Chronic Myelomonocytic Leukemia: 2018 Update to Prognosis and Treatment

  • Hany Elmariah
  • Amy E. DeZernEmail author
Myeloproliferative Neoplasms (B Stein, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Myeloproliferative Neoplasms


Purpose of Review

Chronic myelomonocytic leukemia (CMML) is a rare and often aggressive myeloid malignancy. Historically, prognostic markers and therapeutic paradigms have been applied from myelodysplastic syndromes (MDS) or myeloproliferative neoplasms (MPNs). Interest has increased recently in developing tailored approaches for the MDS/MPN overlap syndrome of CMML.

Recent Findings

Multiple prognostic scores have been validated specifically for CMML in the past 5 years. These incorporate somatic mutations, with ASXL1 mutations repeatedly correlating with poor prognosis. Accurate prognostication can guide treatment. Hypomethylating agents (HMAs) and curative allogeneic blood or marrow transplantation (BMT) remain the most available standard treatments. Recently, a number of novel approaches using unapproved therapies (i.e., lenalidomide, ruxolitinib, sotatercept, and tipifarnib) have demonstrated some efficacy in CMML.


Increased recognition and interest in CMML have led to the development of a number of new prognostic models and potential treatment options. Standard treatment options remain limited and clinical trials should be strongly considered whenever available.


Chronic myelomonocytic leukemia (CMML) Mayo prognostic model CPSS ASXL1 Hypomethylating agents Allogeneic BMT 


Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.


Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Rollison D, Howlader N, Smith M, Strom S, Merritt W, Ries L, et al. Epidemiology of myelodysplastic syndromes and chronic myeloproliferative disorders in the United States, 2001-2004, using data from the NAACCR and SEER programs. Blood. 2008;112(1):45–52.CrossRefGoogle Scholar
  2. 2.
    Solary E, Itzykson R. How I treat chronic myelomonocytic leukemia. Blood. 2017;130:126–36.CrossRefGoogle Scholar
  3. 3.
    Itzykson R, Kosmider O, Renneville A, Morabito M, Preudhomme C, Berthon C, et al. Clonal architecture of chronic myelomonocytic leukemias. Blood. 2013;121(12):2186–98.CrossRefGoogle Scholar
  4. 4.
    Abdel-Wahab O, Adli M, LaFave L, Gao J, Hricik T, Shih A, et al. ASXL1 mutations promote myeloid transformation through loss of PRC2-mediated gene repression. Cancer Cell. 2012;22(2):180.CrossRefGoogle Scholar
  5. 5.
    Li Z, Cai X, Cai C, Wang J, Zhang W, Petersen B, et al. Deletion of Tet2 in mice leads to dysregulated hematopoietic stem cells and subsequent development of myeloid malignancies. Blood. 2011;118(17):4509.CrossRefGoogle Scholar
  6. 6.
    • Kunimoto H, Meydan C, Nazir A, Whitfield J, Shank K, Rapaport F, et al. Cooperative epigenetic remodeling by TET2 loss and NRAS mutation drives myeloid transformation and MEK inhibitor sensitivity. Cancer Cell. 2018;33(1):44–59 Important study that demonstrates the mechanism of TET2 and NRAS mutations as drivers of myeloid malignancies through activation of mitogen-activating protein kinase (MAPK) by epigenetic silencing. The study also highlights the potential for MAPK inhabitation as a therapeutic strategy. CrossRefGoogle Scholar
  7. 7.
    Chen E, Schneider R, Breyfogle L, Rosen E, Poveromo L, Elf S, et al. Distinct effects of concomitant Jak2V617F expression and Tet2 loss in mice promote disease progression in myeloproliferative neoplasms. Blood. 2015;125(2):327–35.CrossRefGoogle Scholar
  8. 8.
    Meggendorfer M, Roller A, Haferlach T, Eder C, Dicker F, Grossmann V, et al. SRSF2 mutations in 275 cases with chronic myelomonocytic leukemia (CMML). Blood. 2012;120(15):3080.CrossRefGoogle Scholar
  9. 9.
    Jankowska A, Makishima H, Tiu R, Szpurka H, Huang Y, Traina F, et al. Mutational spectrum analysis of chronic myelomonocytic leukemia includes genes associated with epigenetic regulation: UTX, EZH2, and DNMT3A. Blood. 2011;118(14):3932–41.CrossRefGoogle Scholar
  10. 10.
    Itzykson R, Kosmider O, Renneville A, Gelsi-Boyer V, Meggendorfer M, Morabito M, et al. Prognostic score including gene mutations in chronic myelomonocytic leukemia. JCO. 2013;31(19):2428–36.CrossRefGoogle Scholar
  11. 11.
    Wang J, Liu Y, Li Z, Du J, Ryu M, Taylor P, et al. Endogenous oncogenic Nras mutation promotes aberrant GM-CSF signaling in granulocytic/monocytic precursors in a murine model of chronic myelomonocytic leukemia. Blood. 2010;116(26):5991–6002.CrossRefGoogle Scholar
  12. 12.
    Patel B, Przychodzen B, Thota S, Radivoyevitch T, Visconte V, Kuzmanovic T, et al. Genomic determinants of chronic myelomonocytic leukemia. Leukemia. 2017;31:2815–23.CrossRefGoogle Scholar
  13. 13.
    Mughal T, Cross N, Padron E, Tiu R, Savona M, Malcovati L, et al. An International MDS/MPN Working Group’s perspective and recommendations on molecular pathogenesis, diagnosis and clinical characterization of myelodysplastic/myeloproliferative neoplasms. Haematologica. 2015;100(9):1117–30.CrossRefGoogle Scholar
  14. 14.
    Smith A, Mohamedali A, Kulasekararaj A, Lim Z, Gäken J, Lea N, et al. Next-generation sequencing of the TET2 gene in 355 MDS and CMML patients reveals low-abundance mutant clones with early origins, but indicates no definite prognostic value. Blood. 2010;116(19):3923–32.CrossRefGoogle Scholar
  15. 15.
    Arber D, Orazi A, Hasserjian R, Thiele J, Borowitz M, LeBeau M, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016;127:2391–405.CrossRefGoogle Scholar
  16. 16.
    Patnaik M, Itzykson R, Lasho T, Kosmider O, Finke C, Hanson C, et al. ASXL1 and SETBP1 mutations and their prognostic contribution in chronic myelomonocytic leukemia: a two-center study of 466 patients. Leukemia. 2014;28(11):2206–12.CrossRefGoogle Scholar
  17. 17.
    Patnaik M, Lasho T, Vijayvargiya P, Finke C, Hanson C, Ketterling R, et al. Prognostic interaction between ASXL1 and TET2 mutations in chronic myelomonocytic leukemia. Blood Cancer J. 2016;6:e385.CrossRefGoogle Scholar
  18. 18.
    Bennett J, Catovsky D, Daniel M, Flandrin G, Galton D, Gralnick H, et al. Proposed revised criteria for the classification of acute myeloid leukemia. A report of the French-American-British Cooperative Group. Ann Intern Med. 1985;103(4):620.CrossRefGoogle Scholar
  19. 19.
    Vardiman J, Thiele J, Arber D, Brunning R, Borowitz M, Porwit A, et al. The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia: rationale and important changes. Blood. 2009;114:937–51.CrossRefGoogle Scholar
  20. 20.
    Patnaik M, Wassie E, Lasho T, Hanson C, Ketterling R, Tefferi A. Blast transformation in chronic myelomonocytic leukemia: risk factors, genetic features, survival, and treatment outcome. AJH. 2015;90(5):411–6.Google Scholar
  21. 21.
    Greenberg PL, Tuechler H, Schanz J, Sanz G, Garcia-Manero G, Solé F, et al. Revised international prognostic scoring system for myelodysplastic syndromes. Blood. 2012;120:2454–65.CrossRefGoogle Scholar
  22. 22.
    Greenberg P, Cox C, LeBeau M, Fenaux P, Morel P, Sanz G, et al. International scoring system for evaluating prognosis in myelodysplastic syndromes. Blood. 1997;89(6):2079–88.Google Scholar
  23. 23.
    Kantarjian H, O'Brien S, Ravandi F, Cortes J, Shan J, Bennett J, et al. Proposal for a new risk model in myelodysplastic syndrome that accounts for events not considered in the original International Prognostic Scoring System. Cancer. 2008;113(6):1351–61.CrossRefGoogle Scholar
  24. 24.
    Nazha A. Making sense of prognostic models in chronic myelomonocytic leukemia. Curr Hematol Malig Rep. 2018;13(5):341–7.CrossRefGoogle Scholar
  25. 25.
    Onida F, Kantarjian H, Smith T, Ball G, Keating M, Estey E, et al. Prognostic factors and scoring systems in chronic myelomonocytic leukemia: a retrospective analysis of 213 patients. Blood. 2002;99(3):840–9.CrossRefGoogle Scholar
  26. 26.
    Such E, Cervera J, Costa D, Solé F, Vallespí T, Luño E, et al. Cytogenetic risk stratification in chronic myelomonocytic leukemia. Haematologica. 2011;96(3):375–83.CrossRefGoogle Scholar
  27. 27.
    • Nazha A, Patnaik M, Komrokji R, Al-Issa K, Daver N, Garcia-Manero G, et al. Model heterogeneity in predicting outcomes in patients with chronic myelomonocytic leukemia (CMML): an overestimation of survival in lower-risk group. Blood. 2017;130:4255 As multiple prognostic models have been validated for CMML, this study sought to compare the utility of each model. The predicted prognosis did often vary across models, all models were subject to errors in prediction especially for low risk patients, and no specific model was significantly superior. Google Scholar
  28. 28.
    Padron E, Garcia-Manero G, Patnaik M, Itzykson R, Lasho T, Nazha A, et al. An international data set for CMML validates prognostic scoring systems and demonstrates a need for novel prognostication strategies. Blood Cancer J. 2015;31(5):e333.CrossRefGoogle Scholar
  29. 29.
    Patnaik M, Padron E, LaBorde R, Lasho T, Finke C, Hanson C, et al. Mayo prognostic model for WHO-defined chronic myelomonocytic leukemia: ASXL1 and spliceosome component mutations and outcomes. Leukemia. 2013;27(7):1504–10.CrossRefGoogle Scholar
  30. 30.
    Such E, Germing U, Malcovati L, Cervera J, Kuendgen A, DellaPorta M, et al. Development and validation of a prognostic scoring system for patients with chronic myelomonocytic leukemia. Blood. 2013;121:3005–15.CrossRefGoogle Scholar
  31. 31.
    • Elena C, Gallì A, Such E, Meggendorfer M, Germing U, Rizzo E, et al. Integrating clinical features and genetic lesions in the risk assessment of patients with chronic myelomonocytic leukemia. Blood. 2016;128:1408–17 As the prognostic importance of somatic mutations in CMML has been increasingly recognized, this critical study introduced a prognostic model called the CPSS-mol that incorporates somatic mutations as predictors of decreased overall survival. CrossRefGoogle Scholar
  32. 32.
    Kantarjian H, O'brien S, Cortes J, Giles F, Faderl S, Jabbour E, et al. Results of intensive chemotherapy in 998 patients age 65 years or older with acute myeloid leukemia or high-risk myelodysplastic syndrome: predictive prognostic models for outcome. Cancer. 2006;106(5):1090–8.CrossRefGoogle Scholar
  33. 33.
    Kantarjian H, Oki Y, Garcia-Manero G, Huang X, O'Brien S, Cortes J, et al. Results of a randomized study of 3 schedules of low-dose decitabine in higher-risk myelodysplastic syndrome and chronic myelomonocytic leukemia. Blood. 2007;109(1):52.CrossRefGoogle Scholar
  34. 34.
    Krishnamurthy P, Lim Z, Nagi W, Kenyon M, Mijovic A, Ireland R, et al. Allogeneic haematopoietic SCT for chronic myelomonocytic leukaemia: a single-centre experience. Bone Marrow Transplant. 2010;45(10):1502–7.CrossRefGoogle Scholar
  35. 35.
    • Kröger N, Eikema D-J, De Wreede L, van Biezen A, Beelen D, Finke J, et al. Comparison of allogeneic stem cell transplantation for transformed acute myeloid leukemia derived from MDS, CMML or MPN. A report of the Chronic Malignancies Working Party of EBMT. Blood. 2016;128:3499 Though allogeneic BMT is widely used in the treatment of CMML, data regarding outcomes is limited to small retrospective series. While also retrospective, this analysis from the EBMT, with a large sample size and long median follow-up of almost 4 years, is one of the most robust studies demonstrating outcomes after transplant. Google Scholar
  36. 36.
    Kröger N, Zabelina T, Guardiola P, Runde V, Sierra J, VanBiezen A, et al. Allogeneic stem cell transplantation of adult chronic myelomonocytic leukaemia. A report on behalf of the Chronic Leukaemia Working Party of the European Group for blood and marrow transplantation (EBMT). Br J Haematol. 2002;118(1):67–73.CrossRefGoogle Scholar
  37. 37.
    Zang D, Deeg H, Gooley T, Anderson J, Anasetti C, Sanders J, et al. Treatment of chronic myelomonocytic leukaemia by allogeneic marrow transplantation. Br J Haematol. 2000;110(1):217–22.CrossRefGoogle Scholar
  38. 38.
    Onida F, Barosi G, Leone G, Malcovati L, Morra E, Santini V, et al. Management recommendations for chronic myelomonocytic leukemia: consensus statements from the SIE, SIES, GITMO groups. Haematologica. 2013;98(9):1344–52.CrossRefGoogle Scholar
  39. 39.
    Padron E, Komrokji R, List A. The clinical management of chronic myelomonocytic leukemia. Clin Adv Hematol Oncol. 2014;12(3):172–8.Google Scholar
  40. 40.
    • Savona M, Malcovati L, Komrokji R, Tiu R, Mughal T, Orazi A, et al. An international consortium proposal of uniform response criteria for myelodysplastic/myeloproliferative neoplasms (MDS/MPN) in adults. Blood. 2015;125:1857–65 As an overlap syndrome with characteristics of both MDS and MPNs, CMML responses are not accurately assessed with existing response criteria for MDS and MPNs. Thus, an international consortium established response criteria for MDS/MPN overlap syndromes that are more reliable for CMML. CrossRefGoogle Scholar
  41. 41.
    Wattel E, Guerci A, Hecquet B, Economopoulos T, Copplestone A, Mahé B, et al. A randomized trial of hydroxyurea versus VP16 in adult chronic myelomonocytic leukemia. Groupe Français des Myélodysplasies and European CMML Group. Blood. 1996;88(7):2480–7.Google Scholar
  42. 42.
    • Santini V, Allione B, Zini G, Gioia D, Lunghi M, Poloni A, et al. A phase II, multicentre trial of decitabine in higher-risk chronic myelomonocytic leukemia. Leukemia. 2018;32(2):413–8 Hypomethylating agent therapy has become a standard treatment for CMML based largely on clinical trials in MDS that included a small subset of CMML patients. In contrast, this multicenter prospective study was designed specifically to evaluate the treatment of CMML patients with the hypomethylating agent decitabine, and still demonstrated favorable responses that justified the use of this therapy. CrossRefGoogle Scholar
  43. 43.
    Braun T, Itzykson R, Renneville A, deRenzis B, Dreyfus F, Laribi K, et al. Molecular predictors of response to decitabine in advanced chronic myelomonocytic leukemia: a phase 2 trial. Blood. 2011;118(14):3824–31.CrossRefGoogle Scholar
  44. 44.
    Aribi A, Borthakur G, Ravandi F, Shan J, Davisson J, Cortes J, et al. Activity of decitabine, a hypomethylating agent, in chronic myelomonocytic leukemia. Cancer. 2007;109(4):713.CrossRefGoogle Scholar
  45. 45.
    Adès L, Sekeres M, Wolfromm A, Teichman M, Tiu R, Itzykson R, et al. Predictive factors of response and survival among chronic myelomonocytic leukemia patients treated with azacitidine. Leuk Res. 2013;37(6):609–13.CrossRefGoogle Scholar
  46. 46.
    Fenaux P, Mufti GJ, Hellstrom-Lindberg E, Santini V, Finelli C, Giagounidis A, et al. Efficacy of azacitidine compared with that of conventional care regimens in the treatment of higher-risk myelodysplastic syndromes: a randomised, open-label, phase III study. Lancet Oncol. 2009;10(3):223–32.CrossRefGoogle Scholar
  47. 47.
    Costa R, Abdulhaq H, Haq B, Shadduck R, Latsko J, Zenati M, et al. Activity of azacitidine in chronic myelomonocytic leukemia. Cancer. 2011;117(12):2690–6.CrossRefGoogle Scholar
  48. 48.
    Fianchi L, Criscuolo M, Breccia M, Maurillo L, Salvi F, Musto P, et al. High rate of remissions in chronic myelomonocytic leukemia treated with 5-azacytidine: results of an Italian retrospective study. Leuk Lymphoma. 2013;54(3):658–61.CrossRefGoogle Scholar
  49. 49.
    Pleyer L, Germing U, Sperr W, Linkesch W, Burgstaller S, Stauder R, et al. Azacitidine in CMML: matched-pair analyses of daily-life patients reveal modest effects on clinical course and survival. Leuk Res. 2014;38(4):475–83.CrossRefGoogle Scholar
  50. 50.
    Merlevede J, Droin N, Qin T, Meldi K, Yoshida K, Morabito M, et al. Mutation allele burden remains unchanged in chronic myelomonocytic leukaemia responding to hypomethylating agents. Nat Commun. 2016;7:10767.CrossRefGoogle Scholar
  51. 51.
    Montalban-Bravo G, Bose P, Alvarado Y, Daver N, Ravandi F, Borthakur G, et al. Initial results of a phase 2 study of guadecitabine (SGI-110), a novel subcutaneous (sc) hypomethylating agent, for patients with previously untreated intermediate-2 or high risk myelodysplastic syndromes (MDS) or chronic myelomonocytic leukemia (CMML). Blood. 2016;128(346).Google Scholar
  52. 52.
    Garcia-Manero G, Griffiths E, Roboz G, Busque L, Wells R, Odenike O, et al. A phase 2 dose-confirmation study of oral ASTX727, a combination of oral decitabine with a cytidine deaminase inhibitor (CDAi) cedazuridine (E7727), in subjects with myelodysplastic syndromes (MDS). Blood. 2017;130:4274.Google Scholar
  53. 53.
    Symeonidis A, vanBiezen A, deWreede L, Piciocchi A, Finke J, Beelen D, et al. Achievement of complete remission predicts outcome of allogeneic haematopoietic stem cell transplantation in patients with chronic myelomonocytic leukaemia. A study of the Chronic Malignancies Working Party of the European Group for blood and marrow transplantation. BJH. 2015;171(2):239–46.CrossRefGoogle Scholar
  54. 54.
    Park S, Labopin M, Yakoub-Agha I, Delaunay J, Dhedin N, Deconinck E, et al. Allogeneic stem cell transplantation for chronic myelomonocytic leukemia: a report from the Societe Francaise de Greffe de Moelle et de Therapie Cellulaire. Eur J Haematol. 2013;90(5):355–64.CrossRefGoogle Scholar
  55. 55.
    Eissa H, Gooley T, Sorror M, Nguyen F, Scott B, Doney K, et al. Allogeneic hematopoietic cell transplantation for chronic myelomonocytic leukemia: relapse-free survival is determined by karyotype and comorbidities. BBMT. 2011;17(6):908–15.Google Scholar
  56. 56.
    Liu H, Ahn K, Hu Z-H, MehdiHamadani NT, Wirk B, et al. Allogeneic hematopoietic cell transplantation for adult chronic myelomonocytic leukemia. BBMT. 2017;23(5):767–75.Google Scholar
  57. 57.
    Kongtim P, Popat U, Jimenez A, Gaballa S, ElFakih R, Rondon G, et al. Treatment with hypomethylating agents before allogeneic stem cell transplant improves progression-free survival for patients with chronic myelomonocytic leukemia. BBMT. 2016;22(1):47–53.Google Scholar
  58. 58.
    List A, Dewald G, Bennett J, Giagounidis A, Raza A, Feldman E, et al. Lenalidomide in the myelodysplastic syndrome with chromosome 5q deletion. NEJM. 2006;355:1456–65.CrossRefGoogle Scholar
  59. 59.
    • Sekeres M, Othus M, List A, Odenike O, Stone R, Gore S, et al. Randomized phase II study of azacitidine alone or in combination with lenalidomide or with vorinostat in higher-risk myelodysplastic syndromes and chronic myelomonocytic leukemia: North American Intergroup Study SWOG S1117. J Clin Oncol. 2017;20(35):2745–53 This phase II study suggests that the combination of azacitidine and lenalidomide may be superior to azacitidine alone in the treatment of MDS and CMML. Confirmation of this result in an ongoing phase III study would be expected to change the standard first-line therapy to the combination of hypomethylating agent and lenalidomide. CrossRefGoogle Scholar
  60. 60.
    Pich A, Riera L, Sismondi F, Godio L, Bonino L, Marmont F, et al. JAK2V617F activating mutation is associated with the myeloproliferative type of chronic myelomonocytic leukaemia. J Clin Pathol. 2009;62(9):798–801.CrossRefGoogle Scholar
  61. 61.
    Harrison C, Kiladjian J-J, Al-Ali H, Gisslinger H, Waltzman R, Stalbovskaya V, et al. JAK inhibition with ruxolitinib versus best available therapy for myelofibrosis. NEJM. 2012;366:787–98.CrossRefGoogle Scholar
  62. 62.
    Verstovsek S, Mesa R, Gotlib J, Levy R, Gupta V, DiPersio J, et al. A double-blind, placebo-controlled trial of ruxolitinib for myelofibrosis. NEJM. 2012;366(9):799–807.CrossRefGoogle Scholar
  63. 63.
    Padron E, Dezern A, Andrade-Campos M, Vaddi K, Scherle P, Zhang Q, et al. A multi-institution phase I trial of ruxolitinib in patients with chronic myelomonocytic leukemia (CMML). Clin Cancer Res. 2016;22(15):3746–54.CrossRefGoogle Scholar
  64. 64.
    Platzbecker U, Germing U, Götze K, Kiewe P, Wolff T, Mayer K, et al. Luspatercept increases hemoglobin and reduces transfusion burden in patients with low-intermediate risk myelodysplastic syndromes (MDS): long-term results from phase 2 PACE-MDS study. Blood. 2016;128:3168.Google Scholar
  65. 65.
    Carrancio S, Markovics J, Wong P, Leisten J, Castiglioni P, Groza M, et al. An activin receptor IIA ligand trap promotes erythropoiesis resulting in a rapid induction of red blood cells and haemoglobin. BJH. 2014;165(6):870–82.CrossRefGoogle Scholar
  66. 66.
    Komrokji R, Garcia-Manero G, Ades L, Prebet T, Steensma D, Jurcic J, et al. Sotatercept with long-term extension for the treatment of anaemia in patients with lower-risk myelodysplastic syndromes: a phase 2, dose-ranging trial. Lancet Haematology. 2018;5(2):e63–72.CrossRefGoogle Scholar
  67. 67.
    Patnaik MM, DAS MAS, Luger S, Bejar R, Hobbs GS, DeZern AE, et al. Preliminary results from an open-label, phase 2 study of tipifarnib in chronic myelomonocytic leukemia (CMML). Blood. 2017;130:2963.Google Scholar
  68. 68.
    Mesa R, Vannucchi A, Mead A, Egyed M, Szoke A, Suvorov A, et al. Pacritinib versus best available therapy for the treatment of myelofibrosis irrespective of baseline cytopenias (PERSIST-1): an international, randomised, phase 3 trial. Lancet Haematology. 2017;4(5):225–36.CrossRefGoogle Scholar
  69. 69.
    Seiler M, Yoshimi A, Darman R, Chan B, Keaney G, Thomas M, et al. H3B-8800, an orally available small-molecule splicing modulator, induces lethality in spliceosome-mutant cancers. Nat Med. 2018;24:497–504.CrossRefGoogle Scholar
  70. 70.
    Padron E, Painter J, Kunigal S, Mailloux A, McGraw K, McDaniel J, et al. GM-CSF-dependent pSTAT5 sensitivity is a feature with therapeutic potential in chronic myelomonocytic leukemia. Blood. 2013.Google Scholar
  71. 71.
    Fukushima N, Minami Y, Kakiuchi S, Kuwatsuka Y, Hayakawa F, Jamieson C, et al. Small-molecule hedgehog inhibitor attenuates the leukemia-initiation potential of acute myeloid leukemia cells. Cancer Sci. 2016;107(10):1422–9.CrossRefGoogle Scholar
  72. 72.
    Patnaik M, Gupta V, Gotlib J, Carraway H, Wadleigh M, Schiller G, et al. Results from ongoing phase 2 trial of SL-401 in patients with advanced, high-risk myeloproliferative neoplasms including chronic myelomonocytic leukemia. Blood. 2016;128:4245.Google Scholar
  73. 73.
    deWitte T, Bowen D, Robin M, Malcovati L, Niederwieser D, Yakoub-Agha I, et al. Allogeneic hematopoietic stem cell transplantation for MDS and CMML: recommendations from an international expert panel. Blood. 2017;129:1753–62.CrossRefGoogle Scholar
  74. 74.
    Damaj G, Duhamel A, Robin M, Beguin Y, Michallet M, Mohty M, et al. Impact of azacitidine before allogeneic stem-cell transplantation for myelodysplastic syndromes: a study by the Société Française de Greffe de Moelle et de Thérapie-Cellulaire and the Groupe-Francophone des Myélodysplasies. JCO. 2012;30(36):4533–440.CrossRefGoogle Scholar
  75. 75.
    Yahng S-A, Kim M, Kim T-M, Jeon Y-W, Yoon J-H, Shin S-H, et al. Better transplant outcome with pre-transplant marrow response after hypomethylating treatment in higher-risk MDS with excess blasts. Oncotarget. 2017;8(7):12342–54.CrossRefGoogle Scholar
  76. 76.
    Runde V, deWitte T, Arnold R, Gratwohl A, Hermans J, vanBiezen A, et al. Bone marrow transplantation from HLA-identical siblings as first-line treatment in patients with myelodysplastic syndromes: early transplantation is associated with improved outcome. Chronic Leukemia Working Party of the European Group for blood and marrow transplantation. Bone Marrow Transplant. 1998;21(3):255–61.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Blood and Marrow Transplantation and Cellular ImmunotherapyH. Lee Moffitt Cancer CenterTampaUSA
  2. 2.Division of Hematologic Malignancies, Sidney Kimmel Comprehensive Cancer Center at Johns HopkinsThe Johns Hopkins University School of MedicineBaltimoreUSA

Personalised recommendations