Adherence-resistance relationships to combination HIV antiretroviral therapy

  • David R. Bangsberg
  • Deanna L. Kroetz
  • Steven G. Deeks
Article

Abstract

Early views on the relationship between adherence and resistance postulated a bell-shaped relationship that balanced selective drug pressure and improved viral suppression along a continuum of adherence. Although this conceptual relationship remains valid, recent data suggest that each regimen class may have different adherence-resistance relationships. These regimen-specific relationships are a function of the capacities of resistant virus to replicate at different levels of drug exposure, which are largely, but not entirely, determined by the impact of mutations on susceptibility of the virus and the impact of the mutations on the inherent ability of the virus to replicate efficiently. Specific patterns of adherence, such as treatment discontinuations, may influence adherence-resistance relationship to combination regimens comprised of medications with differing half-lives. Host genomics that alters antiretroviral drug distribution and metabolism may also impact adherence-resistance relationships. Optimal antiretroviral regimens should be constructed such that there is little overlap in the window of adherence that selects for antiretroviral drug resistance.

References and Recommended Reading

  1. 1.
    Hecht FM, Grant RM, Petropoulos CJ, et al.: Sexual transmission of an HIV-1 variant resistant to multiple reverse-transcriptase and protease inhibitors. N Engl J Med 1998, 339:307–311.PubMedCrossRefGoogle Scholar
  2. 2.
    Sontag D, Richardon L: Doctors withhold HIV pill regimen from some. New York Times. 1997:A1.Google Scholar
  3. 3.
    Altice FL, Friedland GH: The era of adherence to HIV therapy [editorial]. Ann Intern Med 1998, 129:503–505.PubMedGoogle Scholar
  4. 4.
    Friedland GH, Williams A: Attaining higher goals in HIV treatment: the central importance of adherence. AIDS 1999, 13(Suppl 1):S61–72.PubMedGoogle Scholar
  5. 5.
    Wainberg MA, Friedland G: Public health implications of antiretroviral therapy and HIV drug resistance. JAMA 1998, 279:1977–1983.PubMedCrossRefGoogle Scholar
  6. 6.
    Bangsberg D, Tulsky JP, Hecht FM, Moss AR: Protease inhibitors in the homeless. JAMA 1997, 278:63–65.PubMedCrossRefGoogle Scholar
  7. 7.
    Harries AD, Nyangulu DS, Hargreaves NJ, et al.: Preventing antiretroviral anarchy in sub-Saharan Africa. Lancet 2001, 358:410–414.PubMedCrossRefGoogle Scholar
  8. 8.
    Popp D, Fisher JD: First, do no harm: a call for emphasizing adherence and HIV prevention interventions in active antiretroviral therapy programs in the developing world. AIDS 2002, 16:676–678.PubMedCrossRefGoogle Scholar
  9. 9.
    Stevens W, Kaye S, Corrah T: Antiretroviral therapy in Africa. BMJ 2004, 328:280–282.PubMedCrossRefGoogle Scholar
  10. 10.
    Bangsberg DR, Moss AR, Deeks SG: Paradoxes of HIV antiretroviral adherence and drug resistance. J Antimicrob Chemother 2004, 53:696–699.PubMedCrossRefGoogle Scholar
  11. 11.
    Sethi AK, Celentano DD, Gange SJ, et al.: Association between adherence to antiretroviral therapy and human immunodeficiency virus drug resistance. Clin Infect Dis 2003, 37:1112–1118.PubMedCrossRefGoogle Scholar
  12. 12.
    Harrigan R, Dong W, Alexander C, et al.: The association between drug resistance and adherence determined by two independent methods in a large cohort of drug naive individuals starting triple therapy. Paper presented at the 2nd International Conference on HIV Treatment and Pathogenesis. Paris, France; July 13–17, 2003.Google Scholar
  13. 13.
    Braithwaite RS, Shechter S, Roberts MS, et al.: Explaining variability in the relationship between antiretroviral adherence and HIV mutation accumulation. J Antimicrob Chemother 2006, 58:1036–1043.PubMedCrossRefGoogle Scholar
  14. 14.
    Moore DM, Hogg RS, Yip B, et al.: Regimen-dependent variations in adherence to therapy and virological suppression in patients initiating protease inhibitor-based highly active antiretroviral therapy. HIV Med 2006, 7:311–316.PubMedCrossRefGoogle Scholar
  15. 15.
    Harrigan P, Brumme C, Sattha B, et al.: The relationship between resistance and adherence and the accumulation of mutations in drug naive individuals starting HAART is specific to individual drug classes. Antivir Therapy 2005, 10:S139.Google Scholar
  16. 16.
    Bangsberg DR, Acosta E, Gupta R, et al.: Differences in protease and non-nucleoside reverse transcriptase inhibitor adherence-resistance relationships are explained by virologic fitness. AIDS 2005, 20:223–231.Google Scholar
  17. 17.
    Hermankova M, Ray SC, Ruff C, et al.: HIV-1 drug resistance profiles in children and adults with viral load of < 50 copies/mL receiving combination therapy. JAMA 2001, 286:196–207.PubMedCrossRefGoogle Scholar
  18. 18.
    Paterson DL, Swindells S, Mohr J, et al.: Adherence to protease inhibitor therapy and outcomes in patients with HIV infection. Ann Intern Med 2000, 133:21–30.PubMedGoogle Scholar
  19. 19.
    Bangsberg DR, Hecht FM, Charlebois ED, et al.: Adherence to protease inhibitors, HIV-1 viral load, and development of drug resistance in an indigent population. AIDS 2000, 14:357–366.PubMedCrossRefGoogle Scholar
  20. 20.
    Arnsten JH, Demas PA, Farzadegan H, et al.: Antiretroviral therapy adherence and viral suppression in HIV-infected drug users: comparison of self-report and electronic monitoring. Clin Infect Dis 2001, 33:1417–1423.PubMedCrossRefGoogle Scholar
  21. 21.
    Bangsberg DR, Deeks SG: Is average adherence to HIV antiretroviral therapy enough? J Gen Intern Med 2002, 17:812–813.PubMedCrossRefGoogle Scholar
  22. 22.
    Walmsley S, Bernstein B, King M, et al.: Lopinavir-ritonavir versus nelfinavir for the initial treatment of HIV infection. N Engl J Med 2002, 346:2039–2046.PubMedCrossRefGoogle Scholar
  23. 23.
    Staszewski S, Morales-Ramirez J, Tashima KT, et al.: Efavirenz plus zidovudine and lamivudine, efavirenz plus indinavir, and indinavir plus zidovudine and lamivudine in the treatment of HIV-1 infection in adults. Study 006 Team. N Engl J Med 1999, 341:1865–1873.PubMedCrossRefGoogle Scholar
  24. 24.
    Maggiolo F, Ravasio L, Ripamonti D, et al.: Similar adherence rates favor different virologic outcomes for patients treated with nonnucleoside analogues or protease inhibitors. Clin Infect Dis 2005, 40:158–163.PubMedCrossRefGoogle Scholar
  25. 25.
    King MS, Brun SC, Kempf DJ: Relationship between adherence and the development of resistance in antiretroviral-naive, HIV-1-infected patients receiving lopinavir/ritonavir or nelfinavir. J Infect Dis 2005, 191:2046–2052.PubMedCrossRefGoogle Scholar
  26. 26.
    Bangsberg DR: Less than 95% adherence to nonnucleoside reverse-transcriptase inhibitor therapy can lead to viral suppression. Clin Infect Dis 2006, 43:939–941.PubMedCrossRefGoogle Scholar
  27. 27.
    Gross R, Yip B, Wood E, et al.: Boosted PI are more forgiving of suboptimal adherence than non-boosted PI or NNRTI. Paper presented at the 13th Conference on Retroviruses and Opportunistic Infections. Denver, CO; February 5–8, 2006.Google Scholar
  28. 28.
    Clavel F, Hance AJ: HIV drug resistance. N Engl J Med 2004, 350:1023–1035.PubMedCrossRefGoogle Scholar
  29. 29.
    Deeks SG: Treatment of antiretroviral-drug-resistant HIV-1 infection. Lancet 2003, 362:2002–2011.PubMedCrossRefGoogle Scholar
  30. 30.
    Smerdon SJ, Jager J, Wang J, et al.: Structure of the binding site for nonnucleoside inhibitors of the reverse transcriptase of human immunodeficiency virus type 1. Proc. Natl Acad Sci U S A 1994, 91:3911–3915.PubMedCrossRefGoogle Scholar
  31. 31.
    Gerondelis P, Archer RH, Palaniappan C, et al.: The P236L delavirdine-resistant human immunodeficiency virus type 1 mutant is replication defective and demonstrates alterations in both RNA 5′-end-and DNA 3′-end-directed RNase H activities. J Virol 1999, 73:5803–5813.PubMedGoogle Scholar
  32. 32.
    Iglesias-Ussel MD, Casado C, Yuste E, et al.: In vitro analysis of human immunodeficiency virus type 1 resistance to nevirapine and fitness determination of resistant variants. J Gen Virol 2002, 83:93–101.PubMedGoogle Scholar
  33. 33.
    Collins JA, Thompson MG, Paintsil E, et al.: Competitive fitness of nevirapine-resistant human immunodeficiency virus type 1 mutants. J Virol 2004, 78:603–611.PubMedCrossRefGoogle Scholar
  34. 34.
    Dykes C, Fox K, Lloyd A, et al.: Impact of clinical reverse transcriptase sequences on the replication capacity of HIV-1 drug-resistant mutants. Virology 2001, 285:193–203.PubMedCrossRefGoogle Scholar
  35. 35.
    Joly V, Descamps D, Peytavin G, et al.: Evolution of human immunodeficiency virus type 1 (HIV-1) resistance mutations in nonnucleoside reverse transcriptase inhibitors (NNRTIs) in HIV-1-infected patients switched to antiretroviral therapy without NNRTIs. Antimicrob Agents Chemother 2004, 48:172–175.PubMedCrossRefGoogle Scholar
  36. 36.
    White KL, Margot NA, Wrin T, et al.: Molecular mechanisms of resistance to human immunodeficiency virus type 1 with reverse transcriptase mutations K65R and K65R+M184V and their effects on enzyme function and viral replication capacity. Antimicrob Agents Chemother 2002, 46:3437–3446.PubMedCrossRefGoogle Scholar
  37. 37.
    Hu Z, Giguel F, Hatano H, et al.: Fitness comparison of thymidine analog resistance pathways in human immunodeficiency virus type 1. J Virol 2006, 80:7020–7027.PubMedCrossRefGoogle Scholar
  38. 38.
    Weber J, Chakraborty B, Weberova J, et al.: Diminished replicative fitness of primary human immunodeficiency virus type 1 isolates harboring the K65R mutation. J Clin Microbiol 2005, 43:1395–1400.PubMedCrossRefGoogle Scholar
  39. 39.
    Harrigan PR, Bloor S, Larder BA: Relative replicative fitness of zidovudine-resistant human immunodeficiency virus type 1 isolates in vitro. J Virol 1998, 72:3773–3778.PubMedGoogle Scholar
  40. 40.
    Gallant JE, Staszewski S, Pozniak AL, et al.: Efficacy and safety of tenofovir DF vs stavudine in combination therapy in antiretroviral-naive patients: a 3-year randomized trial. JAMA 2004, 292:191–201.PubMedCrossRefGoogle Scholar
  41. 41.
    Deeks SG, Hoh R, Neilands TB, et al.: Interruption of treatment with individual therapeutic drug classes in adults with multidrug-resistant HIV-1 infection. J Infect Dis 2005, 192:1537–1544.PubMedCrossRefGoogle Scholar
  42. 42.
    Johnson VA, Brun-Vezinet F, Clotet B, et al.: Update of the drug resistance mutations in HIV-1: Fall 2006. Top HIV Med 2006, 14:125–130.PubMedGoogle Scholar
  43. 43.
    Martinez-Picado J, Savara AV, Sutton L, D’Aquila RT: Replicative fitness of protease inhibitor-resistant mutants of human immunodeficiency virus type 1. J Virol 1999, 73:3744–3752.PubMedGoogle Scholar
  44. 44.
    Zennou V, Mammano F, Paulous S, et al.: Loss of viral fitness associated with multiple Gag and Gag-Pol processing defects in human immunodeficiency virus type 1 variants selected for resistance to protease inhibitors in vivo. J Virol 1998, 72:3300–3306.PubMedGoogle Scholar
  45. 45.
    Bangsberg DR, Acosta EP, Gupta R, et al.: Adherence-resistance relationships for protease and non-nucleoside reverse transcriptase inhibitors explained by virological fitness. AIDS 2006, 20:223–231.PubMedCrossRefGoogle Scholar
  46. 46.
    Havlir DV, Hellmann NS, Petropoulos CJ, et al.: Drug susceptibility in HIV infection after viral rebound in patients receiving indinavir-containing regimens. JAMA 2000, 283:229–234.PubMedCrossRefGoogle Scholar
  47. 47.
    Kempf DJ, King MS, Bernstein B, et al.: Incidence of resistance in a double-blind study comparing lopinavir/ritonavir plus stavudine and lamivudine to nelfinavir plus stavudine and lamivudine. J Infect Dis 2004, 189:51–60.PubMedCrossRefGoogle Scholar
  48. 48.
    Eron J Jr, Yeni P, Gathe J Jr, et al.: The KLEAN study of fosamprenavir-ritonavir versus lopinavir-ritonavir, each in combination with abacavir-lamivudine, for initial treatment of HIV infection over 48 weeks: a randomised non-inferiority trial. Lancet 2006, 368:476–482.PubMedCrossRefGoogle Scholar
  49. 49.
    Friend J, Parkin N, Liegler T, et al.: Isolated lopinavir resistance after virological rebound of a ritonavir/lopinavir-based regimen. AIDS 2004, 18:1965–1966.PubMedCrossRefGoogle Scholar
  50. 50.
    Lu J, Deeks SG, Hoh R, et al.: Rapid emergence of enfuvirtide resistance in HIV-1-infected patients: results of a clonal analysis. J Acquir Immune Defic Syndr 2006, 43:60–64.PubMedCrossRefGoogle Scholar
  51. 51.
    Deeks SG, Lu J, Hoh R, et al.: Interruption of enfuvirtide in HIV-1-infected adults with incomplete viral suppression on an enfuvirtide-based regimen. J Infect Dis 2007, 195:387–391.PubMedCrossRefGoogle Scholar
  52. 52.
    Gardner EM, Burman WJ, Maravi ME, Davidson AJ: Selective drug taking during combination antiretroviral therapy in an unselected clinic population. J Acquir Immune Defic Syndr 2005, 40:294–300.PubMedCrossRefGoogle Scholar
  53. 53.
    Mills EJ, Nachega JB, Bangsberg DR, et al.: Adherence to HAART: a systematic review of developed and developing nation patient-reported barriers and facilitators. PLoS Med 2006, 3:e438.PubMedCrossRefGoogle Scholar
  54. 54.
    Parienti J, Massari V, Descamps D, et al.: Predictors of virologic failure and resistance in HIV-infected patients treated with nevirapine or efavirenz-based antiretroviral therapy. Clin Infect Dis 2004, 38:1311–1316.PubMedCrossRefGoogle Scholar
  55. 55.
    Spacek LA, Shihab HM, Kamya MR, et al.: Response to antiretroviral therapy in HIV-infected patients attending a public, urban clinic in Kampala, Uganda. Clin Infect Dis 2006, 42:252–259.PubMedCrossRefGoogle Scholar
  56. 56.
    Oyugi JH, Byakika J, Ragland K, et al.: Treatment interruptions predict drug resistance in HIV+ individuals purchasing fixed-dose combination generic antiretroviral therapy in Kampala, Uganda. AIDS 2007, In press.Google Scholar
  57. 57.
    Mannheimer S, Friedland G, Matts J, et al.: The consistency of adherence to antiretroviral therapy predicts biologic outcomes for human immunodeficiency virus-infected persons in clinical trials. Clin Infect Dis 2002, 34:1115–1121.PubMedCrossRefGoogle Scholar
  58. 58.
    Moss AR, Hahn JA, Perry S, et al.: Adherence to highly active antiretroviral therapy in the homeless population in San Francisco: a prospective study. Clin Infect Dis 2004, 39:1190–1198.PubMedCrossRefGoogle Scholar
  59. 59.
    Delfraissy J, Flandre P, Delaugerre C, et al.: MONARK Trial (MONotherapy AntiRetroviral Kaletra): 48-week analysis of lopinavir/ritonavir (LPV/r) monotherapy compared to LPV/r + zidovudine/lamivudine (AZT/3TC) in antiretroviral-naive patients. Paper presented at the XVI International AIDS Conference. Toronto, Canada; August 13–18, 2006.Google Scholar
  60. 60.
    Arribas JR, Pulido F, Delgado R, et al.: Lopinavir/ritonavir as single-drug therapy for maintenance of HIV-1 viral suppression: 48-week results of a randomized, controlled, open-label, proof-of-concept pilot clinical trial (OK Study). J Acquir Immune Defic Syndr 2005, 40:280–287.PubMedCrossRefGoogle Scholar
  61. 61.
    McKinnon JE, Arribas JR, Pulido F, et al.: The level of persistent HIV viremia does not increase after successful simplification of maintenance therapy to lopinavir/ritonavir alone. AIDS 2006, 20:2331–2335.PubMedCrossRefGoogle Scholar
  62. 62.
    Swindells S, DiRienzo AG, Wilkin T, et al.: Regimen simplification to atazanavir-ritonavir alone as maintenance antiretroviral therapy after sustained virologic suppression. JAMA 2006, 296:806–814.PubMedCrossRefGoogle Scholar
  63. 63.
    Gulick RM, Ribaudo HJ, Shikuma CM, et al.: Triple-nucleoside regimens versus efavirenz-containing regimens for the initial treatment of HIV-1 infection. N Engl J Med 2004, 350:1850–1861.PubMedCrossRefGoogle Scholar
  64. 64.
    Markowitz M, Hill-Zabala C, Lang J, et al.: Induction with abacavir/lamivudine/zidovudine plus efavirenz for 48 weeks followed by 48-week maintenance with abacavir/lamivudine/zidovudine alone in antiretroviral-naive HIV-1-infected patients. J Acquir Immune Defic Syndr 2005, 39:257–264.PubMedCrossRefGoogle Scholar
  65. 65.
    Erickson DA, Mather G, Trager WF, et al.: Characterization of the in vitro biotransformation of the HIV-1 reverse transcriptase inhibitor nevirapine by human hepatic cytochromes P-450. Drug Metab Dispos 1999, 27:1488–1495.PubMedGoogle Scholar
  66. 66.
    Mouly S, Lown KS, Kornhauser D, et al.: Hepatic but not intestinal CYP3A4 displays dose-dependent induction by efavirenz in humans. Clin Pharmacol Ther 2002, 72:1–9.PubMedCrossRefGoogle Scholar
  67. 67.
    Haas DW, Ribaudo HJ, Kim RB, et al.: Pharmacogenetics of efavirenz and central nervous system side effects: an Adult AIDS Clinical Trials Group study. AIDS 2004, 18:2391–2400.PubMedGoogle Scholar
  68. 68.
    Haas DW, Smeaton LM, Shafer RW, et al.: Pharmacogenetics of long-term responses to antiretroviral regimens containing efavirenz and/or nelfinavir: an Adult Aids Clinical Trials Group Study. J Infect Dis 2005, 192:1931–1942.PubMedCrossRefGoogle Scholar
  69. 69.
    Hasse B, Gunthard HF, Bleiber G, Krause M: Efavirenz intoxication due to slow hepatic metabolism. Clin Infect Dis 2005, 40:e22–23.PubMedCrossRefGoogle Scholar
  70. 70.
    Owen A, Almond L, Hartkoorn R, et al.: Relevance of drug transporters and drug metabolism enzymes to nevirapine: Superimposition of host genotype. Paper presented at the 12th Conference on Retroviruses and Opportunistic Infections. Boston, MA; February 22–25, 2005Google Scholar
  71. 71.
    Rodriguez-Novoa S, Barreiro P, Rendon A, et al.: Influence of 516G>T polymorphisms at the gene encoding the CYP450-2B6 isoenzyme on efavirenz plasma concentrations in HIV-infected subjects. Clin Infect Dis 2005, 40:1358–1361.PubMedCrossRefGoogle Scholar
  72. 72.
    Rotger M, Colombo S, Furrer H, et al.: Influence of CYP2B6 polymorphism on plasma and intracellular concentrations and toxicity of efavirenz and nevirapine in HIV-infected patients. Pharmacogenet Genomics 2005, 15:1–5.PubMedGoogle Scholar
  73. 73.
    Ribaudo HJ, Haas DW, Tierney C, et al.: Pharmacogenetics of plasma efavirenz exposure after treatment discontinuation: an Adult AIDS Clinical Trials Group Study. Clin Infect Dis 2006, 42:401–407.PubMedCrossRefGoogle Scholar
  74. 74.
    Fichtenbaum CJ, Gerber JG: Interactions between antiretroviral drugs and drugs used for the therapy of the metabolic complications encountered during HIV infection. Clin Pharmacokinet 2002, 41:1195–1211.PubMedCrossRefGoogle Scholar
  75. 75.
    Sham HL, Betebenner DA, Herrin T, et al.: Synthesis and antiviral activities of the major metabolites of the HIV protease inhibitor ABT-378 (lopinavir). Bioorg Med Chem Lett 2001, 11:1351–1353.PubMedCrossRefGoogle Scholar
  76. 76.
    Mouly SJ, Matheny C, Paine MF, et al.: Variation in oral clearance of saquinavir is predicted by CYP3A5*1 genotype but not by enterocyte content of cytochrome P450 3A5. Clin Pharmacol Ther 2005, 78:605–618.PubMedCrossRefGoogle Scholar
  77. 77.
    Zhang KE, Wu E, Patick AK, et al.: Circulating metabolites of the human immunodeficiency virus protease inhibitor nelfinavir in humans: structural identification, levels in plasma, and antiviral activities. Antimicrob Agents Chemother 2001, 45:1086–1093.PubMedCrossRefGoogle Scholar
  78. 78.
    de Morais SM, Wilkinson GR, Blaisdell J, et al.: The major genetic defect responsible for the polymorphism of S-mephenytoin metabolism in humans. J Biol Chem 1994, 269:15419–15422.PubMedGoogle Scholar
  79. 79.
    Xie HG, Kim RB, Stein CM, et al.: Genetic polymorphism of (S)-mephenytoin 4′-hydroxylation in populations of African descent. Br J Clin Pharmacol 1999, 48:402–408.PubMedCrossRefGoogle Scholar
  80. 80.
    Saitoh A, Singh KK, Powell CA, et al.: An MDR1-3435 variant is associated with higher plasma nelfinavir levels and more rapid virologic response in HIV-1 infected children. AIDS 2005, 19:371–380.PubMedCrossRefGoogle Scholar
  81. 81.
    Colombo S, Soranzo N, Rotger M, et al.: Influence of ABCB1, ABCC1, ABCC2, and ABCG2 haplotypes on the cellular exposure of nelfinavir in vivo. Pharmacogenet Genomics 2005, 15:599–608.PubMedCrossRefGoogle Scholar
  82. 82.
    Huisman MT, Smit JW, Crommentuyn KM, et al.: Multidrug resistance protein 2 (MRP2) transports HIV protease inhibitors, and transport can be enhanced by other drugs. AIDS 2002, 16:2295–2301.PubMedCrossRefGoogle Scholar
  83. 83.
    Kim RB, Fromm MF, Wandel C, et al.: The drug transporter P-glycoprotein limits oral absorption and brain entry of HIV-1 protease inhibitors. J Clin Invest 1998, 101:289–294.PubMedCrossRefGoogle Scholar
  84. 84.
    Schuetz JD, Connelly MC, Sun D, et al.: MRP4: A previously unidentified factor in resistance to nucleoside-based antiviral drugs. Nat Med 1999, 5:1048–1051.PubMedCrossRefGoogle Scholar
  85. 85.
    Wijnholds J, Mol CA, van Deemter L, et al.: Multidrug-resistance protein 5 is a multispecific organic anion transporter able to transport nucleotide analogs. Proc. Natl Acad Sci U S A 2000, 97:7476–7481.PubMedCrossRefGoogle Scholar
  86. 86.
    Anderson PL, Lamba J, Aquilante CL, et al.: Pharmacogenetic characteristics of indinavir, zidovudine, and lamivudine therapy in HIV-infected adults: a pilot study. J Acquir Immune Defic Syndr 2006, 42:441–449.PubMedCrossRefGoogle Scholar
  87. 87.
    Taylor S, Allen S, Fidler S, et al.: Stop study: after discontinuation of efavirenz, plasma concentrations may persist for 2 weeks or longer. Paper presented at the 11th Conference on Retroviruses and Opportunistic Infections. San Francisco, CA; February 8–11, 2004.Google Scholar

Copyright information

© Current Medicine Group LLC 2007

Authors and Affiliations

  • David R. Bangsberg
    • 1
  • Deanna L. Kroetz
  • Steven G. Deeks
  1. 1.San Francisco General HospitalUCSFSan FranciscoUSA

Personalised recommendations