction of an IFN-tolerant state, during acute SIV infection results in greater viral burden and accelerated disease progression, whereas ISG upregulation during challenge can prevent infection. Thus, careful consideration of the effects of vaccines and preventative approaches on IFN-I signaling and attempts to attenuate IFN-I signaling in chronic infection should be pursued cautiously.PubMedGoogle Scholar
  97. 97.
    Schellekens H, Niphuis H, Buijs L, Douw van der Krap P, Hochkeppel HK, Heeney JL. The effect of recombinant human interferon alpha B/D compared to interferon alpha 2b on SIV infection in rhesus macaques. Antivir Res. 1996;32(1):1–8.PubMedGoogle Scholar
  98. 98.
    Asmuth DM, Abel K, George MD, Dandekar S, Pollard RB, Miller CJ. Pegylated interferon-alpha 2a treatment of chronic SIV-infected macaques. J Med Primatol. 2008;37(1):26–30. doi: 10.1111/j.1600-0684.2007.00221.x.PubMedCentralPubMedGoogle Scholar
  99. 99.
    Gringeri A, Santagostino E, Mannucci PM, Siracusano L, Marinoni A, Criscuolo M, et al. Anti-alpha interferon immunization: safety and immunogenicity in asymptomatic HIV positive patients at high risk of disease progression. Cell Mol Biol (Noisy-le-grand). 1995;41(3):381–7.Google Scholar
  100. 100.
    Naranbhai V, Abdool Karim SS, Altfeld M, Samsunder N, Durgiah R, Sibeko S, et al. Innate immune activation enhances hiv acquisition in women, diminishing the effectiveness of tenofovir microbicide gel. J infect Dis. 2012;206(7):993–1001.PubMedCentralPubMedGoogle Scholar
  101. 101.
    Li Q, Estes JD, Schlievert PM, Duan L, Brosnahan AJ, Southern PJ, et al. Glycerol monolaurate prevents mucosal SIV transmission. Nature. 2009;458(7241):1034–8. doi: 10.1038/nature07831.PubMedCentralPubMedGoogle Scholar
  102. 102.
    Weber R, Bonetti A, Jost J, Vogt MW, Spacey B, Siegenthaler W, et al. Low-dose zidovudine in combination with either acyclovir or lymphoblastoid interferon-alpha in asymptomatic HIV-infected patients: a pilot study. Infection. 1991;19(6):395–400.PubMedGoogle Scholar
  103. 103.
    Frissen PH, van der Ende ME, ten Napel CH, Weigel HM, Schreij GS, Kauffmann RH, et al. Zidovudine and interferon-alpha combination therapy versus zidovudine monotherapy in subjects with symptomatic human immunodeficiency virus type 1 infection. J infect Dis. 1994;169(6):1351–5.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Division of Microbiology and Immunology, Emory Vaccine CenterYerkes National Primate Research CenterAtlantaUSA
  2. 2.Non-Human Primate Genomics Core, Yerkes National Primate Research Center, Robert W. Woodruff Health Sciences CenterEmory UniversityAtlantaUSA
  3. 3.Division of Infectious Diseases, Department of Internal MedicineUniversity of Texas Medical Branch at GalvestonGalvestonUSA

Personalised recommendations