Nutritional Assessment and Management for Hospitalized Patients with Cirrhosis

  • Barbara Lattanzi
  • Daria D’Ambrosio
  • Veronica Fedele
  • Manuela Merli
Management of Cirrhotic Patient (A Cardenas and P Tandon, Section Editors)
  • 19 Downloads
Part of the following topical collections:
  1. Topical Collection on Management of the Cirrhotic Patient

Abstract

Purpose of Review

The purpose of this review is to summarize recent knowledge on malnutrition and sarcopenia in liver cirrhosis with special focus on hospitalized cirrhotic patients. Assessment tools and treatment options are briefly discussed.

Recent Findings

During hospitalization, cirrhotic patients frequently deteriorate their nutritional status due to multiple factors. Evaluation of nutritional risk followed by nutritional assessment has been suggested in cirrhotic patients and may alert the need of special nutritional care in those hospitalized. Few recent studies, although in small series, proposed to ameliorate sarcopenia in cirrhotic patients by protein/calorie supplementation and also encouraging physical activity.

Summary

Malnutrition and sarcopenia are negative predictors of morbidity and mortality in hospitalized cirrhotic patients. When malnutrition is diagnosed, care should be taken to provide adequate nutritional support. Physical movement, whenever possible, has been suggested for prevention of muscle loss.

Keywords

Malnutrition Sarcopenia Cirrhosis BCAA Nutrition Physical activity 

Notes

Compliance with Ethical Standards

Conflict of Interest

Barbara Lattanzi, Daria D’Ambrosio, and Veronica Fedele declare no conflicts of interest. Manuela Merli reports personal fees from Kedrion and grants from Griffols, outside the submitted work.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Amodio P, Bemeur C, Butterworth R, Cordoba J, Kato A, Montagnese S, et al. The nutritional management of hepatic encephalopathy in patients with cirrhosis: International Society for Hepatic Encephalopathy and Nitrogen Metabolism Consensus. Hepatology. 2013;58(1):325–36.  https://doi.org/10.1002/hep.26370.CrossRefPubMedGoogle Scholar
  2. 2.
    Merli M, Giusto M, Lucidi C, Giannelli V, Pentassuglio I, Di Gregorio V, et al. Muscle depletion increases the risk of overt and minimal hepatic encephalopathy: results of a prospective study. Metab Brain Dis. 2013;28:281–4.  https://doi.org/10.1007/s11011-012-9365-z.CrossRefPubMedGoogle Scholar
  3. 3.
    Plauth M, Merli M, Kondrup J, Weimann A, Ferenci P, Müller MJ. ESPEN guidelines for nutrition in liver disease and transplantation. Clin Nutr. 1997;16:43–55.CrossRefPubMedGoogle Scholar
  4. 4.
    Merli M, Giusto M, Gentili F, Novelli G, Ferretti G, Riggio O, et al. Nutritional status: its influence on the outcome of patients undergoing liver transplantation. Liver Int. 2010;30:208–14.  https://doi.org/10.1111/j.1478-3231.2009.02135.x.CrossRefPubMedGoogle Scholar
  5. 5.
    Merli M, Riggio O, Dally L. Does malnutrition affect survival in cirrhosis? PINC (Policentrica Italiana Nutrizione Cirrosi). Hepatology. 1996;23:1041–6.  https://doi.org/10.1002/hep.510230516.CrossRefPubMedGoogle Scholar
  6. 6.
    Muscaritoli M, Anker SD, Argilés J, Aversa Z, Bauer JM, Biolo G, et al. Consensus definition of sarcopenia, cachexia and pre-cachexia: joint document elaborated by Special Interest Groups (SIG) ‘cachexia-anorexia in chronic wasting diseases’ and ‘nutrition in geriatrics’. Clin Nutr. 2010;29:154–9.  https://doi.org/10.1016/j.clnu.2009.12.004.CrossRefPubMedGoogle Scholar
  7. 7.
    Montano-Loza AJ, Meza-Junco J, Prado CM, Lieffers JR, Baracos VE, Bain VG, et al. Muscle wasting is associated with mortality in patients with cirrhosis. Clin Gastroenterol Hepatol. 2012;10:166–173 e161.  https://doi.org/10.1016/j.cgh.2011.08.028.CrossRefPubMedGoogle Scholar
  8. 8.
    Tandon P, Ney M, Irwin I, Ma MM, Gramlich L, Bain VG, et al. Severe muscle depletion in patients on the liver transplant wait list: its prevalence and independent prognostic value. Liver Transpl. 2012;18(10):1209–16.  https://doi.org/10.1002/lt.23495.CrossRefPubMedGoogle Scholar
  9. 9.
    • Montano-Loza AJ, Angulo P, Meza-Junco J, Prado CM, Sawyer MB, Beaumont C, et al. Sarcopenic obesity and myosteatosis are associated with higher mortality in patients with cirrhosis. J Cachexia Sarcopenia Muscle. 2016;7(2):126–35.  https://doi.org/10.1002/jcsm.12039. A study that clarifies that sarcopenic obesity is very common in cirrhotic patients and is associated with higher mortality in cirrhosis.CrossRefPubMedGoogle Scholar
  10. 10.
    Charlton M. Evolving aspects of liver transplantation for nonalcoholic steatohepatitis. Curr Opin Organ Transplant. 2013;18:251–8.  https://doi.org/10.1097/MOT.0b013e3283615d30.CrossRefPubMedGoogle Scholar
  11. 11.
    Bhanji RA, Narayanan P, Allen AM, Malhi H, Watt KD. Sarcopenia in hiding: The risk and consequence of underestimating muscle dysfunction in nonalcoholic steatohepatitis. Hepatology. 2017;66(6):2055–65.  https://doi.org/10.1002/hep.29420.CrossRefPubMedGoogle Scholar
  12. 12.
    •• Tandon R, Mourtzakis M, Merli M. A Practical Approach to Nutritional Screening and Assessment in Cirrhosis. Hepatology. 2017;65(3):1044–57.  https://doi.org/10.1002/hep.29003. A study that identifies the relevance of malnutrition in patients with liver cirrhosis, and suggests methods of screening and assessment.CrossRefPubMedGoogle Scholar
  13. 13.
    Cederholm T, Bosaeus I, Barazzoni R, Bauer J, Van Gossum A, Klek S, et al. Diagnostic criteria for malnutrition—an ESPEN consensus statement. Clin Nutr. 2015;34:335–40.  https://doi.org/10.1016/j.clnu.2015.03.001.CrossRefPubMedGoogle Scholar
  14. 14.
    Borhofen SM, Gerner C, Lehmann J, Fimmers R, Görtzen J, Hey B, et al. The Royal Free Hospital-Nutritional Prioritizing Tool Is an Independent Predictor of Deterioration of Liver Function and Survival in Cirrhosis. Dig Dis Sci. 2016;61(6):1735–43.  https://doi.org/10.1007/s10620-015-4015-z.CrossRefPubMedGoogle Scholar
  15. 15.
    White JV, Guenter P, Jensen G, Malone A, Schofield M, Acad-emy Malnutrition Work Group, et al. Consensus statement: Acade-my of Nutrition and Dietetics and American Society for Paren-teral and Enteral Nutrition: characteristics recommended for thei dentification and documentation of adult malnutrition (undernutrition). JPEN J Parenter Enteral Nutr. 2012;36:275–83.  https://doi.org/10.1177/0148607112440285.CrossRefPubMedGoogle Scholar
  16. 16.
    Cruz-Jentoft AJ, Baeyens JP, Bauer JM, Boirie Y, Cederholm T, Landi F, et al. Sarcopenia: European consensus on definition and diagnosis: Report of the European Working Group on Sarcopenia in Older People. Age Ageing. 2010;39:412–23.  https://doi.org/10.1093/ageing/afq034.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    •• Dasarathy S, Merli M. Sarcopenia from mechanism to diagnosis and treatment in liver disease. J Hepatol. 2016;65:1232–44.  https://doi.org/10.1016/j.jhep.2016.07.040. An extensive review that clarifies the main pathogenic mechanisms of sarcopenia and explains how to diagnose it and possible treatment approaches.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Kallwitz ER. Sarcopenia and liver transplant: The relevance of too little muscle mass. World J Gastroenterol. 2015;21:10982–93.  https://doi.org/10.3748/wjg.v21.i39.10982.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Dasarathy J, Alkhouri N, Dasarathy S. Changes in body composition after transjugular intrahepatic portosystemic stent in cirrhosis: a critical review of literature. Liver Int. 2011;31:1250–8.  https://doi.org/10.1111/j.1478-3231.2011.02498.x.CrossRefPubMedGoogle Scholar
  20. 20.
    Merli M, Romiti A, Riggio O, Capocaccia L. A multicenter study to define sarcopenia in patients with end-stage liver disease. Optimal nutritional indexes in chronic liver disease. JPEN J Parenter Enteral Nutr. 1987;11:130S–4S.CrossRefPubMedGoogle Scholar
  21. 21.
    •• Carey EJ, Lai JC, Wang CW, Dasarathy S, Lobach I, Montano-Loza AJ, et al. Fitness, Life Enhancement, and Exercise in Liver Transplantation Consortium. A multicenter study to define sarcopenia in patients with end-stage liver disease. Liver Transpl. 2017;23(5):625–33.  https://doi.org/10.1002/lt.24750. A multicenter study that identifies the cutoff for the diagnosis of CT assessed sarcopenia in cirrhotic patients predicting mortality at 6 months.CrossRefPubMedGoogle Scholar
  22. 22.
    Holt EW, Frederick RT, Verhille MS. Prognostic value of muscle wasting in cirrhotic patients. Clin Gastroenterol Hepatol. 2012;10(9):1056; author reply 1056-7.  https://doi.org/10.1016/j.cgh.2012.03.019.CrossRefPubMedGoogle Scholar
  23. 23.
    Englesbe MJ, Patel SP, He K, Lynch RJ, Schaubel DE, Harbaugh C, et al. Sarcopenia and mortality after liver transplantation. J Am Coll Surg. 2010;211:271–8.  https://doi.org/10.1016/j.jamcollsurg.2010.03.039.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Durand F, Buyse S, Francoz C, Laouenan C, Bruno O, Belghiti J, et al. Prognostic value of muscle atrophy in cirrhosis using psoas muscle thickness on computed tomography. J Hepatol. 2014;60:1151–7.  https://doi.org/10.1016/j.jhep.2014.02.026.CrossRefPubMedGoogle Scholar
  25. 25.
    Tsien C, Garber A, Narayanan A, Shah SN, Barnes D, Eghtesad B, et al. Postliver transplantation sarcopenia in cirrhosis: a prospective evaluation. J Gastroenterol Hepatol. 2014;29:1250–7.  https://doi.org/10.1111/jgh.12524.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Kim TY, Kim MY, Sohn JH, Kim SM, Ryu JA, Lim S, et al. Sarcopenia as a useful predictor for long-term mortality in cirrhotic patients with ascites. J Korean Med Sci. 2014;29:1253–9.  https://doi.org/10.3346/jkms.2014.29.9.1253.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Krell RW, Kaul DR, Martin AR, Englesbe MJ, Sonnenday CJ, Cai S, et al. Association between sarcopenia and the risk of serious infection among adults undergoing liver transplantation. Liver Transpl. 2013;19:1396–402.  https://doi.org/10.1002/lt.23752.CrossRefPubMedGoogle Scholar
  28. 28.
    Cruz RJ Jr, Dew MA, Myaskovsky L, Goodpaster B, Fox K, Fontes P, et al. Objective radiologic assessment of body composition in patients with endstage liver disease: going beyond the BMI. Transplantation. 2013;95:617–22.  https://doi.org/10.1097/TP.0b013e31827a0f27.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    DiMartini A, Cruz RJ Jr, Dew MA, Myaskovsky L, Goodpaster B, Fox K, et al. Muscle mass predicts outcomes following liver transplantation. Liver Transpl. 2013;19:1172–80.  https://doi.org/10.1002/lt.23724.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Plauth M, Cabré E, Riggio O, Assis-Camilo M, Pirlich M, Kondrup J, et al. ESPEN Guidelines on Enteral Nutrition: Liver disease. Clin Nutr. 2006;25(2):285–94.  https://doi.org/10.1016/j.clnu.2006.01.018.CrossRefPubMedGoogle Scholar
  31. 31.
    Kalafateli M, Mantzoukis K, Choi Yau Y, Mohammad AO, Arora S, Rodrigues S, et al. Malnutrition and sarcopenia predict post-liver transplantation outcomes independently of the Model for End-stage Liver Disease score. J Cachexia Sarcopenia Muscle. 2017;8(1):113–21.  https://doi.org/10.1002/jcsm.12095.CrossRefPubMedGoogle Scholar
  32. 32.
    Figueiredo FA, Dickson ER, Pasha TM, Porayko MK, Therneau TM, Malinchoc M, et al. Utility of standard nutritional parameters in detecting body cell mass depletion in patients with end-stage liver dis-ease. Liver Transpl. 2000;6:575–81.  https://doi.org/10.1053/jlts.2000.9736.CrossRefPubMedGoogle Scholar
  33. 33.
    Giusto M, Lattanzi B, Albanese C, Galtieri A, Farcomeni A, Giannelli V, et al. Sarcopenia in liver cirrhosis: the role of computed tomography scan for the assessment of muscle mass compared with dual-energy X-ray absorptiometry and anthropometry. Eur J Gastroenterol Hepatol. 2015;27(3):328–34.  https://doi.org/10.1097/MEG.0000000000000274.CrossRefPubMedGoogle Scholar
  34. 34.
    Belarmino G, Gonzalez MC, Torrinhas RS, Sala P, Andraus W, D'Albuquerque LA, et al. Phase angle obtained by bioelectrical impedance analysis independently predicts mortality in patients with cirrhosis. World J Hepatol. 2017;9(7):401–8.  https://doi.org/10.4254/wjh.v9.i7.401.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Tandon P, Low G, Mourtzakis M, Zenith L, Myers RP, Abraldes JG, et al. A Model to Identify Sarcopenia in Patients With Cirrhosis. Clin Gastroenterol Hepatol. 2016;14(10):1473–1480.e3.  https://doi.org/10.1016/j.cgh.2016.04.040.CrossRefPubMedGoogle Scholar
  36. 36.
    Hirsch S, Bunout D, de la Maza P, Iturriaga H, Petermann M, Icazar G, et al. Controlled trial on nutrition supplementation in outpatients with symptomatic alcoholic cirrhosis. JPEN J Parenter Enteral Nutr. 1993;17:119–24.  https://doi.org/10.1177/0148607193017002119.CrossRefPubMedGoogle Scholar
  37. 37.
    Alvares-da-Silva MR. Reverbel da Silveira T. Comparison between handgrip strength, subjective global assessment, and prognostic nutritional index in assessing malnutrition and predicting clinical outcome in cirrhotic outpatients. Nutrition. 2005;21:113–7.  https://doi.org/10.1016/j.nut.2004.02.002.CrossRefPubMedGoogle Scholar
  38. 38.
    Lai JC, Dodge JL, Sen S, et al. Functional decline in patients with cirrhosis awaiting liver transplantation: Results from the functional assessment in liver transplantation (FrAILT) study. Hepatology (Baltimore, Md). 2016;63(2):574–80.  https://doi.org/10.1002/hep.28316.CrossRefGoogle Scholar
  39. 39.
    Carey EJ, Steidley DE, Aqel BA, et al. Six-minute walk distance predicts mortality in liver transplant candidates. Liver Transpl. 2010;16(12):1373–8.  https://doi.org/10.1002/lt.22167.CrossRefPubMedGoogle Scholar
  40. 40.
    McClave SA, DiBaise JK, Mullin GE, Martindale RG. ACG Clinical Guideline: Nutrition therapy in the adult hospitalized patient. Am J Gastroenterol. 2016;  https://doi.org/10.1038/ajg.2016.28.
  41. 41.
    Hiraoka A, Michitaka K, Kiguchi D, Izumoto H, Ueki H, Kaneto M, et al. Efficacy of branched-chain amino acid supplementation and walking exercise for preventing sarcopenia in patients with liver cirrhosis. Eur J Gastroenterol Hepatol. 2017;29(12):1416–23.  https://doi.org/10.1097/MEG.0000000000000986.CrossRefPubMedGoogle Scholar
  42. 42.
    Koya S, Kawaguchi T, Hashida R, Goto E, Matsuse H, Saito H, et al. Effects of in-hospital exercise on liver function, physical ability and muscle mass during treatment of hepatoma in patients with chronic liver disease. Hepatol Res. 2016;47:E22–34.  https://doi.org/10.1111/hepr.12718.CrossRefPubMedGoogle Scholar
  43. 43.
    Plank LD, Mathur S, Gane EJ, Peng SL, Gillanders LK, McIlroy K, et al. Perioperative immunonutrition in patients undergoing liver transplantation: a randomized double-blind trial. Hepatology. 2015;61(2):639–47.  https://doi.org/10.1002/hep.27433.CrossRefPubMedGoogle Scholar
  44. 44.
    Román E, García-Galcerán C, Torrades T, Herrera S, Marín A, Donate M, et al. Effects of an exercise programme on functional capacity. Body composition and risk of falls in patients with cirrhosis: a randomized clinicaltrial. PLoS One. 2016;11:e0151652.  https://doi.org/10.1371/journal.pone.0151652.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Román E, Torrades MT, Nadal MJ, Cárdenas G, Nieto JC, Vidal S, et al. Randomized pilot study: effects of an exercise programme and leucine supplementation in patients with cirrhosis. Dig Dis Sci. 2014;59(8):1966–75.  https://doi.org/10.1007/s10620-014-3086-6.CrossRefPubMedGoogle Scholar
  46. 46.
    Zenith L, Meena N, Ramadi A, Yavari M, Harvey A, Carbonneau M, et al. Eight weeks of exercise training increases aerobic capacity and muscle mass and reduces fatigue in patients with cirrhosis. Clin Gastroenterol Hepatol. 2014;12:1920–6.  https://doi.org/10.1016/j.cgh.2014.04.016.CrossRefPubMedGoogle Scholar
  47. 47.
    Le Cornu KA, McKiernan FJ, Kapadia SA, Neuberger JM. A prospective randomized study of preoperative nutritional supplementation in patients awaiting elective orthotopic liver transplantation. Transplantation. 2000;69:1364–9.CrossRefPubMedGoogle Scholar
  48. 48.
    de Lédinghen V, Beau P, Mannant PR, Borderie C, Ripault MP, Silvain C, et al. Early feeding or enteral nutrition in patients with cirrhosis after bleeding from esophageal varices? A randomized controlled study. Dig Dis Sci. 1997;42(3):536–41.CrossRefPubMedGoogle Scholar
  49. 49.
    Cabre E, Gonzalez-Huix F, Abad-Lacruz A, Esteve M, Acero D, Fernandez-Bañares F, et al. Effect of total enteral nutrition on the short-term outcome of severely malnourished cirrhotics. A randomized controlled trial. Gastroenterology. 1990;98(3):715–20.CrossRefPubMedGoogle Scholar
  50. 50.
    Fan ST, Lo CM, Lai EC, Chu KM, Liu CL, Wong J. Perioperative nutritional support in patients undergoing hepatectomy for hepatocellular carcinoma. N Engl J Med. 1994;331(23):1547–52.  https://doi.org/10.1056/NEJM199412083312303.CrossRefPubMedGoogle Scholar
  51. 51.
    Gheorghe L, Iacob R, Vădan R, Iacob S, Gheorghe C. Improvement of hepatic encephalopathy using a modified high-calorie high-protein diet. Rom J Gastroenterol. 2005;14(3):231–8.PubMedGoogle Scholar
  52. 52.
    Kondrup J, Müller MJ. Energy and protein requirements of patients with chronic liver disease. J Hepatol. 1997;27(1):239–47. ReviewCrossRefPubMedGoogle Scholar
  53. 53.
    Amodio P, Caregaro L, Pattenò E, Marcon M, Del Piccolo F, Gatta A. Vegetarian diets in hepatic encephalopathy: facts or fantasies? Dig Liver Dis. 2001;33(6):492–500. ReviewCrossRefPubMedGoogle Scholar
  54. 54.
    Vergara M, Castro-Gutiérrez V, Rada G. Do branched chain amino acids improve hepatic encephalopathy in cirrhosis? Medwave. 2016;16(Suppl5):e6795.CrossRefPubMedGoogle Scholar
  55. 55.
    Gluud LL, Dam G, Les I, Marchesini G, Borre M, Aagaard NK, et al. Branched-chain amino acids for people with hepatic encephalopathy. Cochrane Database Syst Rev. 2017;5:CD001939.  https://doi.org/10.1002/14651858.CD001939.pub4.PubMedGoogle Scholar
  56. 56.
    Dasarathy S. Consilience in sarcopenia of cirrhosis. J Cachexia Sarcopenia Muscle. 2012;3:225–37.  https://doi.org/10.1007/s13539-012-0069-3.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Les I, Doval E, García-Martínez R, Planas M, Cárdenas G, Gómez P, et al. Effects of branched-chain amino acids supplementation in patients with cirrhosis and a previous episode of hepatic encephalopathy: a randomized study. Am J Gastroenterol. 2011;106(6):1081–8.  https://doi.org/10.1038/ajg.2011.9.CrossRefPubMedGoogle Scholar
  58. 58.
    Carroll B, Korolchuk VI, Sarkar S. Amino acids and autophagy: cross-talk and co-operation to control cellular homeostasis. Amino Acids. 2015;47:2065–88.  https://doi.org/10.1007/s00726-014-1775-2.CrossRefPubMedGoogle Scholar
  59. 59.
    • Tsien C, Davuluri G, Singh D, Allawy A, Ten Have GA, Thapaliya S, et al. Metabolic and molecular responses to leucine-enriched branched chain amino acid supplementation in the skeletal muscle of alcoholic cirrhosis. Hepatology. 2015;61(6):2018–29.  https://doi.org/10.1002/hep.27717. A study showing that leucine-enriched branched chain amino acid supplementation improves sarcopenia and the mechanisms by which it exerts this action in patients with alcoholic cirrhosis.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Han HQ, Zhou X, Mitch WE, Goldberg AL. Myostatin/activin pathway antagonism: molecular basis and therapeutic potential. Int J Biochem Cell Biol. 2013;45(10):2333–47.  https://doi.org/10.1016/j.biocel.2013.05.019.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Barbara Lattanzi
    • 1
  • Daria D’Ambrosio
    • 1
  • Veronica Fedele
    • 1
  • Manuela Merli
    • 1
  1. 1.Gastroenterology, Department of Clinical Medicine‘Sapienza’ University of RomeRomeItaly

Personalised recommendations