Advertisement

Current Hematologic Malignancy Reports

, Volume 14, Issue 5, pp 426–438 | Cite as

Mechanisms of Resistance to Monoclonal Antibodies (mAbs) in Lymphoid Malignancies

  • Pallawi Torka
  • Mathew Barth
  • Robert Ferdman
  • Francisco J. Hernandez-IlizaliturriEmail author
B-cell NHL, T-cell NHL, and Hodgkin Lymphoma (J Amengual, Section Editor)
Part of the following topical collections:
  1. Topical Collection on B-cell NHL, T-cell NHL, and Hodgkin Lymphoma

Abstract

Purpose of Review

Passive immunotherapy with therapeutic monoclonal antibodies (mAbs) has revolutionized the treatment of cancer, especially hematological malignancies over the last 20 years. While use of mAbs has improved outcomes, development of resistance is inevitable in most cases, hindering the long-term survival of cancer patients. This review focuses on the available data on mechanisms of resistance to rituximab and includes some additional information for other mAbs currently in use in hematological malignancies.

Recent Findings

Mechanisms of resistance have been identified that target all described mechanisms of mAb activity including altered antigen expression or binding, impaired complement-mediated cytotoxicity (CMC) or antibody-dependent cellular cytotoxicity (ADCC), altered intracellular signaling effects, and inhibition of direct induction of cell death. Numerous approaches to circumvent identified mechanisms of resistance continue to be investigated, but a thorough understanding of which resistance mechanisms are most clinically relevant is still elusive. In recent years, a deeper understanding of the tumor microenvironment and targeting the apoptotic pathway has led to promising breakthroughs.

Summary

Resistance may be driven by unique patient-, disease-, and antibody-related factors. Understanding the mechanisms of resistance to mAbs will guide the development of strategies to overcome resistance and re-sensitize cancer cells to these biological agents.

Keywords

CMC ADCC Apoptosis Rituximab Anti-CD20 

Notes

Compliance with Ethical Standards

Conflict of Interest

Pallawi Torka, Mathew Barth, Robert Ferdman, and Francisco J Hernandez-Ilizaliturri declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. 1.
    Administration USFaD. Hematology/oncology (cancer) approvals & safety notifications [Available from: https://www.fda.gov/drugs/resources-information-approved-drugs/hematologyoncology-cancer-approvals-safety-notifications.
  2. 2.
    Jazirehi AR, Bonavida B. Cellular and molecular signal transduction pathways modulated by rituximab (rituxan, anti-CD20 mAb) in non-Hodgkin's lymphoma: implications in chemosensitization and therapeutic intervention. Oncogene. 2005;24:2121–43.PubMedGoogle Scholar
  3. 3.
  4. 4.
    Hernandez-Ilizaliturri FJ, Czuczman MS. Understanding the mechanisms of resistance to rituximab: paving the road for the development of therapeutic strategies to overcome rituximab-resistance. In: Bonavida B, editor. Resistance to immunotherapeutic antibodies in cancer. 2. New York: Springer; 2013.Google Scholar
  5. 5.
    Selenko N, Majdic O, Jager U, Sillaber C, Stockl J, Knapp W. Cross-priming of cytotoxic T cells promoted by apoptosis-inducing tumor cell reactive antibodies? J Clin Immunol. 2002;22(3):124–30.PubMedGoogle Scholar
  6. 6.
    Tobinai K, Kobayashi Y, Narabayashi M, Ogura M, Kagami Y, Morishima Y, et al. Feasibility and pharmacokinetic study of a chimeric anti-CD20 monoclonal antibody (IDEC-C2B8, rituximab) in relapsed B-cell lymphoma. Ann Oncol. 1998;9(5):527–34.PubMedGoogle Scholar
  7. 7.
    Igarashi T, Kobayashi Y, Ogura M, Kinoshita T, Ohtsu T, Sasaki Y, et al. Factors affecting toxicity, response and progression-free survival in relapsed patients with indolent B-cell lymphoma and mantle cell lymphoma treated with rituximab: a Japanese phase II study. Ann Oncol. 2002;13(6):928–43.PubMedGoogle Scholar
  8. 8.
    Jäger U, Fridrik M, Zeitlinger M, Heintel D, Hopfinger G, Burgstaller S, et al. Rituximab serum concentrations during immuno-chemotherapy of follicular lymphoma correlate with patient gender, bone marrow infiltration and clinical response. Haematologica. 2012;97:1431–8.PubMedPubMedCentralGoogle Scholar
  9. 9.
    Pfreundschuh M, Müller C, Zeynalova S, Kuhnt E, Wiesen MHJ, Held G, et al. Suboptimal dosing of rituximab in male and female patients with DLBCL. Blood. 2014;123(5):640–6.PubMedGoogle Scholar
  10. 10.
    Berinstein NL, Grillo-Lopez AJ, White CA, Bence-Bruckler I, Maloney D, Czuczman M, et al. Association of serum rituximab (IDEC-C2B8) concentration and anti-tumor response in the treatment of recurrent low-grade or follicular non-Hodgkin's lymphoma. Ann Oncol. 1998;9(9):995–1001.PubMedGoogle Scholar
  11. 11.
    Barth MJ, Goldman S, Smith L, Perkins S, Shiramizu B, Gross TG, et al. Rituximab pharmacokinetics in children and adolescents with de novo intermediate and advanced mature B-cell lymphoma/leukaemia: a children’s oncology group report. Br J Haematol. 2013;162(5):678–83.PubMedPubMedCentralGoogle Scholar
  12. 12.
    Watier H. Variability factors in the clinical response to recombinant antibodies and IgG Fc-containing fusion proteins. Expert Opin Biol Ther. 2005;5(sup1):S29–36.PubMedGoogle Scholar
  13. 13.
    Manshouri T, Do KA, Wang X, Giles FJ, O'Brien SM, Saffer H, et al. Circulating CD20 is detectable in the plasma of patients with chronic lymphocytic leukemia and is of prognostic significance. Blood. 2003;101(7):2507–13.PubMedGoogle Scholar
  14. 14.
    Keating MJ, O’Brien S, Albitar M. Emerging information on the use of rituximab in chronic lymphocytic leukemia. Semin Oncol. 2002;29(1 Suppl 2):70–4.PubMedGoogle Scholar
  15. 15.
    Giles FJ, Vose JM, Do KA, Johnson MM, Manshouri T, Bociek G, et al. Circulating CD20 and CD52 in patients with non-Hodgkin's lymphoma or Hodgkin's disease. Br J Haematol. 2003;123(5):850–7.PubMedGoogle Scholar
  16. 16.
    Keating M, O’Brien S. High-dose rituximab therapy in chronic lymphocytic leukemia. Semin Oncol. 2000;27(6 Suppl 12):86–90.PubMedGoogle Scholar
  17. 17.
    Ternant D, Cartron G, Hénin E, Tod M, Girard P, Paintaud G. Model-based design of rituximab dosage optimization in follicular non-Hodgkin's lymphoma. Br J Clin Pharmacol. 2012;73(4):597–605.PubMedGoogle Scholar
  18. 18.
    Looney RJ, Anolik JH, Campbell D, Felgar RE, Young F, Arend LJ, et al. B cell depletion as a novel treatment for systemic lupus erythematosus: a phase I/II dose-escalation trial of rituximab. Arthritis Rheum. 2004;50(8):2580–9.PubMedGoogle Scholar
  19. 19.
    McLaughlin P, Grillo-López AJ, Link BK, Levy R, Czuczman MS, Williams ME, et al. Rituximab chimeric anti-CD20 monoclonal antibody therapy for relapsed indolent lymphoma: half of patients respond to a four-dose treatment program. J Clin Oncol. 1998;16(8):2825–33.PubMedGoogle Scholar
  20. 20.
    van Meerten T, van Rijn RS, Hol S, Hagenbeek A, Ebeling SB. Complement-induced cell death by rituximab depends on CD20 expression level and acts complementary to antibody-dependent cellular cytotoxicity. Clin Cancer Res. 2006;12(13):4027–35.PubMedGoogle Scholar
  21. 21.
    Di Gaetano N, Cittera E, Nota R, Vecchi A, Grieco V, Scanziani E, et al. Complement activation determines the therapeutic activity of rituximab in vivo. J Immunol. 2003;171(3):1581–7.PubMedGoogle Scholar
  22. 22.
    Hiraga J, Tomita A, Sugimoto T, Shimada K, Ito M, Nakamura S, et al. Down-regulation of CD20 expression in B-cell lymphoma cells after treatment with rituximab-containing combination chemotherapies: its prevalence and clinical significance. Blood. 2009;113(20):4885–93.PubMedGoogle Scholar
  23. 23.
    Terui Y, Mishima Y, Sugimura N, Kojima K, Sakurai T, Kuniyoshi R, et al. Identification of CD20 C-terminal deletion mutations associated with loss of CD20 expression in non-Hodgkin's lymphoma. Clin Cancer Res. 2009;15(7):2523–30.PubMedGoogle Scholar
  24. 24.
    Jilani I, O’Brien S, Manshuri T, Thomas DA, Thomazy VA, Imam M, et al. Transient down-modulation of CD20 by rituximab in patients with chronic lymphocytic leukemia. Blood. 2003;102(10):3514–20.PubMedGoogle Scholar
  25. 25.
    Davis TA, Czerwinski DK, Levy R. Therapy of B-cell lymphoma with anti-CD20 antibodies can result in the loss of CD20 antigen expression. Clin Cancer Res. 1999;5(3):611–5.PubMedGoogle Scholar
  26. 26.
    Rawal YB, Nuovo GJ, Frambach GE, Porcu P, Baiocchi RA, Magro CM. The absence of CD20 messenger RNA in recurrent cutaneous B-cell lymphoma following rituximab therapy. J Cutan Pathol. 2005;32(9):616–21.PubMedGoogle Scholar
  27. 27.
    Czuczman MS, Olejniczak S, Gowda A, Kotowski A, Binder A, Kaur H, et al. Acquirement of rituximab resistance in lymphoma cell lines is associated with both global CD20 gene and protein down-regulation regulated at the pretranscriptional and posttranscriptional levels. Clin Cancer Res. 2008;14(5):1561–70.PubMedGoogle Scholar
  28. 28.
    Hiraga J, Tomita A, Sugimoto T, Shimada K, Ito M, Nakamura S, et al. Down-regulation of CD20 expression in B-cell lymphoma cells after treatment with rituximab-containing combination chemotherapies: its prevalence and clinical significance. Blood. 2009;113:4885–93.PubMedGoogle Scholar
  29. 29.
    Tsai PC, Hernandez-Ilizaliturri FJ, Bangia N, Olejniczak SH, Czuczman MS. Regulation of CD20 in rituximab-resistant cell lines and B-cell non-Hodgkin lymphoma. Clin Cancer Res. 18(4):1039–50.PubMedPubMedCentralGoogle Scholar
  30. 30.
    Beum PV, Kennedy AD, Williams ME, Lindorfer MA, Taylor RP. The shaving reaction: rituximab/CD20 complexes are removed from mantle cell lymphoma and chronic lymphocytic leukemia cells by THP-1 monocytes. J Immunol. 2006;176(4):2600–9.PubMedGoogle Scholar
  31. 31.
    Li B, Zhang X, Shi S, Zhao L, Zhang D, Qian W, et al. Construction and characterization of a bispecific anti-CD20 antibody with potent antitumor activity against B-cell lymphoma. Cancer Res. 2010;70(15):6293–302.PubMedGoogle Scholar
  32. 32.
    Beers SA, French RR, Chan HT, Lim SH, Jarrett TC, Vidal RM, et al. Antigenic modulation limits the efficacy of anti-CD20 antibodies: implications for antibody selection. Blood. 2010;115(25):5191–201.PubMedGoogle Scholar
  33. 33.
    Henry C, Deschamps M, Rohrlich PS, Pallandre JR, Remy-Martin JP, Callanan M, et al. Identification of an alternative CD20 transcript variant in B-cell malignancies coding for a novel protein associated to rituximab resistance. Blood. 115(12):2420–9.PubMedGoogle Scholar
  34. 34.
    Sugimoto T, Tomita A, Hiraga J, Shimada K, Kiyoi H, Kinoshita T, et al. Escape mechanisms from antibody therapy to lymphoma cells: downregulation of CD20 mRNA by recruitment of the HDAC complex and not by DNA methylation. Biochem Biophys Res Commun. 2009;390(1):48–53.PubMedGoogle Scholar
  35. 35.
    Shimizu R, Kikuchi J, Wada T, Ozawa K, Kano Y, Furukawa Y. HDAC inhibitors augment cytotoxic activity of rituximab by upregulating CD20 expression on lymphoma cells. Leukemia. 2010;24(10):1760–8.PubMedGoogle Scholar
  36. 36.
    Mankai A, Buhe V, Hammadi M, Youinou P, Ghedira I, Berthou C, et al. Improvement of rituximab efficiency in chronic lymphocytic leukemia by CpG-mediated upregulation of CD20 expression independently of PU.1. Ann N Y Acad Sci. 2009;1173:721–8.PubMedGoogle Scholar
  37. 37.
    Winiarska M, Nowis D, Bil J, Glodkowska-Mrowka E, Muchowicz A, Wanczyk M, et al. Prenyltransferases regulate CD20 protein levels and influence anti-CD20 monoclonal antibody-mediated activation of complement-dependent cytotoxicity. J Biol Chem. 2012;287(38):31983–93.PubMedPubMedCentralGoogle Scholar
  38. 38.
    Scialdone A, Hasni MS, Damm JK, Lennartsson A, Gullberg U, Drott K. The HDAC inhibitor valproate induces a bivalent status of the CD20 promoter in CLL patients suggesting distinct epigenetic regulation of CD20 expression in CLL in vivo. Oncotarget. 2017;8(23):37409–22.PubMedPubMedCentralGoogle Scholar
  39. 39.
    Xue K, Gu JJ, Zhang Q, Mavis C, Hernandez-Ilizaliturri FJ, Czuczman MS, et al. Vorinostat, a histone deacetylase (HDAC) inhibitor, promotes cell cycle arrest and re-sensitizes rituximab- and chemo-resistant lymphoma cells to chemotherapy agents. J Cancer Res Clin Oncol. 2016;142(2):379–87.PubMedGoogle Scholar
  40. 40.
    Frys S, Simons Z, Hu Q, Barth MJ, Gu JJ, Mavis C, et al. Entinostat, a novel histone deacetylase inhibitor is active in B-cell lymphoma and enhances the anti-tumour activity of rituximab and chemotherapy agents. Br J Haematol. 2015;169(4):506–19.PubMedPubMedCentralGoogle Scholar
  41. 41.
    Barth MJ, Hernandez-Ilizaliturri FJ, Mavis C, Tsai PC, Gibbs JF, Deeb G, et al. Ofatumumab demonstrates activity against rituximab-sensitive and -resistant cell lines, lymphoma xenografts and primary tumour cells from patients with B-cell lymphoma. Br J Haematol. 156(4):490–8.PubMedGoogle Scholar
  42. 42.
    Alduaij W, Ivanov A, Honeychurch J, Cheadle EJ, Potluri S, Lim SH, et al. Novel type II anti-CD20 monoclonal antibody (GA101) evokes homotypic adhesion and actin-dependent, lysosome-mediated cell death in B-cell malignancies. Blood. 117(17):4519–29.PubMedPubMedCentralGoogle Scholar
  43. 43.
    Drott K, Hagberg H, Papworth K, Relander T, Jerkeman M. Valproate in combination with rituximab and CHOP as first-line therapy in diffuse large B-cell lymphoma (VALFRID). Blood Adv. 2018;2(12):1386–92.PubMedPubMedCentralGoogle Scholar
  44. 44.
    Budde LE, Zhang MM, Shustov AR, Pagel JM, Gooley TA, Oliveira GR, et al. A phase I study of pulse high-dose vorinostat (V) plus rituximab (R), ifosphamide, carboplatin, and etoposide (ICE) in patients with relapsed lymphoma. Br J Haematol. 2013;161(2):183–91.PubMedPubMedCentralGoogle Scholar
  45. 45.
    Sivaraman S, Deshpande CG, Ranganathan R, Huang X, Jajeh A, O’Brien T, et al. Tumor necrosis factor modulates CD 20 expression on cells from chronic lymphocytic leukemia: a new role for TNF alpha? Microsc Res Tech. 2000;50(3):251–7.PubMedGoogle Scholar
  46. 46.
    Venugopal P, Sivaraman S, Huang X-K, Nayini J, Gregory SA, Preisler HD. Effects of cytokines on CD20 antigen expression on tumor cells from patients with chronic lymphocytic leukemia. Leuk Res. 2000;24(5):411–5.PubMedGoogle Scholar
  47. 47.
    Tuscano JM, Ma Y, Martin SM, Kato J, O’Donnell RT. The Bs20x22 anti-CD20-CD22 bispecific antibody has more lymphomacidal activity than do the parent antibodies alone. Cancer Immunol Immunother. 2011;60(6):771–80.PubMedPubMedCentralGoogle Scholar
  48. 48.
    Leonard JP, Coleman M, Ketas JC, Chadburn A, Furman R, Schuster MW, et al. Epratuzumab, a humanized anti-CD22 antibody, in aggressive non-Hodgkin’s lymphoma: phase I/II clinical trial results. Clin Cancer Res. 2004;10(16):5327–34.PubMedGoogle Scholar
  49. 49.
    Ogura M, Tobinai K, Hatake K, Davies A, Crump M, Ananthakrishnan R, et al. Phase I study of inotuzumab ozogamicin combined with R-CVP for relapsed/refractory CD22+ B-cell non-Hodgkin lymphoma. Clin Cancer Res. 2016;22(19):4807–16.PubMedGoogle Scholar
  50. 50.
    Goebeler ME, Knop S, Viardot A, Kufer P, Topp MS, Einsele H, et al. Bispecific T-cell engager (BiTE) antibody construct blinatumomab for the treatment of patients with relapsed/refractory non-Hodgkin lymphoma: final results from a phase I study. J Clin Oncol Off J Am Soc Clin Oncol. 2016;34(10):1104–11.Google Scholar
  51. 51.
    Palanca-Wessels MC, Czuczman M, Salles G, Assouline S, Sehn LH, Flinn I, et al. Safety and activity of the anti-CD79B antibody-drug conjugate polatuzumab vedotin in relapsed or refractory B-cell non-Hodgkin lymphoma and chronic lymphocytic leukaemia: a phase 1 study. Lancet Oncol. 2015;16(6):704–15.PubMedGoogle Scholar
  52. 52.
    Czuczman MS, Thall A, Witzig TE, Vose JM, Younes A, Emmanouilides C, et al. Phase I/II study of galiximab, an anti-CD80 antibody, for relapsed or refractory follicular lymphoma. J Clin Oncol Off J Am Soc Clin Oncol. 2005;23(19):4390–8.Google Scholar
  53. 53.
    de Vos S, Forero-Torres A, Ansell SM, Kahl B, Cheson BD, Bartlett NL, et al. A phase II study of dacetuzumab (SGN-40) in patients with relapsed diffuse large B-cell lymphoma (DLBCL) and correlative analyses of patient-specific factors. J Hematol Oncol. 2014;7:44.PubMedPubMedCentralGoogle Scholar
  54. 54.
    Maclaren A, Levin N, Lowman H, Trikha M. Trph-222, a novel anti-CD22 antibody drug conjugate (ADC), has signficant anti-tumor activity in NHL xenografts and is well tolerated in non-human primates. Blood. 2017;130(Suppl 1):4105.Google Scholar
  55. 55.
    Advani RH, Lebovic D, Chen A, Brunvand M, Goy A, Chang JE, et al. Phase I study of the anti-CD22 antibody-drug conjugate pinatuzumab vedotin with/without rituximab in patients with relapsed/refractory B-cell non-Hodgkin lymphoma. Clin Cancer Res. 2017;23(5):1167–76.PubMedGoogle Scholar
  56. 56.
    Uchida J, Hamaguchi Y, Oliver JA, Ravetch JV, Poe JC, Haas KM, et al. The innate mononuclear phagocyte network depletes B lymphocytes through fc receptor-dependent mechanisms during anti-CD20 antibody immunotherapy. J Exp Med. 2004;199(12):1659–69.PubMedPubMedCentralGoogle Scholar
  57. 57.
    Kennedy AD, Beum PV, Solga MD, DiLillo DJ, Lindorfer MA, Hess CE, et al. Rituximab infusion promotes rapid complement depletion and acute CD20 loss in chronic lymphocytic leukemia. J Immunol. 2004;172(5):3280–8.PubMedGoogle Scholar
  58. 58.
    Klepfish A, Gilles L, Ioannis K, Rachmilewitz EA, Schattner A. Enhancing the action of rituximab in chronic lymphocytic leukemia by adding fresh frozen plasma: complement/rituximab interactions & clinical results in refractory CLL. Ann N Y Acad Sci. 2009;1173:865–73.PubMedGoogle Scholar
  59. 59.
    Xu W, Miao KR, Zhu DX, Fang C, Zhu HY, Dong HJ, et al. Enhancing the action of rituximab by adding fresh frozen plasma for the treatment of fludarabine refractory chronic lymphocytic leukemia. Int J Cancer. 2011;128(9):2192–201.PubMedGoogle Scholar
  60. 60.
    Golay J, Lazzari M, Facchinetti V, Bernasconi S, Borleri G, Barbui T, et al. CD20 levels determine the in vitro susceptibility to rituximab and complement of B-cell chronic lymphocytic leukemia: further regulation by CD55 and CD59. Blood. 2001;98(12):3383–9.PubMedGoogle Scholar
  61. 61.
    Ziller F, Macor P, Bulla R, Sblattero D, Marzari R, Tedesco F. Controlling complement resistance in cancer by using human monoclonal antibodies that neutralize complement-regulatory proteins CD55 and CD59. Eur J Immunol. 2005;35(7):2175–83.PubMedGoogle Scholar
  62. 62.
    Weng WK, Levy R. Expression of complement inhibitors CD46, CD55, and CD59 on tumor cells does not predict clinical outcome after rituximab treatment in follicular non-Hodgkin lymphoma. Blood. 2001;98(5):1352–7.PubMedGoogle Scholar
  63. 63.
    Dzietczenia J, Wrobel T, Mazur G, Poreba R, Jazwiec B, Kuliczkowski K. Expression of complement regulatory proteins: CD46, CD55, and CD59 and response to rituximab in patients with CD20+ non-Hodgkin’s lymphoma. Med Oncol. 2010;27(3):743–6.PubMedGoogle Scholar
  64. 64.
    Racila E, Link BK, Weng WK, Witzig TE, Ansell S, Maurer MJ, et al. A polymorphism in the complement component C1qA correlates with prolonged response following rituximab therapy of follicular lymphoma. Clin Cancer Res. 2008;14(20):6697–703.PubMedPubMedCentralGoogle Scholar
  65. 65.
    Teeling JL, French RR, Cragg MS, van den Brakel J, Pluyter M, Huang H, et al. Characterization of new human CD20 monoclonal antibodies with potent cytolytic activity against non-Hodgkin lymphomas. Blood. 2004;104(6):1793–800.PubMedGoogle Scholar
  66. 66.
    Saphire EO, Stanfield RL, Crispin MD, Parren PW, Rudd PM, Dwek RA, et al. Contrasting IgG structures reveal extreme asymmetry and flexibility. J Mol Biol. 2002;319(1):9–18.PubMedGoogle Scholar
  67. 67.
    Barth MJ, Hernandez-Ilizaliturri FJ, Mavis C, Tsai PC, Gibbs JF, Deeb G, et al. Ofatumumab demonstrates activity against rituximab-sensitive and -resistant cell lines, lymphoma xenografts and primary tumour cells from patients with B-cell lymphoma. Br J Haematol. 2012;156(4):490–8.PubMedGoogle Scholar
  68. 68.
    Barth MJ, Mavis C, Czuczman MS, Hernandez-Ilizaliturri FJ. Ofatumumab exhibits enhanced in vitro and in vivo activity compared to rituximab in preclinical models of mantle cell lymphoma. Clin Cancer Res. 2015;21(19):4391–7.PubMedPubMedCentralGoogle Scholar
  69. 69.
    Beum PV, Lindorfer MA, Beurskens F, Stukenberg PT, Lokhorst HM, Pawluczkowycz AW, et al. Complement activation on B lymphocytes opsonized with rituximab or ofatumumab produces substantial changes in membrane structure preceding cell lysis. J Immunol. 2008;181(1):822–32.PubMedGoogle Scholar
  70. 70.
    Pawluczkowycz AW, Beurskens FJ, Beum PV, Lindorfer MA, van de Winkel JG, Parren PW, et al. Binding of submaximal C1q promotes complement-dependent cytotoxicity (CDC) of B cells opsonized with anti-CD20 mAbs ofatumumab (OFA) or rituximab (RTX): considerably higher levels of CDC are induced by OFA than by RTX. J Immunol. 2009;183(1):749–58.PubMedGoogle Scholar
  71. 71.
    van Imhoff GW, McMillan A, Matasar MJ, Radford J, Ardeshna KM, Kuliczkowski K, et al. Ofatumumab versus rituximab salvage chemoimmunotherapy in relapsed or refractory diffuse large B-cell lymphoma: the ORCHARRD study. J Clin Oncol Off J Am Soc Clin Oncol. 2017;35(5):544–51.Google Scholar
  72. 72.
    Czuczman MS, Kahanic S, Forero A, Davis G, Munteanu M, Van Den Neste E, et al. Results of a phase II study of bendamustine and ofatumumab in untreated indolent B cell non-Hodgkin’s lymphoma. Ann Hematol. 2015;94(4):633–41.PubMedGoogle Scholar
  73. 73.
    Coiffier B, Radford J, Bosly A, Martinelli G, Verhoef G, Barca G, et al. A multicentre, phase II trial of ofatumumab monotherapy in relapsed/progressive diffuse large B-cell lymphoma. Br J Haematol. 2013;163(3):334–42.PubMedGoogle Scholar
  74. 74.
    Matasar MJ, Czuczman MS, Rodriguez MA, Fennessy M, Shea TC, Spitzer G, et al. Ofatumumab in combination with ICE or DHAP chemotherapy in relapsed or refractory intermediate grade B-cell lymphoma. Blood. 2013;122(4):499–506.PubMedPubMedCentralGoogle Scholar
  75. 75.
    Czuczman MS, Fayad L, Delwail V, Cartron G, Jacobsen E, Kuliczkowski K, et al. Ofatumumab monotherapy in rituximab-refractory follicular lymphoma: results from a multicenter study. Blood. 2012;119(16):3698–704.PubMedGoogle Scholar
  76. 76.
    Diebolder CA, Beurskens FJ, de Jong RN, Koning RI, Strumane K, Lindorfer MA, et al. Complement is activated by IgG hexamers assembled at the cell surface. Science (New York, NY). 2014;343(6176):1260–3.Google Scholar
  77. 77.
    Clynes RA, Towers TL, Presta LG, Ravetch JV. Inhibitory Fc receptors modulate in vivo cytotoxicity against tumor targets. Nat Med. 2000;6(4):443–6.PubMedGoogle Scholar
  78. 78.
    Nimmerjahn F, Ravetch JV. Fcgamma receptors as regulators of immune responses. Nat Rev Immunol. 2008;8(1):34–47.PubMedGoogle Scholar
  79. 79.
    Hernandez-Ilizaliturri FJ, Jupudy V, Ostberg J, Oflazoglu E, Huberman A, Repasky E, et al. Neutrophils contribute to the biological antitumor activity of rituximab in a non-Hodgkin’s lymphoma severe combined immunodeficiency mouse model. Clin Cancer Res. 2003;9(16 Pt 1):5866–73.PubMedPubMedCentralGoogle Scholar
  80. 80.
    Cartron G, Dacheux L, Salles G, Solal-Celigny P, Bardos P, Colombat P, et al. Therapeutic activity of humanized anti-CD20 monoclonal antibody and polymorphism in IgG Fc receptor FcgammaRIIIa gene. Blood. 2002;99(3):754–8.PubMedGoogle Scholar
  81. 81.
    Weng WK, Levy R. Two immunoglobulin G fragment C receptor polymorphisms independently predict response to rituximab in patients with follicular lymphoma. J Clin Oncol Off J Am Soc Clin Oncol. 2003;21(21):3940–7.Google Scholar
  82. 82.
    Ghesquieres H, Cartron G, Seymour JF, Delfau-Larue MH, Offner F, Soubeyran P, et al. Clinical outcome of patients with follicular lymphoma receiving chemoimmunotherapy in the PRIMA study is not affected by FCGR3A and FCGR2A polymorphisms. Blood. 2012;120(13):2650–7.PubMedGoogle Scholar
  83. 83.
    Ahlgrimm M, Pfreundschuh M, Kreuz M, Regitz E, Preuss KD, Bittenbring J. The impact of Fc-gamma receptor polymorphisms in elderly patients with diffuse large B-cell lymphoma treated with CHOP with or without rituximab. Blood. 2011;118(17):4657–62.PubMedPubMedCentralGoogle Scholar
  84. 84.
    Weng WK, Weng WK, Levy R. Immunoglobulin G Fc receptor polymorphisms do not correlate with response to chemotherapy or clinical course in patients with follicular lymphoma. Leuk Lymphoma. 2009;50(9):1494–500.PubMedPubMedCentralGoogle Scholar
  85. 85.
    Weng WK, Negrin RS, Lavori P, Horning SJ. Immunoglobulin G Fc receptor FcgammaRIIIa 158 V/F polymorphism correlates with rituximab-induced neutropenia after autologous transplantation in patients with non-Hodgkin’s lymphoma. J Clin Oncol Off J Am Soc Clin Oncol. 2010;28(2):279–84.Google Scholar
  86. 86.
    Li SC, Chen YC, Evens AM, Lee CC, Liao HF, Yu CC, et al. Rituximab-induced late-onset neutropenia in newly diagnosed B-cell lymphoma correlates with Fc receptor FcgammaRIIIa 158(V/F) polymorphism. Am J Hematol. 2010;85(10):810–2.PubMedGoogle Scholar
  87. 87.
    Keane C, Nourse JP, Crooks P, Nguyen-Van D, Mutsando H, Mollee P, et al. Homozygous FCGR3A-158V alleles predispose to late onset neutropenia after CHOP-R for diffuse large B-cell lymphoma. Intern Med J. 2012;42(10):1113–9.PubMedGoogle Scholar
  88. 88.
    Koene HR, Kleijer M, Algra J, Roos D, von dem Borne AE, de Haas M. Fc gammaRIIIa-158V/F polymorphism influences the binding of IgG by natural killer cell Fc gammaRIIIa, independently of the Fc gammaRIIIa-48L/R/H phenotype. Blood. 1997;90(3):1109–14.PubMedGoogle Scholar
  89. 89.
    Lim SH, Vaughan AT, Ashton-Key M, Williams EL, Dixon SV, Chan HT, et al. Fc gamma receptor IIb on target B cells promotes rituximab internalization and reduces clinical efficacy. Blood. 2011;118(9):2530–40.PubMedGoogle Scholar
  90. 90.
    Lee CS, Ashton-Key M, Cogliatti S, Rondeau S, Schmitz S-FH, Ghielmini M, et al. Expression of the inhibitory Fc gamma receptor IIB (FCGR2B, CD32B) on follicular lymphoma cells lowers the response rate to rituximab monotherapy (SAKK 35/98). Br J Haematol. 2015;168(1):145–8.PubMedGoogle Scholar
  91. 91.
    Mössner E, Brünker P, Moser S, Püntener U, Schmidt C, Herter S, et al. Increasing the efficacy of CD20 antibody therapy through the engineering of a new type II anti-CD20 antibody with enhanced direct and immune effector cell–mediated B-cell cytotoxicity. Blood. 2010;115(22):4393–402.PubMedPubMedCentralGoogle Scholar
  92. 92.
    Alduaij W, Ivanov A, Honeychurch J, Cheadle EJ, Potluri S, Lim SH, et al. Novel type II anti-CD20 monoclonal antibody (GA101) evokes homotypic adhesion and actin-dependent, lysosome-mediated cell death in B-cell malignancies. Blood. 2011;117(17):4519–29.PubMedPubMedCentralGoogle Scholar
  93. 93.
    Kern DJ, James BR, Blackwell S, Gassner C, Klein C, Weiner GJ. GA101 induces NK-cell activation and antibody-dependent cellular cytotoxicity more effectively than rituximab when complement is present. Leuk Lymphoma. 2013;54(11):2500–5.PubMedPubMedCentralGoogle Scholar
  94. 94.
    Herter S, Herting F, Mundigl O, Waldhauer I, Weinzierl T, Fauti T, et al. Preclinical activity of the type II CD20 antibody GA101 (obinutuzumab) compared with rituximab and ofatumumab in vitro and in xenograft models. Mol Cancer Ther. 2013;12(10):2031–42.PubMedGoogle Scholar
  95. 95.
    Golay J, Da Roit F, Bologna L, Ferrara C, Leusen JH, Rambaldi A, et al. Glycoengineered CD20 antibody obinutuzumab activates neutrophils and mediates phagocytosis through CD16B more efficiently than rituximab. Blood. 2013;122(20):3482–91.PubMedGoogle Scholar
  96. 96.
    Awasthi A, Ayello J, Van de Ven C, Elmacken M, Sabulski A, Barth MJ, et al. Obinutuzumab (GA101) compared to rituximab significantly enhances cell death and antibody-dependent cytotoxicity and improves overall survival against CD20(+) rituximab-sensitive/−resistant Burkitt lymphoma (BL) and precursor B-acute lymphoblastic leukaemia (pre-B-ALL): potential targeted therapy in patients with poor risk CD20(+) BL and pre-B-ALL. Br J Haematol. 2015;171(5):763–75.PubMedGoogle Scholar
  97. 97.
    Sehn LH, Chua N, Mayer J, Dueck G, Trneny M, Bouabdallah K, et al. Obinutuzumab plus bendamustine versus bendamustine monotherapy in patients with rituximab-refractory indolent non-Hodgkin lymphoma (GADOLIN): a randomised, controlled, open-label, multicentre, phase 3 trial. Lancet Oncol. 2016;17(8):1081–93.PubMedGoogle Scholar
  98. 98.
    Marcus R, Davies A, Ando K, Klapper W, Opat S, Owen C, et al. Obinutuzumab for the first-line treatment of follicular lymphoma. N Engl J Med. 2017;377(14):1331–44.PubMedGoogle Scholar
  99. 99.
    Vitolo U, Trneny M, Belada D, Burke JM, Carella AM, Chua N, et al. Obinutuzumab or rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone in previously untreated diffuse large B-cell lymphoma. J Clin Oncol Off J Am Soc Clin Oncol. 2017;35(31):3529–37.Google Scholar
  100. 100.
    Mraz M, Zent CS, Church AK, Jelinek DF, Wu X, Pospisilova S, et al. Bone marrow stromal cells protect lymphoma B-cells from rituximab-induced apoptosis and targeting integrin α-4-β-1 (VLA-4) with natalizumab can overcome this resistance. Br J Haematol. 2011;155(1):53–64.PubMedPubMedCentralGoogle Scholar
  101. 101.
    Laursen MB, Reinholdt L, Schönherz AA, Due H, Jespersen DS, Grubach L, et al. High CXCR4 expression impairs rituximab response and the prognosis of R-CHOP-treated diffuse large B-cell lymphoma patients. Oncotarget. 2019;10(7):717–31.PubMedPubMedCentralGoogle Scholar
  102. 102.
    Lykken JM, Horikawa M, Minard-Colin V, Kamata M, Miyagaki T, Poe JC, et al. Galectin-1 drives lymphoma CD20 immunotherapy resistance: validation of a preclinical system to identify resistance mechanisms. Blood. 2016;127(15):1886–95.PubMedPubMedCentralGoogle Scholar
  103. 103.
    • Ren Z, Guo J, Liao J, Luan Y, Liu Z, Sun Z, et al. CTLA-4 limits anti-CD20–mediated tumor regression. Clin Cancer Res. 2017;23(1):193–203. This study describes how CTLA-4 affects rituximab activity.PubMedGoogle Scholar
  104. 104.
    Hernandez-Ilizaliturri FJ, Jupudy V, Reising S, Repasky EA, Czuczman MS. Concurrent administration of granulocyte colony-stimulating factor or granulocyte-monocyte colony-stimulating factor enhances the biological activity of rituximab in a severe combined immunodeficiency mouse lymphoma model. Leuk Lymphoma. 2005;46(12):1775–84.PubMedGoogle Scholar
  105. 105.
    Torka P, Patel P, Tan W, Wilding G, Bhat SA, Czuczman MS, et al. A phase II trial of rituximab combined with pegfilgrastim in patients with indolent B-cell non-Hodgkin lymphoma. Clin Lymphoma Myeloma Leuk. 2018;18(1):e51–60.PubMedGoogle Scholar
  106. 106.
    Byrd JC, Kitada S, Flinn IW, Aron JL, Pearson M, Lucas D, et al. The mechanism of tumor cell clearance by rituximab in vivo in patients with B-cell chronic lymphocytic leukemia: evidence of caspase activation and apoptosis induction. Blood. 2002;99(3):1038–43.PubMedGoogle Scholar
  107. 107.
    Shan D, Ledbetter JA, Press OW. Signaling events involved in anti-CD20-induced apoptosis of malignant human B cells. Cancer Immunol Immunother. 2000;48(12):673–83.PubMedGoogle Scholar
  108. 108.
    Shan D, Ledbetter JA, Press OW. Apoptosis of malignant human B cells by ligation of CD20 with monoclonal antibodies. Blood. 1998;91(5):1644–52.PubMedGoogle Scholar
  109. 109.
    van der Kolk LE, Evers LM, Omene C, Lens SM, Lederman S, van Lier RA, et al. CD20-induced B cell death can bypass mitochondria and caspase activation. Leukemia. 2002;16(9):1735–44.PubMedGoogle Scholar
  110. 110.
    Deans JP, Robbins SM, Polyak MJ, Savage JA. Rapid redistribution of CD20 to a low density detergent-insoluble membrane compartment. J Biol Chem. 1998;273(1):344–8.PubMedGoogle Scholar
  111. 111.
    Polyak MJ, Tailor SH, Deans JP. Identification of a cytoplasmic region of CD20 required for its redistribution to a detergent-insoluble membrane compartment. J Immunol. 1998;161(7):3242–8.PubMedPubMedCentralGoogle Scholar
  112. 112.
    Semac I, Palomba C, Kulangara K, Klages N, van Echten-Deckert G, Borisch B, et al. Anti-CD20 therapeutic antibody rituximab modifies the functional organization of rafts/microdomains of B lymphoma cells. Cancer Res. 2003;63(2):534–40.PubMedPubMedCentralGoogle Scholar
  113. 113.
    Zhang J-Y, Zhang P-P, Zhou W-P, Yu J-Y, Yao Z-H, Chu J-F, et al. L-type cav 1.2 calcium channel-α-1C regulates response to rituximab in diffuse large B-cell lymphoma. Clin Cancer Res. 2019.Google Scholar
  114. 114.
    Olejniczak SH, Hernandez-Ilizaliturri FJ, Clements JL, Czuczman MS. Acquired resistance to rituximab is associated with chemotherapy resistance resulting from decreased Bax and Bak expression. Clin Cancer Res. 2008;14(5):1550–60.PubMedGoogle Scholar
  115. 115.
    Jazirehi AR, Vega MI, Bonavida B. Development of rituximab-resistant lymphoma clones with altered cell signaling and cross-resistance to chemotherapy. Cancer Res. 2007;67(3):1270–81.PubMedGoogle Scholar
  116. 116.
    Runckel K, Barth MJ, Mavis C, Gu JJ, Hernandez-Ilizaliturri FJ. The SMAC mimetic LCL-161 displays antitumor activity in preclinical models of rituximab-resistant B-cell lymphoma. Blood Adv. 2018;2(23):3516–25.PubMedPubMedCentralGoogle Scholar
  117. 117.
    • Gu JJ, Hernandez-Ilizaliturri FJ, Kaufman GP, Czuczman NM, Mavis C, Skitzki JJ, et al. The novel proteasome inhibitor carfilzomib induces cell cycle arrest, apoptosis and potentiates the anti-tumour activity of chemotherapy in rituximab-resistant lymphoma. Br J Haematol. 2013;162(5):657–69. This study successfully evalulates the use of proteasome inhibitor, carfilzomib, to overcome rituximab resistance.PubMedPubMedCentralGoogle Scholar
  118. 118.
    Torka P, Bhat S, Lee KP, Hutson A, Nichols J, Kader A, et al. A phase 1/2 study of carfilzomib combined with rituximab, ifosfamide, carboplatin and etoposide (C-RICE) in patients with transplant-eligible, relapsed or refractory (R/R) diffuse large B-cell lymphoma (DLBCL). Blood. 2017;130(Suppl 1):2822.Google Scholar
  119. 119.
    Kim JH, Kim WS, Park C. Epstein–Barr virus latent membrane protein-1 protects B-cell lymphoma from rituximab-induced apoptosis through miR-155-mediated Akt activation and up-regulation of Mcl-1. Leuk Lymphoma. 2012;53(8):1586–91.PubMedGoogle Scholar
  120. 120.
    Chen RW, Hou J, Nair I, Wu J, Synold T, Kwak LW, et al. Inhibition of MDR1 overcomes brentuximab vedotin resistance in hodgkin lymphoma cell line model and is synergistic with brentuximab vedotin in mouse xenograft model. Blood. 2016;128(22):752.Google Scholar
  121. 121.
    Dornan D, Bennett F, Chen Y, Dennis M, Eaton D, Elkins K, et al. Therapeutic potential of an anti-CD79b antibody–drug conjugate, anti–CD79b-vc-MMAE, for the treatment of non-Hodgkin lymphoma. Blood. 2009;114(13):2721–9.PubMedGoogle Scholar
  122. 122.
    • Chen R, Hou J, Newman E, Kim Y, Donohue C, Liu X, et al. CD30 downregulation, MMAE resistance, and MDR1 upregulation are all associated with resistance to brentuximab vedotin. Mol Cancer Ther. 2015;14(6):1376–84. This study explores the mechanisms of resistance to brentuximab.PubMedPubMedCentralGoogle Scholar
  123. 123.
    Braig F, Brandt A, Goebeler M, Tony HP, Kurze AK, Nollau P, et al. Resistance to anti-CD19/CD3 BiTE in acute lymphoblastic leukemia may be mediated by disrupted CD19 membrane trafficking. Blood. 2017;129(1):100–4.PubMedGoogle Scholar
  124. 124.
    Kohnke T, Krupka C, Tischer J, Knosel T, Subklewe M. Increase of PD-L1 expressing B-precursor ALL cells in a patient resistant to the CD19/CD3-bispecific T cell engager antibody blinatumomab. J Hematol Oncol. 2015;8:111.PubMedPubMedCentralGoogle Scholar
  125. 125.
    Aldoss I, Song J, Stiller T, Nguyen T, Palmer J, O'Donnell M, et al. Correlates of resistance and relapse during blinatumomab therapy for relapsed/refractory acute lymphoblastic leukemia. Am J Hematol. 2017;92(9):858–65.PubMedGoogle Scholar
  126. 126.
    Dunleavy K, Pittaluga S, Czuczman MS, Dave SS, Wright G, Grant N, et al. Differential efficacy of bortezomib plus chemotherapy within molecular subtypes of diffuse large B-cell lymphoma. Blood. 2009;113(24):6069–76.PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Pallawi Torka
    • 1
  • Mathew Barth
    • 2
  • Robert Ferdman
    • 1
  • Francisco J. Hernandez-Ilizaliturri
    • 1
    • 3
    • 4
    Email author
  1. 1.Department of Medical OncologyRoswell Park Comprehensive Cancer CenterBuffaloUSA
  2. 2.Department of PediatricsRoswell Park Comprehensive Cancer CenterBuffaloUSA
  3. 3.Department of ImmunologyRoswell Park Comprehensive Cancer CenterBuffaloUSA
  4. 4.Department of Medicine, Jacob’s School of Medicine and Biomedical SciencesState University of New YorkBuffaloUSA

Personalised recommendations