Current HIV/AIDS Reports

, Volume 11, Issue 3, pp 317–324 | Cite as

HIV Associated Neurocognitive Disorders in the Modern Antiviral Treatment Era: Prevalence, Characteristics, Biomarkers, and Effects of Treatment

Central Nervous System and Cognition (I Grant, Section Editor)

Abstract

The introduction of combination antiretroviral treatment (cART) has significantly reduced the mortality secondary to opportunistic infections in HIV patients by restoring the immune system. In the central nervous system (CNS), there has also been benefit with a marked reduction of HIV associated dementia. However, the milder forms of HIV associated neurocognitive disorder (HAND), namely asymptomatic neurocognitive impairment and mild neurocognitive disorder, remain prevalent in the cART era. In this article, we will discuss how cART interacts with HAND in terms of clinical characteristics and biomarkers. We will then review the outcomes of recent clinical studies focused on the CNS penetrating antiretroviral regimens and some novel therapeutic approaches.

Keywords

HIV cART Cognitive impairment HAND CPE CNS 

Notes

Compliance with Ethics Guidelines

Conflict of Interest

Phillip Chan and Bruce J. Brew declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Brew BJ. AIDS dementia complex. In: Brew BJ, editor. Chapter 6, HIV neurology 276 pp. Oxford University Press; 2001.Google Scholar
  2. 2.
    McArthur JC, Brew BJ, Nath A. Neurological complications of HIV infection. Lancet Neurol. 2005;4(9):543–55.PubMedCrossRefGoogle Scholar
  3. 3.
    Robertson KR, Smurzynski M, Parsons TD, Wu K, Bosch RJ, Wu J, et al. The prevalence and incidence of neurocognitive impairment in the HAART era. AIDS. 2007;21:1915–21.PubMedCrossRefGoogle Scholar
  4. 4.
    Marcotte TD, Heaton RK, Wolfson T, Taylor MJ, Alhassoon O, Arfaa K, et al. The impact of HIV-related neuropsychological dysfunction on driving behavior. The HNRC Group. J Int Neuropsychol Soc. 1999;5(07):579–92.PubMedGoogle Scholar
  5. 5.
    Albert SM, Marder K, Dooneief G, Bell K, Sano M, Todak G, et al. Neuropsychologic impairment in early HIV infection. A risk factor for work disability. Arch Neurol. 1995;52:525–30.PubMedCrossRefGoogle Scholar
  6. 6.
    Hinkin CH, Castellon SA, Durvasula RS, Hardy DJ, Lam MN, Mason KI, et al. Medication adherence among HIV + adults: effects of cognitive dysfunction and regimen complexity. Neurology. 2002;59:1944–50.PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Bangsberg DR, Moss AR, Deeks SG. Paradoxes of adherence and drug resistance to HIV antiretroviral therapy. J Antimicrob Chemother. 2004;53(5):696–9.PubMedCrossRefGoogle Scholar
  8. 8.
    Wilkie FL, Goodkin K, Eisdorfer C, Feaster D, Morgan R, Fletcher MA, et al. Mild cognitive impairment and risk of mortality in HIV-1 infection. J Neuropsychiatry Clin Neurosci. 1998;10(2):125–32.PubMedGoogle Scholar
  9. 9.
    Sacktor NC, Bacellar H, Hoover DR, Nance-Sproson TE, Selnes OA, Miller EN, et al. Psychomotor slowing in HIV infection: a predictor of dementia. AIDS and death. J Neurovirol. 1996;2:404–10.PubMedCrossRefGoogle Scholar
  10. 10.
    Heaton RK, Franklin DR, Ellis RJ, McCutchan JA, Letendre SL, Leblanc S, et al. HIV-associated neurocognitive disorders before and during the era of combination antiretroviral therapy: differences in rates, nature, and predictors. J Neurovirol. 2011;17(1):3–16.PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Cysique LA, Brew BJ. Prevalence of non-confounded HIV-associated neurocognitive impairment in the context of plasma HIV RNA suppression. J Neurovirology. 2011;17(2):176–83.CrossRefGoogle Scholar
  12. 12.
    Cysique LA, Maruff P, Brew BJ. Variable benefit in neuropsychological function in HIV-infected HAART-treated patients. Neurology. 2006;66:1447–50.PubMedCrossRefGoogle Scholar
  13. 13.
    Sevigny JJ, Albert SM, McDermott MP, McArthur JC, Sacktor N, Conant K, et al. Evaluation of HIV RNA and markers of immune activation as predictors of HIV-associated Dementia. Neurology. 2004;63:2084–90.PubMedCrossRefGoogle Scholar
  14. 14.
    Cysique LA, Moffat K, Moore DM, Lane TA, Davies NW, Carr A, et al. HIV, vascular and aging injuries in the brain of clinically stable HIV-infected adults: a (1)H MRS study. PLoS One. 2013;8(4):e61738.PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    McCutchan JA, Marquie-Beck JA, Fitzsimons CA, Letendre SL, Ellis RJ, Heaton RK, et al. Role of obesity, metabolic variables, and diabetes in HIV-associated neurocognitive disorder. Neurology. 2012;78(7):485–92.PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Soontornniyomkij V, Umlauf A, Chung SA, Cochran ML, Soontornniyomkij B, Gouaux B, et al. HIV protease inhibitor exposure predicts cerebral small vessel disease. AIDS. 2014;15.Google Scholar
  17. 17.
    Valcour V, Watters MR, Williams AE, Sacktor N, McMurtray A, Shikuma C. Aging exacerbates extrapyramidal motor signs in the era of highly active antiretroviral therapy. J Neurovirol. 2008;14:362–7.PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Tisch S, Brew B. Parkinsonism in HIV-infected patients on highly active antiretroviral therapy. Neurology. 2009;73:401–3.PubMedCrossRefGoogle Scholar
  19. 19.
    Zhou D, Masliah E, Spector SA. Autophagy is increased in postmortem brains of persons with HIV-1-associated encephalitis. J Infect Dis. 2011;203(11):1647–57.PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Alirezaei M, Kiosses WB, Flynn CT, Brady NR, Fox HS. Disruption of neuronal autophagy by infected microglia results in neurodegeneration. PLoS One. 2008;3(8):e2906.PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Ardley HC, Scott GB, Rose SA, Tan NG, Robinson PA. UCH-L1 aggresome formation in response to proteasome impairment indicates a role in inclusion formation in Parkinson's disease. J Neurochem. 2004;90:379–91.PubMedCrossRefGoogle Scholar
  22. 22.
    McNaught KS, Belizaire R, Isacson O, Jenner P, Olanow CW. Altered proteasomal function in sporadic Parkinson’s disease. Exp Neurol. 2003;179:38–46.PubMedCrossRefGoogle Scholar
  23. 23.
    Nguyen TP, Soukup VM, Gelman BB. Persistent hijacking of brain proteasomes in HIV-associated dementia. Am J Pathol. 2010;6(2):893–902.CrossRefGoogle Scholar
  24. 24.••
    Cassol E, Misra V, Dutta A, Morgello S, Gabuzda D. Cerebrospinal fluid metabolomics reveals altered waste clearance and accelerated aging in HIV patients with neurocognitive impairment. AIDS. 2014 May 6. This article highlighted the overlapping between HAND and aging in CSF metabolites point of view. Google Scholar
  25. 25.
    Everall I, Vaida F, Khanlou N, Lazzaretto D, Achim C, Letendre S, et al. Cliniconeuropathologic correlates of human immunodeficiency virus in the era of antiretroviral therapy. J Neurovirol. 2009;15:360–70.PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Soontornniyomkij V, Moore DJ, Gouaux B, Soontornniyomkij B, Tatro ET, Umlauf A, et al. Cerebral β-amyloid deposition predicts HIV-associated neurocognitive disorders in APOE ε4 carriers. AIDS. 2012;26(18):2327–35.PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Chang L, Jiang C, Cunningham E, Buchthal S, Douet V, Andres M, et al. Effects of APOE ε4, age, and HIV on glial metabolites and cognitive deficits. Neurology. 2014 May 21. doi:10.1212/WNL.0000000000000526.
  28. 28.
    Schrier RD, Gupta S, Riggs P, Cysique LA, Letendre S, Jin H, et al. The influence of HLA on HIV-associated neurocognitive impairment in Anhui, China. PLoS One. 2012;7(5):e32303.PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Gisslén M, Krut J, Andreasson U, Blennow K, Cinque P, Brew BJ, et al. Amyloid and tau cerebrospinal fluid biomarkers in HIV infection. BMC Neurol. 2009;22(9):63.CrossRefGoogle Scholar
  30. 30.
    Ances BM, Benzinger TL, Christensen JJ, Thomas J, Venkat R, Teshome M, et al. HIV associated neurocognitive disorder (HAND) is not associated with increased fibrillar amyloid deposits using 11C-PiB in middle-aged HIV + participants. Arch Neurol. 2012;69(1):72.PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.••
    Tavazzi E, Morrison D, Sullivan P, Morgello S, Fischer T. Brain inflammation is a common feature of HIV-infected patients without HIV encephalitis or productive brain infection. Curr HIV Res. 2014;12(6). This article highlighted extensive inflammation is a key feature of HAND and its existence in CNS is not necessarily dependent on active HIV viral replication.Google Scholar
  32. 32.
    Power C, Scenes OF, Grim JA, McArthur JC. HIV Dementia Scale: a rapid screening test. J Acquir Immune Defic Syndr Hum Retrovirol. 1995;8:273–8.PubMedCrossRefGoogle Scholar
  33. 33.
    Bottiggi KA, Chang JJ, Schmitt FA, Avison MJ, Mootoor Y, Nath A, et al. The HIV Dementia Scale: predictive power in mild dementia and HAART. J Neurol Sci. 2007;260:11–5.PubMedCrossRefGoogle Scholar
  34. 34.
    Skinner S, Adewale AJ, DeBlock L, Gill MJ, Power C. Neurocognitive screening tools in HIV/AIDS: comparative performance among patients exposed to antiretroviral therapy. HIV Med. 2009;10:246–52.PubMedCrossRefGoogle Scholar
  35. 35.
    Morgan EE, Woods SP, Scott JC, Childers M, Beck JM, Ellis RJ, et al. Predictive validity of demographically adjusted normative standards for the HIV Dementia Scale. J Clin Exp Neuropsychol. 2008;30:83–90.PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Lu GM, Brew BJ, Siefried KJ, Draper B, Cysique LA. Is the HIV Dementia Scale a reliable tool for assessing HIV-related neurocognitive decline? J AIDS Clin Res. 2013;5:269.Google Scholar
  37. 37.
    Cysique LA, Maruff P, Brew BJ. Prevalence and pattern of neuropsychological impairment in human immunodeficiency virus infected/acquired immunodeficiency syndrome (HIV/AIDS) patients across pre and post-highly active antiretroviral therapy eras: a combined study of two cohorts. J Neurovirol. 2004;10:350–7.PubMedCrossRefGoogle Scholar
  38. 38.
    Edén A, Fuchs D, Hagberg L, Nilsson S, Spudich S, Svennerholm B, et al. HIV-1 viral escape in cerebrospinal fluid of subjects on suppressive antiretroviral treatment. J Infect Dis. 2010;202:1819–25.PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Canestri A, Lescure FX, Jaureguiberry S, Moulignier A, Amiel C, Marcelin AG, et al. Discordance between cerebral spinal fluid and plasma HIV replication in patients with neurological symptoms who are receiving suppressive antiretroviral therapy. Clin Infect Dis. 2010;50(5):773–8.PubMedCrossRefGoogle Scholar
  40. 40.
    Peluso MJ, Ferretti F, Peterson J, Lee E, Fuchs D, Boschini A, et al. Cerebrospinal fluid HIV escape associated with progressive neurologic dysfunction in patients on antiretroviral therapy with well controlled plasma viral load. AIDS. 2012;26:1765–74.PubMedCrossRefGoogle Scholar
  41. 41.
    Marcotte TD, Deutsch R, Michael BD, Franklin D, Cookson DR, Bharti AR, et al. A concise panel of biomarkers identifies neurocognitive functioning changes in HIV-infected individuals. J NeuroImmune Pharmacol. 2013;8(5):1123–35.PubMedCrossRefGoogle Scholar
  42. 42.
    Hagberg L, Cinque P, Gisslen M, Brew BJ, Spudich S, Bestetti A, et al. Cerebrospinal fluid neopterin: an informative biomarker of central nervous system immune activation in HIV-1 infection. AIDS Res Ther. 2010;7:15.PubMedCentralPubMedCrossRefGoogle Scholar
  43. 43.
    Mellgren A, Price RW, Hagberg L, Rosengren L, Brew BJ, Gisslén M. Antiretroviral treatment reduces increased CSF neurofilament protein (NFL) in HIV-1 infection. Neurology. 2007;69(15):1536–41.PubMedCrossRefGoogle Scholar
  44. 44.
    Gisslen M, Hagberg L, Brew BJ, Cinque P, Price RW, Rosengren L. Elevated cerebrospinal fluid neurofilament light protein concentrations predict the development of AIDS dementia complex. J Infect Dis. 2007;195(12):1774–8.PubMedCrossRefGoogle Scholar
  45. 45.
    Peluso MJ, Meyerhoff DJ, Price RW, Peterson J, Lee E, Young AC, et al. Cerebrospinal fluid and neuroimaging biomarker abnormalities suggest early neurological injury in a subset of individuals during primary HIV infection. J Infect Dis. 2013;207:1703–12.PubMedCentralPubMedCrossRefGoogle Scholar
  46. 46.
    Bandaru VV, Mielke MM, Sacktor N, McArthur JC, Grant I, Letendre S, et al. A lipid storage–like disorder contributes to cognitive decline in HIV-infected subjects. Neurology. 2013;81(17):1492–9.PubMedCrossRefGoogle Scholar
  47. 47.
    Chang L, Feger U, Ernst TM. Bioimaging. In: Gendelman HE, Grant I, Everall IP, Fox HS, Gelbard HA, Lipton SA, Swindells S, editors. The Neurology of AIDS. Oxford University Press; 2012. p. 763–797.Google Scholar
  48. 48.
    Alexander AL, Lee JE, Lazar M, Field AS. Diffusion tensor imaging of the brain. Neurotherapeutics. 2007;4(3):316–29.PubMedCentralPubMedCrossRefGoogle Scholar
  49. 49.
    Filippi CG, Ulug AM, Ryan E, Ferrando SJ, van Gorp W. Diffusion tensor imaging of patients with HIV and normal-appearing white matter on MR images of the brain. Am J Neuroradiol. 2001;22:277–83.PubMedGoogle Scholar
  50. 50.
    Wu Y, Storey P, Cohen BA, Epstein LG, Edelman RR, Ragin AB. Diffusion alterations in corpus callosum of patients with HIV. Am J Neuroradiol. 2006;27:656–60.PubMedCentralPubMedGoogle Scholar
  51. 51.
    Chen Y, An H, Zhu H, Stone T, Smith JK, Hall C, et al. White matter abnormalities revealed by diffusion tensor imaging in non-demented and demented HIV + patients. Neuroimage. 2009;47(4):1154–62.PubMedCrossRefGoogle Scholar
  52. 52.
    Zhu T, Zhong J, Hu R, Tivarus M, Ekholm S, Harezlak J, et al. Patterns of white matter injury in HIV infection after partial immune reconstitution: a DTI tract-based spatial statistics study. J Neurovirology. 2013;19(1):10–23.CrossRefGoogle Scholar
  53. 53.
    Pfefferbaum A, Rosenbloom MJ, Rohlfing T, Kemper CA, Deresinski S, Sullivan EV. Frontostriatal fiber bundle compromise in HIV infection without dementia. AIDS. 2009;23:1977–85.PubMedCentralPubMedCrossRefGoogle Scholar
  54. 54.
    Wright PW, Heaps JM, Shimony JS, Thomas JB, Ances BM. The effects of HIV and combination antiretroviral therapy on white matter integrity. AIDS. 2012;26:1501–8.PubMedCentralPubMedCrossRefGoogle Scholar
  55. 55.
    Thurnher MM, Castillo M, Stadler A, Rieger A, Schmid B, Sundgren PC. Diffusion-tensor MR imaging of the brain in human immunodeficiency virus-positive patients. Am J Neuroradiol. 2005;26:2275–81.PubMedGoogle Scholar
  56. 56.
    Chang L, Wong V, Nakama H, Watters M, Ramones D, Miller EN, et al. Greater than age-related changes in brain diffusion of HIV patients after 1 year. J NeuroImmune Pharmacol. 2008;3:265–74.PubMedCentralPubMedCrossRefGoogle Scholar
  57. 57.
    Pomara N, Crandall DT, Choi SJ, Johnson G, Lim KO. White matter abnormalities in HIV-1 infection: a diffusion tensor imaging study. Psychiatry Res. 2001;106:15–24.PubMedCrossRefGoogle Scholar
  58. 58.
    Melrose RJ, Tinaz S, Castelo JM, Courtney MG, Stern CE. Compromise to fronto-stratial functioning in HIV: an FMRI investigation of the semantic event sequencing. Behav Brain Res. 2008;188:337–47.PubMedCrossRefGoogle Scholar
  59. 59.
    Ernst T, Chang L, Jovicich J, Ames N, Arnold S. Abnormal brain activation on functional MRI in cognitively asymptomatic HIV patients. Neurology. 2002;59:1343–9.PubMedCrossRefGoogle Scholar
  60. 60.
    Ances BM, Roc AC, Wang J, Korczykowski M, Okawa J, Stern J, et al. Caudate blood flow and volume are reduced in HIV + neurocognitively impaired patients. Neurology. 2006;66:862–6.PubMedCrossRefGoogle Scholar
  61. 61.
    Ances BM, Roc AC, Korczykowski M, Wolf RL, Kolson DL. Combination antiretroviral therapy modulates the blood oxygen level-dependent amplitude in human immunodeficiency virus-seropositive patients. J Neurovirol. 2008;14:418–24.PubMedCentralPubMedCrossRefGoogle Scholar
  62. 62.•
    Thomas JB, Brier MR, Snyder AZ, Vaida FF, Ances BM. Pathways to neurodegeneration: effects of HIV and aging on resting-state functional connectivity. Neurology. 2013;80(13):1186–93. In this fMRI study, the authors demonstrated an independent decrease in baseline brain function in HIV patients similar to aging.PubMedCentralPubMedCrossRefGoogle Scholar
  63. 63.
    Letendre S, Marquie-Beck J, Capparelli E, Best B, Clifford D, Collier AC, et al. Validation of the CNS penetration-effectiveness rank for quantifying antiretroviral penetration into the central nervous system. Arch Neurol. 2008;65:65–70.PubMedCentralPubMedCrossRefGoogle Scholar
  64. 64.
    Letendre S, C FitzSimons, R Ellis, Clifford D, Collier A, Gelman B, et al. Correlates of CSF viral load in 1221 volunteers in the CHARTER Cohort. 17th CROI [abstract], San Francisco, CA, USA 2010;430.Google Scholar
  65. 65.
    Koopmans PP, Ellis R, Best BM, Letendre S. Should antiretroviral therapy for HIV infection be tailored for intracerebral penetration? Neth J Med. 2009;67(6):206–11.PubMedGoogle Scholar
  66. 66.
    Marra CM, Zhao Y, Clifford DB, Letendre S, Evans S, Henry K, et al. Impact of combination antiretroviral therapy on cerebrospinal fluid HIV RNA and neurocognitive performance. AIDS. 2009;23:1359–66.PubMedCentralPubMedCrossRefGoogle Scholar
  67. 67.
    Cusini A, Vernazza PL, Yerly S, Decosterd LA, Ledergerber B, Fux CA, et al. Higher CNS penetration-effectiveness of long-term combination antiretroviral therapy is associated with better HIV-1 viral suppression in cerebrospinal fluid. J Acquir Immune Defic Syndr. 2013;62:28–35.PubMedCrossRefGoogle Scholar
  68. 68.
    Rawson T, Muir D, Mackie NE, Garvey LJ, Everitt A, Winston A. Factors associated with cerebrospinal fluid HIV RNA in HIV infected subjects undergoing lumbar puncture examination in a clinical setting. J Infect. 2012;65:239–45.PubMedCrossRefGoogle Scholar
  69. 69.
    Smurzynski M, Wu K, Letendre S, Robertson K, Bosch RJ, Clifford DB, et al. Effects of central nervous system antiretroviral penetration on cognitive functioning in the ALLRT cohort. AIDS. 2011;25:357–65.PubMedCentralPubMedCrossRefGoogle Scholar
  70. 70.
    Cysique LA, Vaida F, Letendre S, Gibson S, Cherner M, Woods SP, et al. Dynamics of cognitive change in impaired HIV-positive patients initiating antiretroviral therapy. Neurology. 2009;73:342–8.PubMedCentralPubMedCrossRefGoogle Scholar
  71. 71.
    Tozzi V, Balestra P, Salvatori MF, Vlassi C, Liuzzi G, Giancola ML, et al. Changes in cognition during antiretroviral therapy: comparison of 2 different ranking systems to measure antiretroviral drug efficacy on HIV-associated neurocognitive disorders. JAIDS. 2009;52:56–63.PubMedGoogle Scholar
  72. 72.
    Ciccarelli N, Fabbiani M, Colafigli M, Trecarichi EM, Silveri MC, Cauda R, et al. Revised central nervous system neuropenetration-effectiveness score is associated with cognitive disorders in HIV-infected patients with controlled plasma viraemia. Antivir Ther. 2013;18:153–60.PubMedCrossRefGoogle Scholar
  73. 73.
    Casado JL, Marín A, Moreno A, Iglesias V, Perez-Elías MJ, Moreno S, et al. Central nervous system antiretroviral penetration and cognitive functioning in largely pretreated HIV-infected patients. J Neurovirol. 2014;1–8Google Scholar
  74. 74.
    Vassallo M, Durant J, Biscay V, Lebrun-Frenay C, Dunais B, Laffon M, et al. Can high central nervous system penetrating antiretroviral regimens protect against the onset of HIV-associated neurocognitive disorders? AIDS. 2014;28(4):493–501.PubMedCrossRefGoogle Scholar
  75. 75.
    Cross HM, Combrinck MI, Joska JA. HIV-associated neurocognitive disorders: antiretroviral regimen, central nervous system penetration effectiveness, and cognitive outcomes. S Afr Med J. 2013;103(10):758–62.PubMedCrossRefGoogle Scholar
  76. 76.
    Ellis RJ, Letendre S, Vaida F, Haubrich R, Heaton RK, Sacktor N, et al. Randomized trial of CNS-targeted antiretrovirals for HIV-associated neurocognitive disorder. Clin Infect Dis. 2013;cit921.Google Scholar
  77. 77.••
    Mind Exchange Group. Assessment, diagnosis, and treatment of HIV-associated neurocognitive disorder: a consensus report of the mind exchange program. Clin Infect Dis. 2013;56(7):1004–17. A comprehensive review and advice on most of clinical issues in managing HAND was made in this consensus.CrossRefGoogle Scholar
  78. 78.
    Brew BJ, Halman M, Catalan J, Sacktor N, Price RW, Brown S, et al. Factors in AIDS dementia complex trial design: results and lessons from the abacavir trial. PLoS Clin Trials. 2007;2(3):e13.PubMedCentralPubMedCrossRefGoogle Scholar
  79. 79.
    Tozzi V, Narciso P, Galgani S, Sette P, Balestra P, Gerace C, et al. Effects of zidovudine in 30 patients with mild to end-stage AIDS dementia complex. AIDS. 1993;7(5):683–92.PubMedCrossRefGoogle Scholar
  80. 80.
    Churchill MJ, Wesselingh SL, Cowley D, Pardo CA, McArthur JC, Brew BJ, et al. Extensive astrocyte infection is prominent in human immunodeficiency virusassociated dementia. Ann Neurol. 2009;66:253–8.PubMedCrossRefGoogle Scholar
  81. 81.
    Wang Z, Pekarskaya O, Bencheikh M, Chao W, Gelbard HA, Ghorpade A, et al. Reduced expression of glutamate transporter EAAT2 and impaired glutamate transport in human primary astrocytes exposed to HIV-1 or gp120. Virology. 2003;312:60–73.PubMedCrossRefGoogle Scholar
  82. 82.
    Patton HK, Zhou ZH, Bubien JK, Benveniste EN, Benos DJ. gp120-induced alterations of human astrocyte function: Na(+)/H(+) exchange, K(+) conductance, and glutamate flux. Am J Physiol Cell Physiol. 2000;279:C700–8.PubMedGoogle Scholar
  83. 83.
    Eugenin EA, Clements JE, Zink MC, Berman JW. Human immunodeficiency virus infection of human astrocytes disrupts blood–brain barrier integrity by a gap junction-dependent mechanism. J Neurosci. 2011;31:9456–65. Eugenin et al. demonstrated how blood brain barrier disruption and bystander apoptosis are carried out by infected astrocytes via gap junction. This finding offer a possible explanation to cognitive decline despite effective serum viral suppression by cART.PubMedCentralPubMedCrossRefGoogle Scholar
  84. 84.
    Eugenin EA, Berman JW. Cytochrome C dysregulation induced by HIV infection of astrocytes results in bystander apoptosis of uninfected astrocytes by an IP(3) and Calcium dependent mechanism. J Neurochem. 2013;127(5):644–51.PubMedCrossRefGoogle Scholar
  85. 85.•
    Gray LR, Tachedjian G, Ellett AM, Roche MJ, Cheng WJ, Guillemin GJ, et al. The NRTIs lamivudine, stavudine and zidovudine have reduced HIV-1 inhibitory activity in astrocytes. PLoS One. 2013;8(4):e62196. This study demonstrated a different inhibitory efficacy profile in targeting astrocytes HIV infection by various ARVs. It provides new consideration in regarding individual ARV CNS penetrating effectiveness in future.PubMedCentralPubMedCrossRefGoogle Scholar
  86. 86.••
    Desplats P, Dumaop W, Smith D, Adame A, Everall I, Letendre S, et al. Molecular and pathologic insights from latent HIV-1 infection in the human brain. Neurology. 2013;80:1415–23. Desplats et al. offered a new concept of latent HIV infection in CNS that could contribute ongoing neuroinflammation without active HIV viral replication.PubMedCentralPubMedCrossRefGoogle Scholar
  87. 87.
    Sacktor N, Miyahara S, Deng L, Evans S, Schifitto G, Cohen B, et al. Minocycline treatment for HIV-associated cognitive impairment results from a randomized trial. Neurology. 2011;77(12):1135–42.PubMedCentralPubMedCrossRefGoogle Scholar
  88. 88.
    Brew BJ. Lost in translation: again, another failed neuroprotection trial. Neurology. 2007;69(13):1308–9.PubMedCrossRefGoogle Scholar
  89. 89.
    Fazeli PL, Woods SP, Heaton RK, Umlauf A, Gouaux B, Rosario D, et al. An active lifestyle is associated with better neurocognitive functioning in adults living with HIV infection. J Neurovirol. 2014;20(3):233–42.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.University of New South WalesSt Vincent’s Clinical SchoolSydneyAustralia
  2. 2.Neurology & HIV DepartmentsSt. Vincent’s HospitalSydneyAustralia
  3. 3.St. Vincent’s Hospital Centre for Applied Medical ResearchSydneyAustralia
  4. 4.Neurology team, Department of Internal MedicineQueen Elizabeth HospitalHong KongHong Kong
  5. 5.Neurology DepartmentSt Vincent’s HospitalDarlinghurstAustralia

Personalised recommendations