Current HIV/AIDS Reports

, Volume 8, Issue 1, pp 45–53 | Cite as

Coreceptors and HIV-1 Pathogenesis

  • Paul R. GorryEmail author
  • Petronela Ancuta


The major HIV-1 coreceptors, CCR5 and CXCR4, mediate virus entry into CD4+ cells and are therefore a critical component of the HIV-1 life cycle. Alterations in coreceptor preference as well as the efficiency and mechanism of interaction between HIV-1 and CCR5 and/or CXCR4 has a significant influence on viral tropism, progression of disease, and response to coreceptor antagonists. In addition, these alterations influence the susceptibility of CD4+ T-cell, monocyte, and dendritic cell subsets to infection and therefore, are important for several facets of HIV-1 pathogenesis including the establishment of latent reservoirs, trafficking, and transmission. This review highlights recent literature that has advanced our understanding of the role of coreceptors in HIV-1 pathogenesis.


HIV-1 Coreceptors CCR5 CXCR4 Tropism Reservoirs Pathogenesis CD4+ T cells Monocytes Macrophages Dendritic cells 



P. R. Gorry: scientific advisory board for ViiV Healthcare Australia; P. Ancuta: none.


Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Jakobsen, M.R., Ellett, A., Churchill, M.J., Gorry, P.R.: Viral tropism, fitness and pathogenicity of HIV-1 subtype C. Future Virology 5, 219–231 (2010).CrossRefGoogle Scholar
  2. 2.
    Sterjovski, J., Roche, M., Churchill, M.J., Ellett, A., Farrugia, W., Gray, L.R., Cowley, D., Poumbourios, P., Lee, B., Wesselingh, S., Cunningham, A.L., Ramsland, P.A., Gorry, P.R.: An altered and more efficient mechanism of CCR5 engagement contributes to macrophage tropism of CCR5-using HIV-1 envelopes. Virology 404, 269–278 (2010).CrossRefPubMedGoogle Scholar
  3. 3.
    Samson, M., Libert, F., Doranz, B.J., Rucker, J., Liesnard, C., Farber, C.M., Saragosti, S., Lapoumeroulie, C., Cognaux, J., Forceille, C., Muyldermans, G., Verhofstede, C., Burtonboy, G., Georges, M., Imai, T., Rana, S., Yi, Y., Smyth, R.J., Collman, R.G., Doms, R.W., Vassart, G., Parmentier, M.: Resistance to HIV-1 infection in caucasian individuals bearing mutant alleles of the CCR-5 chemokine receptor gene. Nature 382, 722–725 (1996).CrossRefPubMedGoogle Scholar
  4. 4.
    Casazza, J.P., Brenchley, J.M., Hill, B.J., Ayana, R., Ambrozak, D., Roederer, M., Douek, D.C., Betts, M.R., Koup, R.A.: Autocrine production of beta-chemokines protects CMV-Specific CD4 T cells from HIV infection. PLoS Pathog 5, e1000646 (2009).CrossRefPubMedGoogle Scholar
  5. 5.
    Hutter, G., Nowak, D., Mossner, M., Ganepola, S., Mussig, A., Allers, K., Schneider, T., Hofmann, J., Kucherer, C., Blau, O., Blau, I.W., Hofmann, W.K., Thiel, E.: Long-term control of HIV by CCR5 Delta32/Delta32 stem-cell transplantation. N Engl J Med 360, 692–698 (2009).CrossRefPubMedGoogle Scholar
  6. 6.
    Pandrea, I., Apetrei, C., Gordon, S., Barbercheck, J., Dufour, J., Bohm, R., Sumpter, B., Roques, P., Marx, P.A., Hirsch, V.M., Kaur, A., Lackner, A.A., Veazey, R.S., Silvestri, G.: Paucity of CD4 + CCR5+ T cells is a typical feature of natural SIV hosts. Blood 109, 1069–1076 (2007).CrossRefPubMedGoogle Scholar
  7. 7.
    Coetzer, M., Nedellec, R., Salkowitz, J., McLaughlin, S., Liu, Y., Heath, L., Mullins, J.I., Mosier, D.E.: Evolution of CCR5 use before and during coreceptor switching. J Virol 82, 11758–11766 (2008).CrossRefPubMedGoogle Scholar
  8. 8.
    • Coetzer, M., Nedellec, R., Cilliers, T., Meyers, T., Morris, L., Mosier, D.E.: Extreme genetic divergence is required for coreceptor switching in HIV-1 subtype C. Journal of Acquired Immune Deficiency Syndromes 56, 9–15 (2011). This study demonstrated that the genetic determinants in gp120 for coreceptor switching in HIV-1 subtype C infection are more complex than in HIV-1 subtype B Google Scholar
  9. 9.
    Wade, J., Sterjovski, J., Gray, L., Roche, M., Chiavaroli, L., Ellett, A., Jakobsen, M.R., Cowley, D., da Fonseca Pereira, C., Saksena, N., Wang, B., Purcell, D.F., Karlsson, I., Fenyo, E.M., Churchill, M., Gorry, P.R.: Enhanced CD4+ cellular apoptosis by CCR5-restricted HIV-1 envelope glycoprotein variants from patients with progressive HIV-1 infection. Virology 396, 246–255 (2010).CrossRefPubMedGoogle Scholar
  10. 10.
    Sterjovski, J., Churchill, M.J., Ellett, A., Gray, L.R., Roche, M.J., Dunfee, R.L., Purcell, D.F., Saksena, N., Wang, B., Sonza, S., Wesselingh, S.L., Karlsson, I., Fenyo, E.M., Gabuzda, D., Cunningham, A.L., Gorry, P.R.: Asn 362 in gp120 contributes to enhanced fusogenicity by CCR5-restricted HIV-1 envelope glycoprotein variants from patients with AIDS. Retrovirology 4, 89 (2007).CrossRefPubMedGoogle Scholar
  11. 11.
    Gorry, P.R., Dunfee, R.L., Mefford, M.E., Kunstman, K., Morgan, T., Moore, J.P., Mascola, J.R., Agopian, K., Holm, G.H., Mehle, A., Taylor, J., Farzan, M., Wang, H., Ellery, P., Willey, S.J., Clapham, P.R., Wolinsky, S.M., Crowe, S.M., Gabuzda, D.: Changes in the V3 region of gp120 contribute to unusually broad coreceptor usage of an HIV-1 isolate from a CCR5 Delta32 heterozygote. Virology 362, 163–178 (2007).CrossRefPubMedGoogle Scholar
  12. 12.
    • Riddick, N.E., Hermann, E.A., Loftin, L.M., Elliott, S.T., Wey, W.C., Cervasi, B., Taafe, J., Engram, J.C., Li, B., Else, J.G., Li, Y., Hahn, B.H., Derdeyn, C.A., Sodora, D.L., Apetrei, C., Paiardini, M., Silvestri, G., Collman, R.G.: A novel CCR5 mutation common in sooty mangabeys reveals SIVsmm infection of CCR5-null natural hosts and efficient alternative coreceptor usage in vivo. PLoS Pathogens 6, e1001064. (2010). This study identified novel mutant CCR5 alleles that influence the pathogenesis and coreceptor usage of SIV. CrossRefPubMedGoogle Scholar
  13. 13.
    Gray, L., Sterjovski, J., Churchill, M., Ellery, P., Nasr, N., Lewin, S.R., Crowe, S.M., Wesselingh, S., Cunningham, A.L., Gorry, P.R.: Uncoupling coreceptor usage of human immunodeficiency virus type 1 (HIV-1) from macrophage tropism reveals biological properties of CCR5-restricted HIV-1 isolates from patients with acquired immunodeficiency syndrome. Virology 337, 384–398 (2005).CrossRefPubMedGoogle Scholar
  14. 14.
    Gonzalez-Scarano, F., Martin-Garcia, J.: The neuropathogenesis of AIDS. Nat Rev Immunol 5, 69–81 (2005).CrossRefPubMedGoogle Scholar
  15. 15.
    Groot, F., van Capel, T.M., Schuitemaker, J., Berkhout, B., de Jong, E.C.: Differential susceptibility of naive, central memory and effector memory T cells to dendritic cell-mediated HIV-1 transmission. Retrovirology 3, 52 (2006).CrossRefPubMedGoogle Scholar
  16. 16.
    • Pfaff, J.M., Wilen, C.B., Harrison, J.E., Demarest, J.F., Lee, B., Doms, R.W., Tilton, J.C.: HIV-1 resistance to CCR5 antagonists associated with highly efficient use of CCR5 and altered tropism on primary CD4+ T cells. J Virol 84, 6505–6514 (2010). This study showed that alteration in the way HIV-1 with resistance to CCR5 antagonists uses CCR5 for entry may reduce its ability to replicate in various CD4+ cell types. CrossRefPubMedGoogle Scholar
  17. 17.
    Stoddart, C.A., Keir, M.E., McCune, J.M.: IFN-alpha-induced upregulation of CCR5 leads to expanded HIV tropism in vivo. PLoS Pathog 6, e1000766 (2010).CrossRefPubMedGoogle Scholar
  18. 18.
    Duenas-Decamp, M.J., Peters, P.J., Burton, D., Clapham, P.R.: Determinants flanking the CD4 binding loop modulate macrophage tropism of human immunodeficiency virus type 1 R5 envelopes. J Virol 83, 2575–2583 (2009).CrossRefPubMedGoogle Scholar
  19. 19.
    • Gray, L., Roche, M., Churchill, M.J., Sterjovski, J., Ellett, A., Poumbourios, P., Sheffief, S., Wang, B., Saksena, N., Purcell, D.F., Wesselingh, S., Cunningham, A.L., Brew, B.J., Gabuzda, D., Gorry, P.R.: Tissue-specific sequence alterations in the human immunodeficiency virus type 1 envelope favoring CCR5 usage contribute to persistence of dual-tropic virus in the brain. J Virol 83, 5430–5441 (2009). This study demonstrated a mechanism for the persistence of R5X4 HIV-1 within the brain, involving preferential CCR5 usage. CrossRefPubMedGoogle Scholar
  20. 20.
    Toma, J., Whitcomb, J.M., Petropoulos, C.J., Huang, W.: Dual-tropic HIV type 1 isolates vary dramatically in their utilization of CCR5 and CXCR4 coreceptors. AIDS 24, 2181–2186 (2010).CrossRefPubMedGoogle Scholar
  21. 21.
    Loftin, L.M., Kienzle, M.F., Yi, Y., Lee, B., Lee, F.H., Gray, L., Gorry, P.R., Collman, R.G.: Constrained use of CCR5 on CD4+ lymphocytes by R5X4 HIV-1: efficiency of Env-CCR5 interactions and low CCR5 expression determine a range of restricted CCR5-mediated entry. Virology 402, 135–148 (2010).CrossRefPubMedGoogle Scholar
  22. 22.
    Westby, M., Smith-Burchnell, C., Mori, J., Lewis, M., Mosley, M., Stockdale, M., Dorr, P., Ciaramella, G., Perros, M.: Reduced maximal inhibition in phenotypic susceptibility assays indicates that viral strains resistant to the CCR5 antagonist maraviroc utilize inhibitor-bound receptor for entry. J Virol 81, 2359–2371 (2007).CrossRefPubMedGoogle Scholar
  23. 23.
    Pugach, P., Marozsan, A.J., Ketas, T.J., Landes, E.L., Moore, J.P., Kuhmann, S.E.: HIV-1 clones resistant to a small molecule CCR5 inhibitor use the inhibitor-bound form of CCR5 for entry. Virology 361, 212–228 (2007).CrossRefPubMedGoogle Scholar
  24. 24.
    Tilton, J.C., Amrine-Madsen, H., Miamidian, J.L., Kitrinos, K.M., Pfaff, J., Demarest, J.F., Ray, N., Jeffrey, J.L., Labranche, C.C., Doms, R.W.: HIV type 1 from a patient with baseline resistance to CCR5 antagonists uses drug-bound receptor for entry. AIDS Res Hum Retroviruses 26, 13–24 (2010).CrossRefPubMedGoogle Scholar
  25. 25.
    • Tilton, J.C., Wilen, C.B., Didigu, C.A., Sinha, R., Harrison, J.E., Agrawal-Gamse, C., Henning, E.A., Bushman, F.D., Martin, J.N., Deeks, S.G., Doms, R.W.: A maraviroc-resistant HIV-1 with narrow cross-resistance to other CCR5 antagonists depends on both N-terminal and extracellular loop domains of drug-bound CCR5. J Virol 84, 10863–10876 (2010). This study showed that maraviroc-resistant HIV-1 has an altered mechanism of CCR5 usage with increased reliance on the CCR5 N-terminus, but that viruses remaining sensitive to other CCR5 antagonists still require interaction with the ECL regions. Google Scholar
  26. 26.
    Berro, R., Sanders, R.W., Lu, M., Klasse, P.J., Moore, J.P.: Two HIV-1 variants resistant to small molecule CCR5 inhibitors differ in how they use CCR5 for entry. PLoS Pathog 5, e1000548 (2009).CrossRefPubMedGoogle Scholar
  27. 27.
    • Anastassopoulou, C.G., Ketas, T.J., Klasse, P.J., Moore, J.P.: Resistance to CCR5 inhibitors caused by sequence changes in the fusion peptide of HIV-1 gp41. Proc Natl Acad Sci USA 106, 5318–5323 (2009). This study showed that there are alternative genetic pathways for HIV-1 resistance to CCR5 antagonists, which may involve alterations in the V3 region of gp120, or gp41. CrossRefPubMedGoogle Scholar
  28. 28.
    Pugach, P., Ray, N., Klasse, P.J., Ketas, T.J., Michael, E., Doms, R.W., Lee, B., Moore, J.P.: Inefficient entry of vicriviroc-resistant HIV-1 via the inhibitor-CCR5 complex at low cell surface CCR5 densities. Virology 387, 296–302 (2009).CrossRefPubMedGoogle Scholar
  29. 29.
    Anastassopoulou, C.G., Marozsan, A.J., Matet, A., Snyder, A.D., Arts, E.J., Kuhmann, S.E., Moore, J.P.: Escape of HIV-1 from a small molecule CCR5 inhibitor is not associated with a fitness loss. PLoS Pathog 3, e79 (2007).CrossRefPubMedGoogle Scholar
  30. 30.
    Douek, D.C., Roederer, M., Koup, R.A.: Emerging concepts in the immunopathogenesis of AIDS. Annu Rev Med 60, 471–484 (2009).CrossRefPubMedGoogle Scholar
  31. 31.
    Ancuta, P., Monteiro, P., Sekaly, R.P.: Th17 lineage commitment and HIV-1 pathogenesis. Curr Opin HIV AIDS 5, 158–165 (2010).CrossRefPubMedGoogle Scholar
  32. 32.
    • Gosselin, A., Monteiro, P., Chomont, N., Diaz-Griffero, F., Said, E.A., Fonseca, S., Wacleche, V., El-Far, M., Boulassel, M.R., Routy, J.P., Sekaly, R.P., Ancuta, P.: Peripheral blood CCR4 + CCR6+ and CXCR3 + CCR6 + CD4+ T cells are highly permissive to HIV-1 infection. J Immunol 184, 1604–1616 (2010). This study identified CCR6 as a marker for memory CD4+ T cells that harbor the highest levels of proviral DNA in HIV-infected individuals. CrossRefPubMedGoogle Scholar
  33. 33.
    Haase, A.T.: Targeting early infection to prevent HIV-1 mucosal transmission. Nature 464, 217–223 (2010).CrossRefPubMedGoogle Scholar
  34. 34.
    •• Cicala, C., Martinelli, E., McNally, J.P., Goode, D.J., Gopaul, R., Hiatt, J., Jelicic, K., Kottilil, S., Macleod, K., O’Shea, A., Patel, N., Van Ryk, D., Wei, D., Pascuccio, M., Yi, L., McKinnon, L., Izulla, P., Kimani, J., Kaul, R., Fauci, A.S., Arthos, J.: The integrin alpha4beta7 forms a complex with cell-surface CD4 and defines a T-cell subset that is highly susceptible to infection by HIV-1. Proc Natl Acad Sci USA 106, 20877–20882 (2009). This study demonstrated specific affinity of HIV-gp120 for the integrin alpha4beta7 expressed on CCR5+ T cells that is critical for efficient virus propagation and dissemination following sexual transmission. CrossRefPubMedGoogle Scholar
  35. 35.
    Zaunders, J.J., Dyer, W.B., Wang, B., Munier, M.L., Miranda-Saksena, M., Newton, R., Moore, J., Mackay, C.R., Cooper, D.A., Saksena, N.K., Kelleher, A.D.: Identification of circulating antigen-specific CD4+ T lymphocytes with a CCR5+, cytotoxic phenotype in an HIV-1 long-term nonprogressor and in CMV infection. Blood 103, 2238–2247 (2004).CrossRefPubMedGoogle Scholar
  36. 36.
    • Chomont, N., El-Far, M., Ancuta, P., Trautmann, L., Procopio, F.A., Yassine-Diab, B., Boucher, G., Boulassel, M.R., Ghattas, G., Brenchley, J.M., Schacker, T.W., Hill, B.J., Douek, D.C., Routy, J.P., Haddad, E.K., Sekaly, R.P.: HIV reservoir size and persistence are driven by T cell survival and homeostatic proliferation. Nat Med 15, 893–900 (2009). This study identified T CM and T TM cells as major HIV-1 reservoirs in patients undergoing viral-suppressive HAART with high and low CD4 counts, respectively. CrossRefPubMedGoogle Scholar
  37. 37.
    Ahmed, R., Bevan, M.J., Reiner, S.L., Fearon, D.T.: The precursors of memory: models and controversies. Nat Rev Immunol 9, 662–668 (2009).CrossRefPubMedGoogle Scholar
  38. 38.
    Trono, D., Van Lint, C., Rouzioux, C., Verdin, E., Barre-Sinoussi, F., Chun, T.W., Chomont, N.: HIV persistence and the prospect of long-term drug-free remissions for HIV-infected individuals. Science 329, 174–180 (2010).CrossRefPubMedGoogle Scholar
  39. 39.
    •• Benlahrech, A., Harris, J., Meiser, A., Papagatsias, T., Hornig, J., Hayes, P., Lieber, A., Athanasopoulos, T., Bachy, V., Csomor, E., Daniels, R., Fisher, K., Gotch, F., Seymour, L., Logan, K., Barbagallo, R., Klavinskis, L., Dickson, G., Patterson, S.: Adenovirus vector vaccination induces expansion of memory CD4 T cells with a mucosal homing phenotype that are readily susceptible to HIV-1. Proc Natl Acad Sci USA 106, 19940–19945 (2009). This study provides evidence that adenoviral-based vaccination against HIV-1 in individuals with pre-existing immunity against Ad5 results in preferential expansion of CD4+ T cells expressing CCR5 and higher susceptibility to HIV infection PubMedGoogle Scholar
  40. 40.
    Bergamaschi, A., Pancino, G.: Host hindrance to HIV-1 replication in monocytes and macrophages. Retrovirology 7, 31 (2010).CrossRefPubMedGoogle Scholar
  41. 41.
    Ziegler-Heitbrock, L., Ancuta, P., Crowe, S., Dalod, M., Grau, V., Hart, D.N., Leenen, P.J., Liu, Y.J., Macpherson, G., Randolph, G.J., Scherberich, J., Schmitz, J., Shortman, K., Sozzani, S., Strobl, H., Zembala, M., Austyn, J.M., Lutz, M.B.: Nomenclature of monocytes and dendritic cells in blood. Blood 116, e74–80 (2010).Google Scholar
  42. 42.
    • Ancuta, P., Kamat, A., Kunstman, K.J., Kim, E.Y., Autissier, P., Wurcel, A., Zaman, T., Stone, D., Mefford, M., Morgello, S., Singer, E.J., Wolinsky, S.M., Gabuzda, D.: Microbial translocation is associated with increased monocyte activation and dementia in AIDS patients. PLoS ONE 3, e2516 (2008). This study reports upregulation of CCR5 expression on three different monocyte subsets in the peripheral blood of AIDS subjects compared to HIV-1–uninfected controls, with a preferential increase in the frequency of the “intermediate” CD14 + CD16 + CCR5 high monocyte subset. CrossRefPubMedGoogle Scholar
  43. 43.
    Crowe, S.M., Ziegler-Heitbrock, L.: Editorial: Monocyte subpopulations and lentiviral infection. J Leukoc Biol 87, 541–543 (2010).CrossRefPubMedGoogle Scholar
  44. 44.
    Ancuta, P., Autissier, P., Wurcel, A., Zaman, T., Stone, D., Gabuzda, D.: CD16+ monocyte-derived macrophages activate resting T cells for HIV infection by producing CCR3 and CCR4 ligands. J Immunol 176, 5760–5771 (2006).PubMedGoogle Scholar
  45. 45.
    Shen, R., Richter, H.E., Clements, R.H., Novak, L., Huff, K., Bimczok, D., Sankaran-Walters, S., Dandekar, S., Clapham, P.R., Smythies, L.E., Smith, P.D.: Macrophages in vaginal but not intestinal mucosa are monocyte-like and permissive to human immunodeficiency virus type 1 infection. J Virol 83, 3258–3267 (2009).CrossRefPubMedGoogle Scholar
  46. 46.
    Gorry, P.R., Bristol, G., Zack, J.A., Ritola, K., Swanstrom, R., Birch, C.J., Bell, J.E., Bannert, N., Crawford, K., Wang, H., Schols, D., De Clercq, E., Kunstman, K., Wolinsky, S.M., Gabuzda, D.: Macrophage Tropism of Human Immunodeficiency Virus Type 1 Isolates from Brain and Lymphoid Tissues Predicts Neurotropism Independent of Coreceptor Specificity. J Virol 75, 10073–10089 (2001).CrossRefPubMedGoogle Scholar
  47. 47.
    Gras, G., Kaul, M.: Molecular mechanisms of neuroinvasion by monocytes-macrophages in HIV-1 infection. Retrovirology 7, 30 (2010).CrossRefPubMedGoogle Scholar
  48. 48.
    • Blanchet, F.P., Moris, A., Nikolic, D.S., Lehmann, M., Cardinaud, S., Stalder, R., Garcia, E., Dinkins, C., Leuba, F., Wu, L., Schwartz, O., Deretic, V., Piguet, V.: Human immunodeficiency virus-1 inhibition of immunoamphisomes in dendritic cells impairs early innate and adaptive immune responses. Immunity 32, 654–669 (2010). This study demonstrated that HIV-1 downregulates autophagy, thus facilitating cell-to-cell transmission of virions while preventing the initiation of HIV-1–specific immune responses. CrossRefPubMedGoogle Scholar
  49. 49.
    Pion, M., Arrighi, J.F., Jiang, J., Lundquist, C.A., Hartley, O., Aiken, C., Piguet, V.: Analysis of HIV-1-X4 fusion with immature dendritic cells identifies a specific restriction that is independent of CXCR4 levels. J Invest Dermatol 127, 319–323 (2007).CrossRefPubMedGoogle Scholar
  50. 50.
    Hubner, W., McNerney, G.P., Chen, P., Dale, B.M., Gordon, R.E., Chuang, F.Y., Li, X.D., Asmuth, D.M., Huser, T., Chen, B.K.: Quantitative 3D video microscopy of HIV transfer across T cell virological synapses. Science 323, 1743–1747 (2009).CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Center for VirologyBurnet InstituteMelbourneAustralia
  2. 2.Department of Microbiology and ImmunologyUniversity of MelbourneMelbourneAustralia
  3. 3.Department of MedicineMonash UniversityMelbourneAustralia
  4. 4.Department of Microbiology and ImmunologyUniversité de MontréalMontrealCanada
  5. 5.CHUM-Research CenterSaint-Luc HospitalMontrealCanada
  6. 6.The French National Institute of Health and Medical Research Unit 743MontrealCanada

Personalised recommendations