Current Hepatitis Reports

, Volume 4, Issue 2, pp 61–67 | Cite as

Antifibrotic targets and therapy in HCV

  • Efsevia Albanis
  • Scott L. Friedman
Article
  • 20 Downloads

Abstract

Great progress has been made over the past 20 years in elucidating the mechanisms of hepatic fibrogenesis. The recognition of the hepatic stellate cell as the fibrogenic cell of the liver, as well as the recognition of key cytokines involved in fibrogenesis, has facilitated the development of targeted antifibrotic therapies. Patients with chronic hepatitis C and fibrosis may benefit from these novel antifibrotic therapies.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Recommended Reading

  1. 1.
    Alter MJ, Kruszon-Moran D, Nainan OV, et al.: The prevalence of hepatitis C virus infection in the United States, 1988 through 1994. N Engl J Med. 1999, 341:556–562.PubMedCrossRefGoogle Scholar
  2. 2.
    Manns MP, McHutchison JG, Gordon SC, et al.: Peginterferon alfa-2b plus ribavirin compared with interferon alfa-2b plus ribavirin for initial treatment of chronic hepatitis C: a randomised trial. Lancet. 2001, 358:958–965.PubMedCrossRefGoogle Scholar
  3. 3.
    Davis GL, Albright JE, Cook SF, et al.: Projecting future complications of chronic hepatitis C in the United States. Liver Transpl. 2003, 9:331–338.PubMedCrossRefGoogle Scholar
  4. 4.
    Kweon YO, Goodman ZD, Dienstag JL, et al.: Decreasing fibrogenesis: an immunohistochemical study of paired liver biopsies following lamivudine therapy for chronic hepatitis B. J Hepatol. 2001, 35:749–755.PubMedCrossRefGoogle Scholar
  5. 5.
    Poynard T, McHutchison J, Manns M, et al.: Impact of pegylated interferon alfa-2b and ribavirin on liver fibrosis in patients with chronic hepatitis C. Gastroenterology. 2002, 123:1061–1069.PubMedCrossRefGoogle Scholar
  6. 6.
    Issa R, Zhou X, Constandinou CM, et al.: Spontaneous recovery from micronodular cirrhosis: evidence for incomplete resolution associated with matrix cross-linking. Gastroenterology. 2004, 126:1795–1808. Discusses possible mechanisms for the regression of cirrhosis.PubMedCrossRefGoogle Scholar
  7. 7.
    Albanis E, Friedman SL: Hepatic fibrosis. Pathogenesis and principles of therapy. Clin Liver Dis. 2001, 5:315–334.PubMedCrossRefGoogle Scholar
  8. 8.
    Friedman SL: Molecular regulation of hepatic fibrosis, an integrated cellular response to tissue injury. J Biol Chem 2000, 275:2247–2250.PubMedCrossRefGoogle Scholar
  9. 9.
    Pinzani M, Marra F: Cytokine receptors and signaling during stellate cell activation. Semin Liver Dis. 2001, 21:397–416.PubMedCrossRefGoogle Scholar
  10. 10.
    Pinzani M, Milani S, Grappone C, et al.: Expression of platelet-derived growth factor in a model of acute liver injury. Hepatology. 1994, 19:701–707.PubMedCrossRefGoogle Scholar
  11. 11.
    Olaso E, Friedman SL: Molecular mechanisms of hepatic fibrogenesis. J Hepatol. 1998, 29:836–847.PubMedCrossRefGoogle Scholar
  12. 12.
    Bachem MG, Riess U, Melchio R, et al.: Transforming growth factors (TGF alpha and TGF beta 2) stimulate chondroitin sulfate and hyaluronate synthesis in cultured rat liver fat storing cells. FEBS Lett. 1989, 257:134–137.PubMedCrossRefGoogle Scholar
  13. 13.
    Dooley S, Delvoux B, Lahme B, et al.: Modulation of transforming growth factor beta response and signaling during transdifferentiation of rat hepatic stellate cells to myofibroblasts. Hepatology. 2000, 31:1094–1106.PubMedCrossRefGoogle Scholar
  14. 14.
    Friedman SL, Yamasaki G, Wong L: Modulation of transforming growth factor beta receptors of rat lipocytes during the hepatic wound healing response. Enhanced binding and reduced gene expression accompany cellular activation in culture and in vivo. J Biol Chem. 1994, 269:10551–10558.PubMedGoogle Scholar
  15. 15.
    Rockey DC: Hepatic blood flow regulation by stellate cells in normal and injured liver. Semin Liver Dis. 2001, 21:337–350.PubMedCrossRefGoogle Scholar
  16. 16.
    Racine-Samson L, Rockey DC, Bissell DM: The role of alphabeta1 integrin in wound contraction. A quantitative analysis of liver myofibroblasts in vivo and in primary culture. J Biol Chem. 1997, 272:30911–30917.PubMedCrossRefGoogle Scholar
  17. 17.
    Rockey DC, Chung JJ: Inducible nitric oxide synthase in rat hepatic lipocytes and the effect of nitric oxide on lipocyte contractility. J Clin Invest. 1995, 95:1199–1206.PubMedGoogle Scholar
  18. 18.
    Gupta TK, Toruner M, Chung MK, et al.: Endothelial dysfunction and decreased production of nitric oxide in the intrahepatic microcirculation of cirrhotic rats. Hepatology. 1998, 28:926–931.PubMedCrossRefGoogle Scholar
  19. 19.
    Gupta TK, Toruner M, Groszmann RJ: Intrahepatic modulation of portal pressure and its role in portal hypertension. Role of nitric oxide. Digestion. 1998, 59:413–415.PubMedCrossRefGoogle Scholar
  20. 20.
    Groszmann RJ: Nitric oxide and hemodynamic impairments. Digestion. 1998, 59(suppl 2):6–7.PubMedCrossRefGoogle Scholar
  21. 21.
    Benyon D, Arthur MJP: Extracellular matrix degradation and the role of stellate cells. Semin Liver Dis. 2001, 21:373–384.PubMedCrossRefGoogle Scholar
  22. 22.
    Iredale JP: Stellate cell behavior during resolution of liver injury. Semin Liver Dis. 2001, 21:427–436.PubMedCrossRefGoogle Scholar
  23. 23.
    Iredale JP, Benyon RC, Pickering J, et al.: Mechanisms of spontaneous resolution of rat liver fibrosis. Hepatic stellate cell apoptosis and reduced hepatic expression of metalloproteinase inhibitors. J Clin Invest. 1998, 102:538–549.PubMedGoogle Scholar
  24. 24.
    Wang SC, Tsukamoto H, Rippe RA, et al.: Expression of interleukin-10 by in vitro and in vivo activated hepatic stellate cells. J Biol Chem. 1998, 273:302–308.PubMedCrossRefGoogle Scholar
  25. 25.
    Thompson K, Maltby J, Fallowfield J, et al.: Interleukin-10 expression and function in experimental murine liver inflammation and fibrosis. Hepatology. 1998, 28:1597–1606.PubMedCrossRefGoogle Scholar
  26. 26.
    Gentilini M, Marra F, Gentilini P, et al.: Phosphatidylinositol-3 kinase and extracellular signal-regulated kinase mediate the chemotactic and mitogenic effects of insulin-like growth factor-1 in human hepatic stellate cells. J Hepatol. 2000, 32:227–234.PubMedCrossRefGoogle Scholar
  27. 27.
    Tangkijvanich P, Tam SP, Yee Jr HF: Wound induced migration of rat hepatic stellate cells is modulated by endothelin-1 through rho-kinase-mediated alterations in the acto-myosin cytoskeleton. Hepatology. 2001, 33:74–80.PubMedCrossRefGoogle Scholar
  28. 28.
    Friedman SL, Arthur MJ: Reversing hepatic fibrosis. Sci Med 2002, 8:194–205.Google Scholar
  29. 29.
    Sohara N, Znoyko I, Levy MT, et al.: Reversal of activation of human myofibroblast-like cells by culture on a basement membrane-like substrate. J Hepatol. 2002, 37:214–221.PubMedCrossRefGoogle Scholar
  30. 30.
    Friedman SL: Mechanisms of disease: mechanisms of hepatic fibrosis and therapeutic implications. Nat Clin Pract Gastroenterol Hepatol. 2004, 1:98–105. Reviews mechanisms of liver fibrosis diagnosis and treatment.PubMedCrossRefGoogle Scholar
  31. 31.
    Poynard T, Bedossa P, Opolon P: Natural history of liver fibrosis progression in patients with chronic hepatitis C. The OBSVIRC, METAVIR, CLINIVIR, AND DOSVIRC groups. Lancet. 1997, 349:825–832.PubMedCrossRefGoogle Scholar
  32. 32.
    Poynard T, Ratziu V, Vharlotte F, et al.: Rates and risk factors of liver fibrosis progression in patients with chronic hepatitis C. J Hepatol. 2001, 34:730–739.PubMedCrossRefGoogle Scholar
  33. 33.
    Angelucci E, Muretto P, Nicolucci A, et al.: Effects of iron overload and hepatitis C virus positivity in determining progression of liver fibrosis in thalassemia following bone marrow transplantation. Blood. 2002, 100:17–21.PubMedCrossRefGoogle Scholar
  34. 34.
    Lagging LM, Westin J, Svensson E, et al.: Progression of fibrosis in untreated patients with hepatitis C virus infection. Liver 2002, 22:136–144.PubMedCrossRefGoogle Scholar
  35. 35.
    Schuppan D, Krebs A, Bauer M, Hahn EG: Hepatitis C and liver fibrosis. Cell Death Differ. 2003, 10(suppl 1):S59-S67.PubMedCrossRefGoogle Scholar
  36. 36.
    Guido M, Rugge M, Chemello L: Liver stellate cells in chronic viral hepatitis: the effect of interferon therapy. J Hepatol 1996, 24:301–307.PubMedCrossRefGoogle Scholar
  37. 37.
    Khan MA, Poulos JE, Brunt EM: Hepatic alfa smooth muscle actin expression in hepatitis C patients before and after interferon therapy. Hepatogastroenterology. 2001, 48:212–215.PubMedCrossRefGoogle Scholar
  38. 38.
    Sakaida I, Nagatomi A, Hironaka K: Quantitative analysis of liver fibrosis and stellate cell changes in patients with chronic hepatitis C after interferon therapy. Am J Gastroenterol 1999, 94:489–496.PubMedCrossRefGoogle Scholar
  39. 39.
    Martinelli ALC, Ramalho LNZ, Zucoloto S: Hepatic stellate cells in hepatitis C patients. Relationship with liver iron deposits and severity of liver disease. J Gastroenterol Hepatol 2004, 19:91–98.PubMedCrossRefGoogle Scholar
  40. 40.
    Powell EE, Edwards-Smith CJ, Hay JL, et al.: Host genetic factors influence disease progression in chronic hepatitis C. Hepatology. 2000, 31:828–833.PubMedCrossRefGoogle Scholar
  41. 41.
    Muhlbuaer M, Bosserhoff AK, Hartmann A, et al.: A novel MCP-1 gene polymorphism is associated with hepatic MCP-1 expression and severity of HCV-related liver disease. Gastroenterology. 2003, 125:1085–1093.CrossRefGoogle Scholar
  42. 42.
    Garcia-Trevijano ER, Iraburu MJ, Fontana L, et al.: Transforming growth factor beta1 induces the expression of alpha1(1) procollagen mRNA by a hydrogen peroxide-C/EBPbetadependent mechanism in rat hepatic stellate cells. Hepatology 1999, 29:960–970.PubMedCrossRefGoogle Scholar
  43. 43.
    Bataller R, Paik YH, Lindquist JN, et al.: Hepatitis C virus core and nonstructural proteins induce fibrogenic effects in hepatic stellate cells. Gastroenterology. 2004, 126:529–540.PubMedCrossRefGoogle Scholar
  44. 44.
    Mazzocca A, Cappadona Sciammetta S, Carloni V, et al.: Binding of hepatitis C virus envelope protein E2 to CD81 upregulates MMP-2 in human hepatic stellate cells. J Biol Chem. 2005, 280:11329–11339.PubMedCrossRefGoogle Scholar
  45. 45.
    Rockey DC, Chung JJ: Interferon gamma inhibits lipocyte activation and extracellular matrix mRNA expression during experimental liver injury: implications for treatment of hepatic fibrosis. J Investig Med. 1994, 42:660–670.PubMedGoogle Scholar
  46. 46.
    Ueki T, Kaneda Y, Tsutsui H, et al.: Hepatocyte growth factor gene therapy of liver cirrhosis in rats. Nat Med. 1999, 5:226–230.PubMedCrossRefGoogle Scholar
  47. 47.
    Galli A, Crabb DW, Ceni E, et al.: Antidiabetic thiazolidinediones inhibit collagen synthesis and hepatic stellate cell activation in vivo and in vitro. Gastroenterology. 2002, 122:1924–1940.PubMedCrossRefGoogle Scholar
  48. 48.
    Kon K, Ikejima K, Hirose M, et al.: Pioglitazone prevents early-phase hepatic fibrogenesis caused by carbon tetrachloride. Biochem Biophys Res Commun. 2002, 291:55–61.PubMedCrossRefGoogle Scholar
  49. 49.
    Marra F, Efsen E, Romanelli RG, et al.: Ligands of peroxisome proliferators-activated preceptor gamma modulate profibrogenic and proinflammatory actions in hepatic stellate cells. Gastroenterology. 2000, 119:466–478.PubMedCrossRefGoogle Scholar
  50. 50.
    Houglum K, Venkataramani A, Lyche K, Chojkier M: A pilot study of the effects of D-alpha-tocopherol on hepatic stellate cell activation in chronic hepatitis C. Gastroenterology. 1997, 113:1069–1073.PubMedCrossRefGoogle Scholar
  51. 51.
    Shimizu I, Ma YR, Mizobuchi Y, et al.: Effects of Sho-saiko-to, a Japanese herbal medicine, on hepatic fibrosis in rats. Hepatology. 1999, 29:282–284.CrossRefGoogle Scholar
  52. 52.
    Druker BJ, Sawyers CL, Kantarjian H, et al.: Activity of a specific inhibitor of the BCR-ABL tyrosine kinase in the blast crisis of chronic myelogenous leukemia and acute lymphoblastic leukemia with the Philadelphia chromosome. N Engl J Med 2001, 344:1038–1042.PubMedCrossRefGoogle Scholar
  53. 53.
    Okuno M, Moriwaki H, Muto Y, et al.: Protease inhibitors suppress TGF-beta generation by hepatic stellate cells. J Hepatol. 1998, 29:1031–1032.PubMedCrossRefGoogle Scholar
  54. 54.
    Nakamura T, Sakata R, Ueno T, et al.: Inhibition of transforming growth factor beta prevents progression of liver fibrosis and enhances hepatocyte regeneration in dimethylnitrosamine-treated rats. Hepatology. 2000, 32:247–255.PubMedCrossRefGoogle Scholar
  55. 55.
    George J, Roulot D, Koteliansky VE, et al.: In vivo inhibition of rat stellate cell activation by soluble transforming growth factor beta type II receptor: a potential new therapy for hepatic fibrosis. Proc Natl Acad Sci U S A. 1999, 96:12719–12724.PubMedCrossRefGoogle Scholar
  56. 56.
    Ueki T, Kaneda Y, Tsutsui H, et al.: Hepatocyte growth factor gene therapy of liver cirrhosis in rats. Nat Med 1999, 5:226–230.PubMedCrossRefGoogle Scholar
  57. 57.
    Yu Q, Shao R, Qian HS, et al.: Gene transfer of the neuronal NO synthase isoform to cirrhotic rat liver ameliorates portal hypertension. J Clin Invest. 2000, 105:741–748.PubMedCrossRefGoogle Scholar
  58. 58.
    Arthur MJ, Mann DA, Iredale JP: Tissue inhibitors of metalloproteinases, hepatic stellate cells and liver fibrosis. J Gastroenterol Hepatol. 1998, 13(suppl):S33-S38.PubMedGoogle Scholar
  59. 59.
    Salgado S, Garcia J, Vera J, et al.: Liver cirrhosis is reverted by urokinase-type plasminogen activator gene therapy. Mol Ther. 2000, 2:545–551.PubMedCrossRefGoogle Scholar
  60. 60.
    Wright MC, Issa R, Smart DE, et al.: Gliotoxin stimulates the apoptosis of human and rat hepatic stellate cells and enhances the resolution of liver fibrosis in rats. Gastroenterol 2001, 121:685–698.CrossRefGoogle Scholar

Copyright information

© Current Science Inc 2005

Authors and Affiliations

  • Efsevia Albanis
    • 1
  • Scott L. Friedman
    • 1
  1. 1.Division of Liver DiseasesMount Sinai School of MedicineNew YorkUSA

Personalised recommendations