Current HIV/AIDS Reports

, Volume 4, Issue 1, pp 29–35

Current concepts of HIV transmission

  • Gavin Morrow
  • Laurence Vachot
  • Panagiotis Vagenas
  • Melissa Robbiani


The epithelial surface acts as an effective barrier against HIV. The various mucosal surfaces possess specific mechanisms that help prevent the transmission of virus. Yet, HIV manages to cross these barriers to establish infection, and this is enhanced in the presence of physical trauma or pre-existing sexually transmitted infections. Once breached, the virus accesses numerous cells such as dendritic cells, T cells, and macrophages present in the underlying epithelia. Although these cells should contribute to innate and adaptive immunity to infection, they also serve as permissive targets to HIV and help in the initiation and dissemination of infection. Understanding how the various mucosal surfaces, and the cells within them, respond to the presence of HIV is essential in the design of therapeutic agents that will help to prevent HIV transmission.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Recommended Reading

  1. 1.
    Miller CJ, Li Q, Abel K, et al.: Propagation and dissemination of infection after vaginal transmission of simian immunodeficiency virus. J Virol 2005, 79:9217–9227.PubMedCrossRefGoogle Scholar
  2. 2.
    Klotman ME, Chang TL: Defensins in innate antiviral immunity. Nat Rev Immunol 2006, 6:447–456.PubMedCrossRefGoogle Scholar
  3. 3.
    Lin AL, Johnson DA, Stephan KT, et al.: Salivary secretory leukocyte protease inhibitor increases in HIV infection. J Oral Pathol Med 2004, 33:410–416.PubMedCrossRefGoogle Scholar
  4. 4.
    Naarding MA, Ludwig IS, Groot F, et al.: Lewis X component in human milk binds DC-SIGN and inhibits HIV-1 transfer to CD4+ T lymphocytes. J Clin Invest 2005, 115:3256–3264.PubMedCrossRefGoogle Scholar
  5. 5.
    Schaefer TM, Fahey JV, Wright JA, et al.: Innate immunity in the human female reproductive tract: antiviral response of uterine epithelial cells to the TLR3 agonist poly(I:C). J Immunol 2005, 174:992–1002.PubMedGoogle Scholar
  6. 6.
    O’Neill LA: How toll-like receptors signal: what we know and what we don’t know. Curr Opin Immunol 2006, 18:3–9.PubMedCrossRefGoogle Scholar
  7. 7.
    Sumikawa Y, Asada H, Hoshino K, et al.: Induction of beta-defensin 3 in keratinocytes stimulated by bacterial lipopeptides through toll-like receptor 2. Microbes Infect 2006, 8:1513–1521.PubMedCrossRefGoogle Scholar
  8. 8.
    Sun L, Finnegan CM, Kish-Catalone T, et al.: Human beta-defensins suppress human immunodeficiency virus infection: potential role in mucosal protection. J Virol 2005, 79:14318–14329.PubMedCrossRefGoogle Scholar
  9. 9.
    Feng Z, Dubyak GR, Lederman MM, et al.: Cutting edge: human beta defensin 3—a novel antagonist of the HIV-1 coreceptor CXCR4. J Immunol 2006, 177:782–786.PubMedGoogle Scholar
  10. 10.
    Kuhn L, Trabattoni D, Kankasa C, et al.: Alpha-defensins in the prevention of HIV transmission among breastfed infants. J Acquir Immune Defic Syndr 2005, 39:138–142.PubMedGoogle Scholar
  11. 11.
    Berlier W, Cremel M, Hamzeh H, et al.: Seminal plasma promotes the attraction of Langerhans cells via the secretion of CCL20 by vaginal epithelial cells: involvement in the sexual transmission of HIV. Hum Reprod 2006, 21:1135–1142.PubMedCrossRefGoogle Scholar
  12. 12.
    Maher D, Wu X, Schacker T, et al.: HIV binding, penetration, and primary infection in human cervicovaginal tissue. Proc Natl Acad Sci U S A 2005, 102:11504–11509.PubMedCrossRefGoogle Scholar
  13. 13.
    Acheampong EA, Parveen Z, Muthoga LW, et al.: Molecular interactions of human immunodeficiency virus type 1 with primary human oral keratinocytes. J Virol 2005, 79:8440–8453.PubMedCrossRefGoogle Scholar
  14. 14.
    Asin SN, Fanger MW, Wildt-Perinic D, et al.: Transmission of HIV-1 by primary human uterine epithelial cells and stromal fibroblasts. J Infect Dis 2004, 190:236–245.PubMedCrossRefGoogle Scholar
  15. 15.
    Berlier W, Bourlet T, Lawrence P, et al.: Selective sequestration of X4 isolates by human genital epithelial cells: implication for virus tropism selection process during sexual transmission of HIV. J Med Virol 2005, 77:465–474.PubMedCrossRefGoogle Scholar
  16. 16.
    Alfsen A, Yu H, Magerus-Chatinet A, et al.: HIV-1-infected blood mononuclear cells form an integrin-and agrin-dependent viral synapse to induce efficient HIV-1 transcytosis across epithelial cell monolayer. Mol Biol Cell 2005, 16:4267–4279.PubMedCrossRefGoogle Scholar
  17. 17.
    Niess JH, Brand S, Gu X, et al.: CX3CR1-mediated dendritic cell access to the intestinal lumen and bacterial clearance. Science 2005, 307:254–258.PubMedCrossRefGoogle Scholar
  18. 18.
    Turville SG, Peretti S, Pope M: Lymphocyte-dendritic cell interactions and mucosal acquisition of SIV/HIV infection. Curr Opin HIV AID 2006, 1:3–9.Google Scholar
  19. 19.
    Turville SG, Santos JJ, Frank I, et al.: Immunodeficiency virus uptake, turnover and two phase transfer in human dendritic cells. Blood 2004, 103:2170–2179.PubMedCrossRefGoogle Scholar
  20. 20.
    Turville SG, Vermeire K, Balzarini J, et al.: Sugar-binding proteins potently inhibit dendritic cell human immunodeficiency virus type 1 (HIV-1) infection and dendritic cell-directed HIV-1 transfer. J Virol 2005, 79:13519–13527.PubMedCrossRefGoogle Scholar
  21. 21.
    Williams BG, Lloyd-Smith JO, Gouws E, et al.: The potential impact of male circumcision on HIV in sub-Saharan Africa. PLoS Med 2006, 3:e262.PubMedCrossRefGoogle Scholar
  22. 22.
    Kuehn BM: Routine male circumcision could prevent millions of HIV infections in Africa. JAMA 2006, 296:755.PubMedCrossRefGoogle Scholar
  23. 23.
    Meier AS, Bukusi EA, Cohen CR, et al.: Independent association of hygiene, socioeconomic status, and circumcision with reduced risk of HIV infection among Kenyan men. J Acquir Immune Defic Syndr 2006, 43:117–118.PubMedCrossRefGoogle Scholar
  24. 24.
    McCoombe SG, Short RV: Potential HIV-1 target cells in the human penis. AIDS 2006, 20:1491–1495.PubMedCrossRefGoogle Scholar
  25. 25.
    Fletcher PS, Elliott J, Grivel JC, et al.: Ex vivo culture of human colorectal tissue for the evaluation of candidate microbicides. AIDS 2006, 20:1237–1245.PubMedCrossRefGoogle Scholar
  26. 26.
    Miyake A, Ibuki K, Enose Y, et al.: Rapid dissemination of a pathogenic simian/human immunodeficiency virus to systemic organs and active replication in lymphoid tissues following intrarectal infection. J Gen Virol 2006, 87:1311–1320.PubMedCrossRefGoogle Scholar
  27. 27.
    Gurney KB, Elliott J, Nassanian H, et al.: Binding and transfer of human immunodeficiency virus by DC-SIGN+ cells in human rectal mucosa. J Virol 2005, 79: 5762–5773.PubMedCrossRefGoogle Scholar
  28. 28.
    Jotwani R, Muthukuru M, Cutler CW: Increase in HIV receptors/co-receptors/alpha-defensins in inflamed human gingiva. J Dent Res 2004, 83:371–377.PubMedCrossRefGoogle Scholar
  29. 29.
    Burleigh L, Lozach PY, Schiffer C, et al.: Infection of dendritic cells (DCs), not DC-SIGN-mediated internalization of human immunodeficiency virus, is required for long-term transfer of virus to T cells. J Virol 2006, 80:2949–2957.PubMedCrossRefGoogle Scholar
  30. 30.
    Cavrois M, Neidleman J, Kreisberg JF, et al.: Human immunodeficiency virus fusion to dendritic cells declines as cells mature. J Virol 2006, 80:1992–1999.PubMedCrossRefGoogle Scholar
  31. 31.
    Granelli-Piperno A, Shimeliovich I, Pack M, et al.: HIV-1 selectively infects a subset of nonmaturing BDCA1-positive dendritic cells in human blood. J Immunol 2006, 176:991–998.PubMedGoogle Scholar
  32. 32.
    Wiley RD, Gummuluru S: Immature dendritic cell-derived exosomes can mediate HIV-1 trans infection. Proc Natl Acad Sci U S A 2006, 103:738–743.PubMedCrossRefGoogle Scholar
  33. 33.
    Schmidt B, Scott I, Whitmore RG, et al.: Low-level HIV infection of plasmacytoid dendritic cells: onset of cytopathic effects and cell death after PDC maturation. Virology 2004, 329:280–288.PubMedGoogle Scholar
  34. 34.
    Groot F, van Capel TM, Kapsenberg ML, et al.: Opposing roles of blood myeloid and plasmacytoid dendritic cells in HIV-1 in fection of T cells: transmission facilitation versus replication inhibition. Blood 2006, 108:1957–1964.PubMedCrossRefGoogle Scholar
  35. 35.
    Moris A, Pajot A, Blanchet F, et al.: Dendritic cells and HIV-specific CD4+ T cells: HIV antigen presentation, T cell activation, viral transfer. Blood 2006, 108:1643–1651.PubMedCrossRefGoogle Scholar
  36. 36.
    Thoulouze MI, Sol-Foulon N, Blanchet F, et al.: Human immunodeficiency virus type-1 infection impairs the formation of the immunological synapse. Immunity 2006, 24:547–561.PubMedCrossRefGoogle Scholar
  37. 37.
    Estes JD, Li Q, Reynolds MR, et al.: Premature induction of an immunosuppressive regulatory T cell response during acute simian immunodeficiency virus infection. J Infect Dis 2006, 193:703–712.PubMedCrossRefGoogle Scholar
  38. 38.
    Granelli-Piperno A, Golebiowska A, Trumpfheller C, et al.: HIV-1-infected monocyte-derived dendritic cells do not undergo maturation but can elicit IL-10 production and T cell regulation. Proc Natl Acad Sci U S A 2004, 101:7669–7674.PubMedCrossRefGoogle Scholar
  39. 39.
    Oswald-Richter K, Grill SM, Shariat N, et al.: HIV infection of naturally occurring and genetically reprogrammed human regulatory T-cells. PLoS Biol 2004, 2:E198.PubMedCrossRefGoogle Scholar
  40. 40.
    Galvin SR, Cohen MS: The role of sexually transmitted diseases in HIV transmission. Nat Rev Microbiol 2004, 2:33–42.PubMedCrossRefGoogle Scholar
  41. 41.
    Freeman EE, Weiss HA, Glynn JR, et al.: Herpes simplex virus 2 infection increases HIV acquisition in men and women: systematic review and meta-analysis of longitudinal studies. AIDS 2006, 20:73–83.PubMedCrossRefGoogle Scholar
  42. 42.
    Bosnjak L, Miranda-Saksena M, Koelle DM, et al.: Herpes simplex virus infection of human dendritic cells induces apoptosis and allows cross-presentation via uninfected dendritic cells. J Immunol 2005, 174:2220–2227.PubMedGoogle Scholar
  43. 43.
    Peretti S, Shaw A, Blanchard J, et al.: Immunomodulatory effects of HSV-2 infection on immature macaque dendritic cells modify innate and adaptive responses. Blood 2005, 106:1305–1313.PubMedCrossRefGoogle Scholar
  44. 44.
    Rouse BT, Sarangi PP, Suvas S: Regulatory T cells in virus infections. Immunol Rev 2006, 212:272–286.PubMedCrossRefGoogle Scholar
  45. 45.
    Kawamura K, Kadowaki N, Kitawaki T, et al.: Virus-stimulated plasmacytoid dendritic cells induce CD4+ cytotoxic regulatory T cells. Blood 2006, 107:1031–1038.PubMedCrossRefGoogle Scholar
  46. 46.
    Diaz GA, Koelle DM: Human CD4+ CD25 high cells suppress proliferative memory lymphocyte responses to herpes simplex virus type 2. J Virol 2006, 80:8271–8273.PubMedCrossRefGoogle Scholar
  47. 47.
    John M, Keller MJ, Fam EH, et al.: Cervicovaginal secretions contribute to innate resistance to herpes simplex virus infection. J Infect Dis 2005, 192:1731–1740.PubMedCrossRefGoogle Scholar
  48. 48.
    Fernández-Romero JA, Thorn M, Titchen K, et al.: Carrageenan/MIV-150 (PC-815), a combination microbicide. Sex Transm Dis 2006, In press.Google Scholar
  49. 49.
    Klasse PJ, Shattock RJ, Moore JP: Which topical microbicides for blocking HIV-1 transmission will work in the real world? PLoS Med 2006, [Epub ahead of print].Google Scholar
  50. 50.
    Trapp S, Turville SG, Robbiani, M: Slamming the door on unwanted guests: why preemptive strikes at the mucosa may be the best strategy against HIV. J Leuko Biol 2006, 80:1076–1083.PubMedCrossRefGoogle Scholar

Copyright information

© Current Medicine Group LLC 2007

Authors and Affiliations

  • Gavin Morrow
    • 1
  • Laurence Vachot
  • Panagiotis Vagenas
  • Melissa Robbiani
  1. 1.Center for Biomedical ResearchPopulation CouncilNew YorkUSA

Personalised recommendations