Advertisement

Current Hepatology Reports

, Volume 18, Issue 4, pp 371–382 | Cite as

The Current Landscape of Systemic Therapies for Advanced Hepatocellular Carcinoma

  • Prachi Rana
  • John Haydek
  • Anjana PillaiEmail author
Hepatic Cancer (N Parikh, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Hepatic Cancer

Abstract

Purpose of review

As the global burden of HCC continues to rise, there is an overwhelming need for new systemic therapies for the treatment of advanced-stage HCC. In this review, we explore the current landscape of approved therapies for intermediate-stage HCC after progression with locoregional therapy or in those who present with advanced-stage HCC not amenable to curative options.

Recent findings

In the last 10 years, several agents have been studied in the first and second-line treatment of HCC but failed to show clinical benefit. Between 2008 and 2016, sorafenib was the sole agent used in the treatment of advanced-stage HCC. Recent strides have shown success with lenvatinib as an alternative agent for first-line treatment, and regorafenib, cabozantinib, ramucirumab, nivolumab, and pembrolizumab as second- and thrid-line agents in advanced HCC.

Summary

The next series of HCC trials are appropriately directed at combination therapies—combining targeted therapy with immunomodulators in the hopes of improving overall survival and ultimately getting closer to finding a cure.

Key Words

Hepatocellular carcinoma Liver cancer Advanced therapy Systemic therapy 

Notes

Compliance with ethical standards

Conflict of Interest

Prachi Rana and John Heydak each declare no conflicts of interest.

Anjana Pillai is on the speaker’s bureau for Eisai and Simply Speaking Hepatitis and served on speaker’s bureau for BTG. She is on the medical advisory board for Wako Diagnostics.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the author

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424.CrossRefGoogle Scholar
  2. 2.
    El–Serag HB, Rudolph KLJG. Hepatocellular carcinoma: epidemiology and molecular carcinogenesis. Gastroenterology. 2007;132(7):2557–76.PubMedGoogle Scholar
  3. 3.
    El-Serag HB. Epidemiology of Viral Hepatitis and Hepatocellular Carcinoma. Gastroenterology. 2012;142(6):1264–73.e1.PubMedPubMedCentralGoogle Scholar
  4. 4.
    Galle PR, Forner A, Llovet JM, Mazzaferro V, Piscaglia F, Raoul J-L, et al. EASL clinical practice guidelines: management of hepatocellular carcinoma. J Hepatol. 2018;69(1):182–236.Google Scholar
  5. 5.
    Marrero JA, Kulik LM, Sirlin CB, Zhu AX, Finn RS, Abecassis MM, et al. Diagnosis, staging, and management of hepatocellular carcinoma: 2018 practice guidance by the American Association for the Study of Liver Diseases. Hepatology. 2018;68(2):723–50.PubMedGoogle Scholar
  6. 6.
    Llovet JM, Ricci S, Mazzaferro V, Hilgard P, Gane E, Blanc JF, et al. Sorafenib in advanced hepatocellular carcinoma. N Engl J Med. 2008;359(4):378–90.PubMedGoogle Scholar
  7. 7.
    Cheng AL, Kang YK, Chen Z, Tsao CJ, Qin S, Kim JS, et al. Efficacy and safety of sorafenib in patients in the Asia-Pacific region with advanced hepatocellular carcinoma: a phase III randomised, double-blind, placebo-controlled trial. Lancet Oncol. 2009;10(1):25–34.PubMedGoogle Scholar
  8. 8.
    •• Kudo M, Finn RS, Qin S, Han K-H, Ikeda K, Piscaglia F, et al. Lenvatinib versus sorafenib in first-line treatment of patients with unresectable hepatocellular carcinoma: a randomised phase 3 non-inferiority trial. Lancet (Lond, Engl). 2018;391(10126):1163–73 Pivotal phase 3 trial which demonstrated non-inferiority and led to the approval of lenvatinib as a first line agent in advanced-stage HCC.Google Scholar
  9. 9.
    •• Bruix J, Qin S, Merle P, Granito A, Huang YH, Bodoky G, et al. Regorafenib for patients with hepatocellular carcinoma who progressed on sorafenib treatment (RESORCE): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet (London, England). 2017;389(10064):56–66 Pivotal phase 3 trial which led to the approval of the first agent for second-line therapy in patients with advanced-stage HCC. Google Scholar
  10. 10.
    •• Abou-Alfa GK, Meyer T, Cheng A-L, El-Khoueiry AB, Rimassa L, Ryoo B-Y, et al. Cabozantinib in Patients with Advanced and Progressing Hepatocellular Carcinoma. New Engl J Med. 2018;379(1):54-63. Pivotal phase 3 trial which led to the approval of cabozantinib as an alternative agent for second-line therapy in patients with advanced-stage HCC.Google Scholar
  11. 11.
    •• Zhu AX, Kang YK, Yen CJ, Finn RS, Galle PR, Llovet JM, et al. Ramucirumab after sorafenib in patients with advanced hepatocellular carcinoma and increased alpha-fetoprotein concentrations (REACH-2): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 2019;20(2):282–96 Pivotal phase 3 trial to show survival benefit in a biomarker-selected population.PubMedGoogle Scholar
  12. 12.
    •• El-Khoueiry AB, Sangro B, Yau T, Crocenzi TS, Kudo M, Hsu C, et al. Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040): an open-label, non-comparative, phase 1/2 dose escalation and expansion trial. Lancet (London, England). 2017;389(10088):2492–502 Phase I/II study that led to nivolumab approval as a 2nd line agent for advanced-stage HCC.Google Scholar
  13. 13.
    •• Zhu AX, Finn RS, Edeline J, Cattan S, Ogasawara S, Palmer D, et al. Pembrolizumab in patients with advanced hepatocellular carcinoma previously treated with sorafenib (KEYNOTE-224): a non-randomised, open-label phase 2 trial. Lancet Oncol. 2018;19(7):940–52 Phase I/II study that led to pembrolizumab’s approval as a 2nd line agent for advanced-stage HCC.PubMedGoogle Scholar
  14. 14.
    Abou-Alfa GK, Niedzwieski D, Knox JJ, Kaubisch A, Posey J, Tan BR, et al. Phase III randomized study of sorafenib plus doxorubicin versus sorafenib in patients with advanced hepatocellular carcinoma (HCC): CALGB 80802 (Alliance). J Clin Oncol. 2016;34(4_suppl):192.Google Scholar
  15. 15.
    Qin S, Bai Y, Lim HY, Thongprasert S, Chao Y, Fan J, et al. Randomized, multicenter, open-label study of oxaliplatin plus fluorouracil/leucovorin versus doxorubicin as palliative chemotherapy in patients with advanced hepatocellular carcinoma from Asia. J Clin Oncol. 2013;31(28):3501–8.PubMedGoogle Scholar
  16. 16.
    Yeo W, Mok TS, Zee B, Leung TW, Lai PB, Lau WY, et al. A randomized phase III study of doxorubicin versus cisplatin/interferon alpha-2b/doxorubicin/fluorouracil (PIAF) combination chemotherapy for unresectable hepatocellular carcinoma. J Natl Cancer Inst. 2005;97(20):1532–8.PubMedGoogle Scholar
  17. 17.
    Zhu AX, Rosmorduc O, Evans TRJ, Ross PJ, Santoro A, Carrilho FJ, et al. SEARCH: a phase III, randomized, double-blind, placebo-controlled trial of sorafenib plus erlotinib in patients with advanced hepatocellular carcinoma. J Clin Oncol. 2015;33(6):559–66.PubMedGoogle Scholar
  18. 18.
    Cheng AL, Kang YK, Lin DY, Park JW, Kudo M, Qin S, et al. Sunitinib versus sorafenib in advanced hepatocellular cancer: results of a randomized phase III trial. J Clin Oncol. 2013;31(32):4067–75.PubMedGoogle Scholar
  19. 19.
    Johnson PJ, Qin S, Park JW, Poon RT, Raoul JL, Philip PA, et al. Brivanib versus sorafenib as first-line therapy in patients with unresectable, advanced hepatocellular carcinoma: results from the randomized phase III BRISK-FL study. J Clin Oncol. 2013;31(28):3517–24.PubMedGoogle Scholar
  20. 20.
    Cainap C, Qin S, Huang W-T, Chung IJ, Pan H, Cheng Y, et al. Linifanib versus Sorafenib in patients with advanced hepatocellular carcinoma: results of a randomized phase III trial. J Clin Oncol. 2015;33(2):172–9.PubMedGoogle Scholar
  21. 21.
    Ikeda K, Kudo M, Kawazoe S, Osaki Y, Ikeda M, Okusaka T, et al. Phase 2 study of lenvatinib in patients with advanced hepatocellular carcinoma. J Gastroenterol. 2017;52(4):512–9.PubMedGoogle Scholar
  22. 22.
    Llovet JM, Decaens T, Raoul JL, Boucher E, Kudo M, Chang C, et al. Brivanib in patients with advanced hepatocellular carcinoma who were intolerant to sorafenib or for whom sorafenib failed: results from the randomized phase III BRISK-PS study. J Clin Oncol. 2013;31(28):3509–16.PubMedGoogle Scholar
  23. 23.
    Zhu AX, Kudo M, Assenat E, Cattan S, Kang YK, Lim HY, et al. Effect of everolimus on survival in advanced hepatocellular carcinoma after failure of sorafenib: the EVOLVE-1 randomized clinical trial. JAMA. 2014;312(1):57–67.PubMedGoogle Scholar
  24. 24.
    Zhu AX, Park JO, Ryoo B-Y, Yen C-J, Poon R, Pastorelli D, et al. Ramucirumab versus placebo as second-line treatment in patients with advanced hepatocellular carcinoma following first-line therapy with sorafenib (REACH): a randomised, double-blind, multicentre, phase 3 trial. Lancet Oncol. 2015;16(7):859–70.PubMedGoogle Scholar
  25. 25.
    Kudo M, Moriguchi M, Numata K, Hidaka H, Tanaka H, Ikeda M, et al. S-1 versus placebo in patients with sorafenib-refractory advanced hepatocellular carcinoma (S-CUBE): a randomised, double-blind, multicentre, phase 3 trial. Lancet Gastroenterol Hepatol. 2017;2(6):407–17.PubMedGoogle Scholar
  26. 26.
    Abou-Alfa GK, Qin S, Ryoo BY, Lu SN, Yen CJ, Feng YH, et al. Phase III randomized study of second line ADI-PEG 20 plus best supportive care versus placebo plus best supportive care in patients with advanced hepatocellular carcinoma. Ann Oncol. 2018;29(6):1402–8.PubMedGoogle Scholar
  27. 27.
    Rimassa L, Assenat E, Peck-Radosavljevic M, Pracht M, Zagonel V, Mathurin P, et al. Tivantinib for second-line treatment of MET-high, advanced hepatocellular carcinoma (METIV-HCC): a final analysis of a phase 3, randomised, placebo-controlled study. Lancet Oncol. 2018;19(5):682–93.PubMedGoogle Scholar
  28. 28.
    Kobayashi S, Ueshima K, Moriguchi M, Takayama T, Izumi N, Yoshiji H, et al. JET-HCC: A phase 3 randomized, double-blind, placebo-controlled study of tivantinib as a second-line therapy in patients with c-Met high hepatocellular carcinoma [abstract]. Ann Oncol. 2017;28(suppl_5).Google Scholar
  29. 29.
    Zhu YJ, Zheng B, Wang HY, Chen L. New knowledge of the mechanisms of sorafenib resistance in liver cancer. Acta Pharmacol Sin. 2017;38(5):614–22.PubMedPubMedCentralGoogle Scholar
  30. 30.
    Wilhelm SM, Dumas J, Adnane L, Lynch M, Carter CA, Schutz G, et al. Regorafenib (BAY 73-4506): a new oral multikinase inhibitor of angiogenic, stromal and oncogenic receptor tyrosine kinases with potent preclinical antitumor activity. Int J Cancer. 2011;129(1):245–55.PubMedGoogle Scholar
  31. 31.
    Bruix J, Tak WY, Gasbarrini A, Santoro A, Colombo M, Lim HY, et al. Regorafenib as second-line therapy for intermediate or advanced hepatocellular carcinoma: multicentre, open-label, phase II safety study. Eur J Cancer (Oxford, England : 1990). 2013;49(16):3412–9.Google Scholar
  32. 32.
    • Finn RS, Merle P, Granito A, Huang YH, Bodoky G, Pracht M, et al. Outcomes of sequential treatment with sorafenib followed by regorafenib for HCC: Additional analyses from the phase III RESORCE trial. J Hepatol. 2018;69(2):353–8 Analysis showing survival benefit in patients treated with sequential sorafenib-regorafenib treatment.PubMedGoogle Scholar
  33. 33.
    Pennacchietti S, Michieli P, Galluzzo M, Mazzone M, Giordano S, Comoglio PM. Hypoxia promotes invasive growth by transcriptional activation of the met protooncogene. Cancer Cell. 2003;3(4):347–61.PubMedGoogle Scholar
  34. 34.
    Rankin EB, Giaccia AJ. The Receptor Tyrosine Kinase AXL in Cancer Progression. Cancers. 2016;8(11):103.PubMedCentralGoogle Scholar
  35. 35.
    Firtina Karagonlar Z, Koc D, Iscan E, Erdal E, Atabey N. Elevated hepatocyte growth factor expression as an autocrine c-Met activation mechanism in acquired resistance to sorafenib in hepatocellular carcinoma cells. Cancer Sci. 2016;107(4):407–16.PubMedPubMedCentralGoogle Scholar
  36. 36.
    Kelley RK, Verslype C, Cohn AL, Yang TS, Su WC, Burris H, et al. Cabozantinib in hepatocellular carcinoma: results of a phase 2 placebo-controlled randomized discontinuation study. Ann Oncol. 2017;28(3):528–34.PubMedPubMedCentralGoogle Scholar
  37. 37.
    Sullivan LA, Brekken RA. The VEGF family in cancer and antibody-based strategies for their inhibition. mAbs. 2010;2(2):165–75.PubMedPubMedCentralGoogle Scholar
  38. 38.
    Tugues S, Koch S, Gualandi L, Li X, Claesson-Welsh L. Vascular endothelial growth factors and receptors: anti-angiogenic therapy in the treatment of cancer. Mol Asp Med. 2011;32(2):88–111.Google Scholar
  39. 39.
    Amini A, Masoumi Moghaddam S, Morris DL, Pourgholami MH. The critical role of vascular endothelial growth factor in tumor angiogenesis. Curr Cancer Drug Targets. 2012;12(1):23–43.PubMedGoogle Scholar
  40. 40.
    Tangkijvanich P, Anukulkarnkusol N, Suwangool P, Lertmaharit S, Hanvivatvong O, Kullavanijaya P, et al. Clinical characteristics and prognosis of hepatocellular carcinoma: analysis based on serum alpha-fetoprotein levels. J Clin Gastroenterol. 2000;31(4):302–8.PubMedGoogle Scholar
  41. 41.
    Nakazawa T, Hidaka H, Takada J, Okuwaki Y, Tanaka Y, Watanabe M, et al. Early increase in alpha-fetoprotein for predicting unfavorable clinical outcomes in patients with advanced hepatocellular carcinoma treated with sorafenib. Eur J Gastroenterol Hepatol. 2013;25(6):683–9.PubMedGoogle Scholar
  42. 42.
    Borzio M, Dionigi E, Rossini A, Marignani M, Sacco R, De Sio I, et al. External validation of the ITA.LI.CA prognostic system for patients with hepatocellular carcinoma: A multicenter cohort study. Hepatology (Baltimore, Md). 2018;67(6):2215–25.Google Scholar
  43. 43.
    A new prognostic system for hepatocellular carcinoma: a retrospective study of 435 patients: the Cancer of the Liver Italian Program (CLIP) investigators. Hepatology (Baltimore, Md). 1998;28(3):751-5.Google Scholar
  44. 44.
    • Sasidharan Nair V, Elkord E. Immune checkpoint inhibitors in cancer therapy: a focus on T-regulatory cells. Immunol Cell Biol. 2018;96(1):21–33 Succinct overview about the mechanisms of immune checkpoint inhibitors.PubMedGoogle Scholar
  45. 45.
    Sangro B, Gomez-Martin C, de la Mata M, Iñarrairaegui M, Garralda E, Barrera P, et al. A clinical trial of CTLA-4 blockade with tremelimumab in patients with hepatocellular carcinoma and chronic hepatitis C. J Hepatol. 2013;59(1):81–8.PubMedGoogle Scholar
  46. 46.
    Duffy AG, Ulahannan SV, Makorova-Rusher O, Rahma O, Wedemeyer H, Pratt D, et al. Tremelimumab in combination with ablation in patients with advanced hepatocellular carcinoma. J Hepatol. 2017;66(3):545–51.PubMedGoogle Scholar
  47. 47.
    Abou-Alfa GK, Chan SL, Furuse J, Galle PR, Kelley RK, Qin S, et al. A randomized, multicenter phase 3 study of durvalumab (D) and tremelimumab (T) as first-line treatment in patients with unresectable hepatocellular carcinoma (HCC): HIMALAYA study. J Clin Concol. 2018;36(15_suppl):TPS4144–TPS.Google Scholar
  48. 48.
    Bristol-Myers Squibb Announces Results from CheckMate -459 Study Evaluating Opdivo (nivolumab) as a First-Line Treatment for Patients with Unresectable Hepatocellular Carcinoma Bristol-Myers Squibb; 2019 [Available from: https://news.bms.com/press-release/bmy/bristol-myers-squibb-announces-results-checkmate-459-study-evaluating-opdivo-nivol.
  49. 49.
    Merck Provides Update on KEYNOTE-240, a Phase 3 Study of KEYTRUDA® (pembrolizumab) in Previously Treated Patients with Advanced Hepatocellular Carcinoma Merck.com: BusinessWire; 2019 [Available from: https://investors.merck.com/news/press-release-details/2019/Merck-Provides-Update-on-KEYNOTE-240-a-Phase-3-Study-of-KEYTRUDA-pembrolizumab-in-Previously-Treated-Patients-with-Advanced-Hepatocellular-Carcinoma/default.aspx.
  50. 50.
    Finn RS, Chan SL, Zhu AX, Knox JJ, Cheng A-L, Siegel AB, et al. KEYNOTE-240: Randomized phase III study of pembrolizumab versus best supportive care for second-line advanced hepatocellular carcinoma. J Clin Oncol. 2017;35(4_suppl):TPS503–TPS.Google Scholar
  51. 51.
    Lim HY, Merle P, Weiss KH, Yau T, Ross P, Mazzaferro V, et al. Phase II Studies with Refametinib or Refametinib plus Sorafenib in Patients with RAS-Mutated Hepatocellular Carcinoma. Clin Cancer Res. 2018;24(19):4650–61.PubMedGoogle Scholar
  52. 52.
    Neuzillet C, Tijeras-Raballand A, Cohen R, Cros J, Faivre S, Raymond E, et al. Targeting the TGFbeta pathway for cancer therapy. Pharmacol Ther. 2015;147:22–31.PubMedGoogle Scholar
  53. 53.
    Wojtowicz-Praga S. Reversal of tumor-induced immunosuppression by TGF-beta inhibitors. Investig New Drugs. 2003;21(1):21–32.Google Scholar
  54. 54.
    Faivre SJ, Santoro A, Kelley RK, Merle P, Gane E, Douillard J-Y, et al. A phase 2 study of a novel transforming growth factor-beta (TGF-β1) receptor I kinase inhibitor, LY2157299 monohydrate (LY), in patients with advanced hepatocellular carcinoma (HCC). Liver Int. 2014;32(3_suppl):LBA173–LBA.Google Scholar
  55. 55.
    Kelley RK, Gane E, Assenat E, Siebler J, Galle PR, Merle P, et al. A phase 2 study of galunisertib (TGF-Β R1 inhibitor) and sorafenib in patients with advanced hepatocellular carcinoma (HCC). J Clin Oncol. 2017;35(15_suppl):4097.Google Scholar
  56. 56.
    Mariathasan S, Turley SJ, Nickles D, Castiglioni A, Yuen K, Wang Y, et al. TGFbeta attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. Nature. 2018;554(7693):544–8.PubMedPubMedCentralGoogle Scholar
  57. 57.
    Courau T, Nehar-Belaid D, Florez L, Levacher B, Vazquez T, Brimaud F, et al. TGF-beta and VEGF cooperatively control the immunotolerant tumor environment and the efficacy of cancer immunotherapies. JCI Insight. 2016;1(9):e85974.PubMedPubMedCentralGoogle Scholar
  58. 58.
    Babina IS, Turner NC. Advances and challenges in targeting FGFR signalling in cancer. Nat Rev Cancer. 2017;17(5):318–32.PubMedGoogle Scholar
  59. 59.
    Lee HJ, Kang HJ, Kim KM, Yu ES, Kim KH, Kim SM, et al. Fibroblast growth factor receptor isotype expression and its association with overall survival in patients with hepatocellular carcinoma. Clin Mol Hepatol. 2015;21(1):60–70.PubMedPubMedCentralGoogle Scholar
  60. 60.
    Wu X, Ge H, Lemon B, Vonderfecht S, Weiszmann J, Hecht R, et al. FGF19-induced hepatocyte proliferation is mediated through FGFR4 activation. J Biol Chem. 2010;285(8):5165–70.PubMedGoogle Scholar
  61. 61.
    Gao L, Wang X, Tang Y, Huang S, Hu CA, Teng Y. FGF19/FGFR4 signaling contributes to the resistance of hepatocellular carcinoma to sorafenib. J Exp Clin Cancer Res. 2017;36(1):8.PubMedPubMedCentralGoogle Scholar
  62. 62.
    Kang Y-K, Macarulla T, Yau T, et al. Clinical activity of Blu-554, a potent, highly-selective FGFR4 inhibitor in advanced hepatocellular carcinoma (HCC) with FGFR4 pathway activation. Presented at: 2017 ILCA Annual Conference; 2017 Sep 15-17; Seoul, South Korea.Google Scholar
  63. 63.
    Woller N, Gurlevik E, Ureche CI, Schumacher A, Kuhnel F. Oncolytic viruses as anticancer vaccines. Front Oncol. 2014;4:188.PubMedPubMedCentralGoogle Scholar
  64. 64.
    Kaufman HL, Bines SD. OPTIM trial: a Phase III trial of an oncolytic herpes virus encoding GM-CSF for unresectable stage III or IV melanoma. Futur Oncol (London, England). 2010;6(6):941–9.Google Scholar
  65. 65.
    Breitbach CJ, Bell JC, Hwang TH, Kirn DH, Burke J. The emerging therapeutic potential of the oncolytic immunotherapeutic Pexa-Vec (JX-594). Oncolytic Virotherapy. 2015;4:25–31.PubMedPubMedCentralGoogle Scholar
  66. 66.
    Heo J, Reid T, Ruo L, Breitbach CJ, Rose S, Bloomston M, et al. Randomized dose-finding clinical trial of oncolytic immunotherapeutic vaccinia JX-594 in liver cancer. Nat Med. 2013;19(3):329–36.PubMedPubMedCentralGoogle Scholar
  67. 67.
    Park BH, Hwang T, Liu TC, Sze DY, Kim JS, Kwon HC, et al. Use of a targeted oncolytic poxvirus, JX-594, in patients with refractory primary or metastatic liver cancer: a phase I trial. Lancet Oncol. 2008;9(6):533–42.PubMedGoogle Scholar
  68. 68.
    Moehler M, Heo J, Lee H, Tak W, Chao Y, Paik S, et al. Vaccinia-based oncolytic immunotherapy Pexastimogene Devacirepvec in patients with advanced hepatocellular carcinoma after sorafenib failure: a randomized multicenter Phase IIb trial (TRAVERSE). OncoImmunology. 2019;8(8):1615817.PubMedPubMedCentralGoogle Scholar
  69. 69.
    Abou-Alfa GK, Galle PR, Chao Y, Brown KT, Heo J, Borad MJ, et al. PHOCUS: A phase 3 randomized, open-label study comparing the oncolytic immunotherapy Pexa-Vec followed by sorafenib (SOR) vs SOR in patients with advanced hepatocellular carcinoma (HCC) without prior systemic therapy [abstract]. J of Clin Oncol. 2016;34:TPS4146.Google Scholar
  70. 70.
    Pishvaian MJ, Lee MS, Ryoo B-Y, Stein S, Lee K-H, Verret W, et al. LBA26Updated safety and clinical activity results from a phase Ib study of atezolizumab + bevacizumab in hepatocellular carcinoma (HCC) [abstract]. Ann Oncol. 2018;29(suppl_8).Google Scholar
  71. 71.
    Zucman-Rossi J, Villanueva A, Nault JC, Llovet JM. Genetic Landscape and Biomarkers of Hepatocellular Carcinoma. Gastroenterology. 2015;149(5):1226–39.e4.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Internal MedicineUniversity of Southern CaliforniaLos AngelesUSA
  2. 2.Department of Internal MedicineEmory UniversityAtlantaUSA
  3. 3.Department of Internal Medicine, Section of Gastroenterology, Hepatology and NutritionUniversity of Chicago MedicineChicagoUSA
  4. 4.Center for Liver DiseasesThe University of Chicago MedicineChicagoUSA

Personalised recommendations