Mutation-Driven Therapy in MDS

  • David M. Swoboda
  • David A. SallmanEmail author
Myelodysplastic Syndromes (M Savona, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Myelodysplastic Syndromes


Purpose of Review

Genetic sequencing in myelodysplastic syndrome (MDS) has provided an improved understanding of the complexity and heterozygosity of the disease. More importantly, our molecular understanding of MDS is leading to rapid advancements and personalized therapy for our patients. Herein, we review the current mutation-driven treatment landscape in MDS, first focusing on individual mutations. We then discuss the effect of specific gene mutations on response and outcomes to standard therapies as well as to cutting edge investigational therapies.

Recent Findings

Molecular annotation of MDS can predict response rates and outcomes to our current standard of care therapies including hypomethylating agents, lenalidomide, and allogeneic stem cell transplantation. Clinical trials targeting molecular subsets of MDS are underway with some in very early stages while others advancing to phase III trials. Targeting TP53 and IDH1/2 mutations appear to be promising targets with substantial efficacy seen in several trials to date. Furthermore, novel therapeutic strategies such as immuno-oncology agents are of significant interest with future investigation required to understand the molecular predictors of response.


Mutation-driven therapy in MDS is rapidly expanding and has tremendous potential in a disease where limited standard therapy options exist.


Myelodysplastic syndrome Genetic mutations Targeted therapy Splicing factors Epigenetic regulators TP53 



Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Vardiman JW, Thiele J, Arber DA, Brunning RD, Borowitz MJ, Porwit A, et al. The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia: rationale and important changes. Blood. 2009;114(5):937–51.PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Garraway LA. Genomics-driven oncology: framework for an emerging paradigm. J Clin Oncol. 2013;31:1806–14. Available from:. Scholar
  3. 3.
    Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA Jr, Kinzler KW. Cancer genome landscapes. Science. 2013;339(6127):1546–58.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Papaemmanuil E, Gerstung M, Malcovati L, Tauro S, Gundem G, Van Loo P, et al. Clinical and biological implications of driver mutations in myelodysplastic syndromes. Blood. 2013;122(22):3616–27 quiz 3699.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Bejar R, Stevenson K, Abdel-Wahab O, Galili N, Nilsson B, Garcia-Manero G, et al. Clinical effect of point mutations in myelodysplastic syndromes. N Engl J Med. 2011;364(26):2496–506.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Haferlach T, Nagata Y, Grossmann V, Okuno Y, Bacher U, Nagae G, et al. Landscape of genetic lesions in 944 patients with myelodysplastic syndromes. Leukemia. 2014;28(2):241–7.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Della Porta MG, Travaglino E, Malcovati L. Classification and prognostic evaluation of myelodysplastic syndromes. in oncology [Internet]. 2011; Available from:
  8. 8.
    Greenberg P, Cox C, LeBeau MM, Fenaux P, Morel P, Sanz G, et al. International scoring system for evaluating prognosis in myelodysplastic syndromes. Blood. 1997;89(6):2079–88.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Malcovati L, Germing U, Kuendgen A, Della Porta MG, Pascutto C, Invernizzi R, et al. Time-dependent prognostic scoring system for predicting survival and leukemic evolution in myelodysplastic syndromes. J Clin Oncol. 2007;25(23):3503–10.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Greenberg PL, Tuechler H, Schanz J, Sanz G, Garcia-Manero G, Solé F, et al. Revised international prognostic scoring system for myelodysplastic syndromes. Blood. 2012;120(12):2454–65.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Bejar R, Papaemmanuil E, Haferlach T, Garcia-Manero G, Maciejewski JP, Sekeres MA, et al. Somatic mutations in MDS patients are associated with clinical features and predict prognosis independent of the IPSS-R: analysis of combined datasets from the International Working Group for Prognosis in MDS-Molecular Committee. Blood. 2015;126(23):907.CrossRefGoogle Scholar
  12. 12.
    Nazha A, Narkhede M, Radivoyevitch T, Seastone DJ, Patel BJ, Gerds AT, et al. Incorporation of molecular data into the Revised International Prognostic Scoring System in treated patients with myelodysplastic syndromes. Leukemia. 2016;30(11):2214–20.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Nazha A, Komrokji RS, Meggendorfer M, Mukherjee S, Al Ali N, Walter W, et al. A personalized prediction model to risk stratify patients with myelodysplastic syndromes. Blood. 2018;132(Suppl 1):793.CrossRefGoogle Scholar
  14. 14.
    Bejar R, Levine R, Ebert BL. Unraveling the molecular pathophysiology of myelodysplastic syndromes. J Clin Oncol. 2011;29(5):504–15.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Seiler M, Yoshimi A, Darman R, Chan B, Keaney G, Thomas M, et al. H3B-8800, an orally available small-molecule splicing modulator, induces lethality in spliceosome-mutant cancers. Nat Med. 2018;24(4):497–504.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Steensma D, Klimek V, Yang J, Brunner A, Lopez F, Greenberg P, et al. Phase i dose escalation clinical trial of H3B-8800, a splicing modulator, in patients with advanced myeloid malignancies: PS1034. Hemasphere. 2019;3.CrossRefGoogle Scholar
  17. 17.
    • Platzbecker U, Germing U, Götze KS, Kiewe P, Mayer K, Chromik J, et al. Luspatercept for the treatment of anaemia in patients with lower-risk myelodysplastic syndromes (PACE-MDS): a multicentre, open-label phase 2 dose-finding study with long-term extension study. Lancet Oncol. 2017;18(10):1338–47 Data showing high efficacy which lead to the phase 3 trial. PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    •• Fenaux P, Platzbecker U, Mufti GJ, Garcia-Manero G, Buckstein R, Santini V, et al. The Medalist Trial: results of a phase 3, randomized, double-blind, placebo-controlled study of luspatercept to treat anemia in patients with very low-, low-, or intermediate-risk myelodysplastic syndromes (MDS) with ring sideroblasts (RS) who require red blood cell (RBC) transfusions. Blood. 2018;132(Suppl 1):1–1 Practice-changing data that will likely lead to FDA approval.CrossRefGoogle Scholar
  19. 19.
    Watts JM, Baer MR, Lee S, Yang J, Dinner SN, Prebet T, et al. A phase 1 dose escalation study of the IDH1m inhibitor, FT-2102, in patients with acute myeloid leukemia (AML) or myelodysplastic syndrome (MDS). J Clin Orthod. 2018;36(15_suppl):7009.Google Scholar
  20. 20.
    DiNardo CD, Schimmer AD, Yee KWL, Hochhaus A, Kraemer A, Carvajal RD, et al. A phase I study of IDH305 in patients with advanced malignancies including relapsed/refractory AML and MDS that harbor IDH1R132 mutations. Blood. 2016;128(22):1073.CrossRefGoogle Scholar
  21. 21.
    Stein EM, Fathi AT, DiNardo CD, Pollyea DA, Swords RT, Roboz GJ, et al. Enasidenib (AG-221), a potent Oral inhibitor of mutant isocitrate dehydrogenase 2 (IDH2) enzyme, induces hematologic responses in patients with myelodysplastic syndromes (MDS). Blood. 2016;128(22):343.CrossRefGoogle Scholar
  22. 22.
    Jeromin S, Haferlach T, Weissmann S, Meggendorfer M, Eder C, Nadarajah N, et al. Refractory anemia with ring sideroblasts and marked thrombocytosis cases harbor mutations in SF3B1 or other spliceosome genes accompanied by JAK2V617F and ASXL1 mutations. Haematologica. 2015;100(4):e125–7.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Al-Kali A, Quintás-Cardama A, Luthra R, Bueso-Ramos C, Pierce S, Kadia T, et al. Prognostic impact of RAS mutations in patients with myelodysplastic syndrome. Am J Hematol. 2013;88(5):365–9.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Hunter AM, Sallman DA. Current status and new treatment approaches in TP53 mutated AML. Best Pract Res Clin Haematol. 2019;32(2):134–44.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Malcovati L, Karimi M, Papaemmanuil E, Ambaglio I, Jädersten M, Jansson M, et al. SF3B1 mutation identifies a distinct subset of myelodysplastic syndrome with ring sideroblasts. Blood. 2015;126(2):233–41.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Schnittger S, Meggendorfer M, Kohlmann A, Grossmann V, Yoshida K, Ogawa S, et al. SRSF2 is mutated in 47.2% (77/163) of chronic myelomonocytic leukemia (CMML) and prognostically favorable in cases with concomitant RUNX1 mutations. Blood. 2011;118(21):274.CrossRefGoogle Scholar
  27. 27.
    Jafari PA, Ayatollahi H, Sadeghi R, Sheikhi M, Asghari A. Prognostic significance of SRSF2 mutations in myelodysplastic syndromes and chronic myelomonocytic leukemia: a meta-analysis. Hematology. 2018;23:778–84. Available from:. Scholar
  28. 28.
    Wu S-J, Kuo Y-Y, Hou H-A, Li L-Y, Tseng M-H, Huang C-F, et al. The clinical implication of SRSF2 mutation in patients with myelodysplastic syndrome and its stability during disease evolution. Blood. 2012;120(15):3106–11.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Wu S-J, Tang J-L, Lin C-T, Kuo Y-Y, Li L-Y, Tseng M-H, et al. Clinical implications of U2AF1 mutation in patients with myelodysplastic syndrome and its stability during disease progression. Am J Hematol. 2013;88(11):E277–82.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Yang Y-T, Chiu Y-C, Kao C-J, Hou H-A, Lin C-C, Tsai C-H, et al. The prognostic significance of global aberrant alternative splicing in patients with myelodysplastic syndrome. Blood Cancer J. 2018;8(8):78.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Lee SC-W, Dvinge H, Kim E, Cho H, Micol J-B, Chung YR, et al. Modulation of splicing catalysis for therapeutic targeting of leukemia with mutations in genes encoding spliceosomal proteins. Nat Med. 2016;22(6):672–8.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Paper: Response to treatment among SF3B1 mutated myelodysplastic syndromes (MDS): a case-control study from the MDS Clinical Research Consortium (MDS CRC) [Internet]. [cited 2019 Jul 10]. Available from:
  33. 33.
    Lin Y, Zheng Y, Wang Z-C, Wang S-Y. Prognostic significance of ASXL1 mutations in myelodysplastic syndromes and chronic myelomonocytic leukemia: a meta-analysis. Hematology. 2016 Sep;21(8):454–61.PubMedCrossRefGoogle Scholar
  34. 34.
    Thol F, Friesen I, Damm F, Yun H, Weissinger EM, Krauter J, et al. Prognostic significance of ASXL1 mutations in patients with myelodysplastic syndromes. J Clin Oncol. 2011;29(18):2499–506.PubMedCrossRefGoogle Scholar
  35. 35.
    Yang H, Kurtenbach S, Guo Y, Lohse I, Durante MA, Li J, et al. Gain of function of ASXL1 truncating protein in the pathogenesis of myeloid malignancies. Blood. 2018;131(3):328–41.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Walter MJ, Ding L, Shen D, Shao J, Grillot M, McLellan M, et al. Recurrent DNMT3A mutations in patients with myelodysplastic syndromes. Leukemia. 2011;25(7):1153–8.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Kim SJ, Zhao H, Hardikar S, Singh AK, Goodell MA, Chen T. A DNMT3A mutation common in AML exhibits dominant-negative effects in murine ES cells. Blood. 2013;122(25):4086–9.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Lin M-E, Hou H-A, Tsai C-H, Wu S-J, Kuo Y-Y, Tseng M-H, et al. Dynamics of DNMT3A mutation and prognostic relevance in patients with primary myelodysplastic syndrome. Clin Epigenetics. 2018;10:42.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Rau RE, Rodriguez BA, Luo M, Jeong M, Rosen A, Rogers JH, et al. DOT1L as a therapeutic target for the treatment of DNMT3A -mutant acute myeloid leukemia [Internet]. Blood. 2016;128:971–81. Scholar
  40. 40.
    Stein EM, Garcia-Manero G, Rizzieri DA, Tibes R, Berdeja JG, Jongen-Lavrencic M, et al. A phase 1 study of the DOT1L inhibitor, pinometostat (EPZ-5676), in adults with relapsed or refractory leukemia: safety, clinical activity. Exposure and Target Inhibition Blood. 2015;126(23):2547.Google Scholar
  41. 41.
    Sashida G, Harada H, Matsui H, Oshima M, Yui M, Harada Y, et al. Ezh2 loss promotes development of myelodysplastic syndrome but attenuates its predisposition to leukaemic transformation. Nat Commun. 2014;5:4177.PubMedCrossRefGoogle Scholar
  42. 42.
    Morin RD, Johnson NA, Severson TM, Mungall AJ, An J, Goya R, et al. Somatic mutations altering EZH2 (Tyr641) in follicular and diffuse large B-cell lymphomas of germinal-center origin. Nat Genet. 2010;42:181.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    DiNardo CD, Jabbour E, Ravandi F, Takahashi K, Daver N, Routbort M, et al. IDH1 and IDH2 mutations in myelodysplastic syndromes and role in disease progression. Leukemia. 2016;30(4):980–4.PubMedCrossRefGoogle Scholar
  44. 44.
    Medeiros BC, Fathi AT, DiNardo CD, Pollyea DA, Chan SM, Swords R. Isocitrate dehydrogenase mutations in myeloid malignancies. Leukemia. 2017;31(2):272–81.PubMedCrossRefGoogle Scholar
  45. 45.
    •• DiNardo CD, Stein EM, de Botton S, Roboz GJ, Altman JK, Mims AS, et al. Durable remissions with ivosidenib in IDH1-mutated relapsed or refractory AML. N Engl J Med. 2018;378(25):2386–98 Practice changing data that led to FDA approval of Ivosidenib in R/R AML.PubMedCrossRefGoogle Scholar
  46. 46.
    DiNardo CD, Watts JM, Stein EM, de Botton S, Fathi AT, Prince GT, et al. Ivosidenib (AG-120) induced durable remissions and transfusion independence in patients with IDH1-mutant relapsed or refractory myelodysplastic syndrome: results from a phase 1 dose escalation and expansion study. Blood. 2018;132(Suppl 1):1812.CrossRefGoogle Scholar
  47. 47.
    •• Stein EM, DiNardo CD, Pollyea DA, Fathi AT, Roboz GJ, Altman JK, et al. Enasidenib in mutant IDH2 relapsed or refractory acute myeloid leukemia. Blood. 2017;130(6):722–31 Practice changing data that led to FDA approval of Enasidenib in R/R AML. PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    •• DiNardo CD, Pratz KW, Letai A, Jonas BA, Wei AH, Thirman M, et al. Safety and preliminary efficacy of venetoclax with decitabine or azacitidine in elderly patients with previously untreated acute myeloid leukaemia: a non-randomised, open-label, phase 1b study. Lancet Oncol. 2018;19(2):216–28 Practice changing data that led to FDA approval of venetoclax + azacitidine in de-novo elderly AML.PubMedCrossRefGoogle Scholar
  49. 49.
    •• Wei AH, Strickland SA Jr, Hou J-Z, Fiedler W, Lin TL, Walter RB, et al. Venetoclax combined with low-dose cytarabine for previously untreated patients with acute myeloid leukemia: results from a phase Ib/II study. J Clin Oncol. 2019;37(15):1277–84 Practice changing data that led to FDA approval of venetoclax + low-dose cytarabine in de-novo elderly AML. PubMedCrossRefGoogle Scholar
  50. 50.
    Chan SM, Thomas D, Corces-Zimmerman MR, Xavy S, Rastogi S, Hong W-J, et al. Isocitrate dehydrogenase 1 and 2 mutations induce BCL-2 dependence in acute myeloid leukemia. Nat Med. 2015 Feb;21(2):178–84.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Chiba S. Dysregulation of TET2 in hematologic malignancies. Int J Hematol. 2017 Jan;105(1):17–22.PubMedCrossRefGoogle Scholar
  52. 52.
    Pastor WA, Aravind L, Rao A. TETonic shift: biological roles of TET proteins in DNA demethylation and transcription. Nat Rev Mol Cell Biol. 2013;14(6):341–56.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Rasmussen KD, Jia G, Johansen JV, Pedersen MT, Rapin N, Bagger FO, et al. Loss of TET2 in hematopoietic cells leads to DNA hypermethylation of active enhancers and induction of leukemogenesis. Genes Dev. 2015;29(9):910–22.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Shih AH, Abdel-Wahab O, Patel JP, Levine RL. The role of mutations in epigenetic regulators in myeloid malignancies. Nat Rev Cancer. 2012;12(9):599–612.PubMedCrossRefGoogle Scholar
  55. 55.
    Guo Z, Zhang S-K, Zou Z, Fan R-H, Lyu X-D. Prognostic significance of TET2 mutations in myelodysplastic syndromes: a meta-analysis [Internet]. Leukemia Res. 2017;58:102–7. Scholar
  56. 56.
    Lin Y, Lin Z, Cheng K, Fang Z, Li Z, Luo Y, et al. Prognostic role of TET2 deficiency in myelodysplastic syndromes: a meta-analysis. Oncotarget. 2017;8(26):43295–305.PubMedPubMedCentralGoogle Scholar
  57. 57.
    Abdel-Wahab O, Mullally A, Hedvat C, Garcia-Manero G, Patel J, Wadleigh M, et al. Genetic characterization of TET1, TET2, and TET3 alterations in myeloid malignancies. Blood. 2009;114(1):144–7.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Agathocleous M, Meacham CE, Burgess RJ, Piskounova E, Zhao Z, Crane GM, et al. Ascorbate regulates haematopoietic stem cell function and leukaemogenesis. Nature. 2017;549(7673):476–81.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Cimmino L, Dolgalev I, Wang Y, Yoshimi A, Martin GH, Wang J, et al. Restoration of TET2 function blocks aberrant self-renewal and leukemia progression. Cell. 2017;170(6):1079–95.e20.CrossRefGoogle Scholar
  60. 60.
    Kralovics R, Passamonti F, Buser AS, Teo S-S, Tiedt R, Passweg JR, et al. A gain-of-function mutation of JAK2 in myeloproliferative disorders. N Engl J Med. 2005;352(17):1779–90.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Ingram W, Lea NC, Cervera J, Germing U, Fenaux P, Cassinat B, et al. The JAK2 V617F mutation identifies a subgroup of MDS patients with isolated deletion 5q and a proliferative bone marrow. Leukemia. 2006 Jul;20(7):1319–21.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Abaza Y, Jabbour EJ, Verstovsek S, Estrov Z, Ravandi F, Borthakur G, et al. Phase I study of ruxolitinib for patients (Pts) with low or intermediate-1 risk myelodysplastic syndrome (MDS) who failed at least one line of therapy. Blood. 2016;128(22):4318.CrossRefGoogle Scholar
  63. 63.
    Zhao S, Guo J, Zhao Y, Fei C, Zheng Q, Li X, et al. Chidamide, a novel histone deacetylase inhibitor, inhibits the viability of MDS and AML cells by suppressing JAK2/STAT3 signaling. Am J Transl Res. 2016;8(7):3169–78.PubMedPubMedCentralGoogle Scholar
  64. 64.
    Kuroda J, Kodama A, Chinen Y, Shimura Y, Mizutani S, Nagoshi H, et al. NS-018, a selective JAK2 inhibitor, preferentially inhibits CFU-GM colony formation by bone marrow mononuclear cells from high-risk myelodysplastic syndrome patients. Leuk Res. 2014;38(5):619–24.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Padua RA, Guinn BA, Al-Sabah AI, Smith M, Taylor C, Pettersson T, et al. RAS, FMS and p53 mutations and poor clinical outcome in myelodysplasias: a 10-year follow-up. Leukemia. 1998;12(6):887–92.PubMedCrossRefGoogle Scholar
  66. 66.
    Borthakur G, Popplewell L, Boyiadzis M, Foran J, Platzbecker U, Vey N, et al. Activity of the oral mitogen-activated protein kinase kinase inhibitor trametinib in RAS-mutant relapsed or refractory myeloid malignancies. Cancer. 2016;122(12):1871–9.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Patnaik MM, Sallman DA, Sekeres MA, Luger S, Bejar R, Hobbs GS, et al. Preliminary results from an open-label, phase 2 study of tipifarnib in chronic myelomonocytic leukemia (CMML). Blood. 2017;130(Suppl 1):2963.Google Scholar
  68. 68.
    Fenaux P, Raza A, Mufti GJ, Aul C, Germing U, Kantarjian H, et al. A multicenter phase 2 study of the farnesyltransferase inhibitor tipifarnib in intermediate- to high-risk myelodysplastic syndrome. Blood. 2007 May 15;109(10):4158–63.PubMedCrossRefGoogle Scholar
  69. 69.
    Erba HP, Othus M, Walter RB, Kirschbaum MH, Tallman MS, Larson RA, et al. Four different regimens of farnesyltransferase inhibitor tipifarnib in older, untreated acute myeloid leukemia patients: North American Intergroup Phase II study SWOG S0432. Leuk Res. 2014 Mar;38(3):329–33.PubMedCrossRefGoogle Scholar
  70. 70.
    Navada SC, Silverman LR, Hearn KP, Odchimar-Reissig R, Demakos EP, Alvarado Y, et al. A phase II study of the combination of oral rigosertib and azacitidine in patients with myelodysplastic syndromes (MDS). Blood. 2015;126(23):910.CrossRefGoogle Scholar
  71. 71.
    Grimwade D, Ivey A, Huntly BJP. Molecular landscape of acute myeloid leukemia in younger adults and its clinical relevance. Blood. 2016;127(1):29–41.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Song WJ, Sullivan MG, Legare RD, Hutchings S, Tan X, Kufrin D, et al. Haploinsufficiency of CBFA2 causes familial thrombocytopenia with propensity to develop acute myelogenous leukaemia. Nat Genet. 1999;23(2):166–75.PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Mill CP, Fiskus W, DiNardo CD, Qian Y, Raina K, Rajapakshe K, et al. RUNX1 targeted therapy for AML expressing somatic or germline mutation in RUNX1. Blood [Internet]. 2019; Available from:. Scholar
  74. 74.
    Sallman DA, Komrokji R, Vaupel C, Cluzeau T, Geyer SM, McGraw KL, et al. Impact of TP53 mutation variant allele frequency on phenotype and outcomes in myelodysplastic syndromes. Leukemia. 2016;30(3):666–73.PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Bally C, Adès L, Renneville A, Sebert M, Eclache V, Preudhomme C, et al. Prognostic value of TP53 gene mutations in myelodysplastic syndromes and acute myeloid leukemia treated with azacitidine. Leuk Res. 2014;38(7):751–5.PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Zhang Q, Bykov VJN, Wiman KG, Zawacka-Pankau J. APR-246 reactivates mutant p53 by targeting cysteines 124 and 277. Cell Death Dis. 2018;9(5):439.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    •• Sallman DA, DeZern AE, Steensma DP, Sweet KL, Cluzeau T, Sekeres MA, et al. Phase 1b/2 combination study of APR-246 and azacitidine (AZA) in patients with TP53 mutant myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML). Blood. 2018;132(Suppl 1):3091 Potentially practice changing data for TP53 mutant MDS which led to phase III trial. CrossRefGoogle Scholar
  78. 78.
    Swords RT, Coutre S, Maris MB, Zeidner JF, Foran JM, Cruz J, et al. Pevonedistat, a first-in-class NEDD8-activating enzyme inhibitor, combined with azacitidine in patients with AML. Blood. 2018;131(13):1415–24.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Wade M, Li Y-C, Wahl GM. MDM2, MDMX and p53 in oncogenesis and cancer therapy. Nat Rev Cancer. 2013;13(2):83–96.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Andreeff M, Kelly KR, Yee K, Assouline S, Strair R, Popplewell L, et al. Results of the phase I trial of RG7112, a small-molecule MDM2 antagonist in leukemia. Clin Cancer Res. 2016;22(4):868–76.PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Sallman DA, Borate U, Cull EH, Donnellan WB, Komrokji RS, Steidl UG, et al. Phase 1/1b study of the stapled peptide ALRN-6924, a dual inhibitor of MDMX and MDM2, as monotherapy or in combination with cytarabine for the treatment of relapsed/refractory AML and advanced MDS with TP53 wild-type. Blood. 2018;132(Suppl 1):4066.CrossRefGoogle Scholar
  82. 82.
    Krönke J, Fink EC, Hollenbach PW, MacBeth KJ, Hurst SN, Udeshi ND, et al. Lenalidomide induces ubiquitination and degradation of CK1α in del(5q) MDS. Nature. 2015;523(7559):183–8.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    List AF, Bennett JM, Sekeres MA, Skikne B, Fu T, Shammo JM, et al. Extended survival and reduced risk of AML progression in erythroid-responsive lenalidomide-treated patients with lower-risk del(5q) MDS. Leukemia. 2014;28(5):1033–40.PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Santini V, Almeida A, Giagounidis A, Gröpper S, Jonasova A, Vey N, et al. Randomized phase III study of lenalidomide versus placebo in RBC transfusion-dependent patients with lower-risk non-del(5q) myelodysplastic syndromes and ineligible for or refractory to erythropoiesis-stimulating agents. J Clin Oncol. 2016;34(25):2988–96.PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Jädersten M, Saft L, Smith A, Kulasekararaj A, Pomplun S, Göhring G, et al. TP53 mutations in low-risk myelodysplastic syndromes with del(5q) predict disease progression. J Clin Oncol. 2011;29(15):1971–9.PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Mallo M, Del Rey M, Ibáñez M, Calasanz MJ, Arenillas L, Larráyoz MJ, et al. Response to lenalidomide in myelodysplastic syndromes with del(5q): influence of cytogenetics and mutations. Br J Haematol. 2013;162(1):74–86.PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Christman JK. 5-Azacytidine and 5-aza-2′-deoxycytidine as inhibitors of DNA methylation: mechanistic studies and their implications for cancer therapy. Oncogene. 2002;21(35):5483–95.PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Lübbert M, Suciu S, Baila L, Rüter BH, Platzbecker U, Giagounidis A, et al. Low-dose decitabine versus best supportive care in elderly patients with intermediate- or high-risk myelodysplastic syndrome (MDS) ineligible for intensive chemotherapy: final results of the randomized phase III study of the European Organisation for Research and Treatment of Cancer Leukemia Group and the German MDS Study Group. J Clin Oncol. 2011;29(15):1987–96.PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Silverman LR, McKenzie DR, Peterson BL, Holland JF, Backstrom JT, Beach CL, et al. Further analysis of trials with azacitidine in patients with myelodysplastic syndrome: studies 8421, 8921, and 9221 by the Cancer and Leukemia Group B. J Clin Oncol. 2006;24(24):3895–903.PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Bejar R, Lord A, Stevenson K, Bar-Natan M, Pérez-Ladaga A, Zaneveld J, et al. TET2 mutations predict response to hypomethylating agents in myelodysplastic syndrome patients. Blood. 2014;124(17):2705–12.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Tobiasson M, McLornan DP, Karimi M, Dimitriou M, Jansson M, Ben Azenkoud A, et al. Mutations in histone modulators are associated with prolonged survival during azacitidine therapy. Oncotarget. 2016;7(16):22103–15.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Yi L, Sun Y, Levine A. Selected drugs that inhibit DNA methylation can preferentially kill p53 deficient cells. Oncotarget. 2014;5(19):8924–36.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Rudelius M, Rondak I, Haferlach T, Schanz J, Schmidt B, Kremer M, et al. Response to azacitidine is independent of TP53 mutations in higher-risk myelodysplastic syndromes (MDS) and secondary acute myeloid leukemia (sAML). Blood. 2013;122(21):2797.CrossRefGoogle Scholar
  94. 94.
    Welch JS, Petti AA, Miller CA, Fronick CC, O’Laughlin M, Fulton RS, et al. TP53 and decitabine in acute myeloid leukemia and myelodysplastic syndromes. N Engl J Med. 2016;375(21):2023–36.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Chang C-K, Zhao Y-S, Xu F, Guo J, Zhang Z, He Q, et al. TP53 mutations predict decitabine-induced complete responses in patients with myelodysplastic syndromes. Br J Haematol. 2017;176(4):600–8.PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Sallman DA, Al Ali N, Yun S, Padron E, Song J, Hussaini MO, et al. Clonal suppression of TP53 mutant MDS and oligoblastic AML with hypomethylating agent therapy improves overall survival. Blood. 2018;132(Suppl 1):1817.CrossRefGoogle Scholar
  97. 97.
    Bejar R, Stevenson KE, Caughey B, Lindsley RC, Mar BG, Stojanov P, et al. Somatic mutations predict poor outcome in patients with myelodysplastic syndrome after hematopoietic stem-cell transplantation. J Clin Oncol. 2014;32(25):2691–8.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Della Porta MG, Gallì A, Bacigalupo A, Zibellini S, Bernardi M, Rizzo E, et al. Clinical effects of driver somatic mutations on the outcomes of patients with myelodysplastic syndromes treated with allogeneic hematopoietic stem-cell transplantation. J Clin Oncol. 2016;34(30):3627–37.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    • Lindsley RC, Saber W, Mar BG, Redd R, Wang T, Haagenson MD, et al. Prognostic mutations in myelodysplastic syndrome after stem-cell transplantation. N Engl J Med. 2017;376(6):536–47 Large collaborative study regarding effect of somatic mutations on stem cell transplant. PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Yoshizato T, Nannya Y, Atsuta Y, Shiozawa Y, Iijima-Yamashita Y, Yoshida K, et al. Genetic abnormalities in myelodysplasia and secondary acute myeloid leukemia: impact on outcome of stem cell transplantation. Blood. 2017;129(17):2347–58.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Heuser M, Gabdoulline R, Löffeld P, Dobbernack V, Kreimeyer H, Pankratz M, et al. Individual outcome prediction for myelodysplastic syndrome (MDS) and secondary acute myeloid leukemia from MDS after allogeneic hematopoietic cell transplantation. Ann Hematol. 2017;96(8):1361–72.PubMedCrossRefGoogle Scholar
  102. 102.
    • Garcia-Manero G, Daver NG, Montalban-Bravo G, Jabbour EJ, CD DN, Kornblau SM, et al. A phase II study evaluating the combination of nivolumab (Nivo) or ipilimumab (Ipi) with azacitidine in pts with previously treated or untreated myelodysplastic syndromes (MDS). Blood. 2016;128(22):344 First trial showing potential efficacy of immunotherapy in MDS.CrossRefGoogle Scholar
  103. 103.
    Jiang H, Fu R, Wang H, Li L, Liu H, Shao Z. CD47 is expressed abnormally on hematopoietic cells in myelodysplastic syndrome. Leuk Res. 2013;37(8):907–10.PubMedCrossRefGoogle Scholar
  104. 104.
    Pang X, Wong M, House V, Dodge K, Viau S, Vigo NT, et al. Blockade of CD47 using SIRPαFc: role of the fc region in anti-leukemic activity and tolerability. Blood. 2013;122(21):3935.CrossRefGoogle Scholar
  105. 105.
    Sallman DA, Donnellan WB, Asch AS, Lee DJ, Al Malki M, Marcucci G, et al. The first-in-class anti-CD47 antibody Hu5F9-G4 is active and well tolerated alone or with azacitidine in AML and MDS patients: Initial phase 1b results. J Clin Orthod. 2019;37(15_suppl):7009.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Hematology and OncologyH. Lee Moffitt Cancer CenterTampaUSA

Personalised recommendations