Advertisement

Recent Advances in Adult Acute Lymphoblastic Leukemia

  • Guillaume Richard-Carpentier
  • Hagop Kantarjian
  • Elias JabbourEmail author
Article
  • 127 Downloads

Abstract

Purpose of Review

This article reviews the recent advances in the pathophysiology and management of acute lymphoblastic leukemia (ALL) in adults.

Recent Findings

Addition of rituximab to standard chemotherapy improves survival in the frontline treatment of B cell ALL, and measurable residual disease (MRD) is the most important prognostic factor. Tyrosine kinase inhibitors (TKI), particularly ponatinib, in combination with Hyper-CVAD significantly improve outcomes in Ph + ALL challenging the benefit of allogeneic stem cell transplant in first line for these patients. Blinatumomab, inotuzumab ozogamicin, and chimeric antigen receptor (CAR) T cells are better options than chemotherapy alone for the treatment of relapsed or refractory ALL. Combination of these agents with chemotherapy and their incorporation in the frontline setting show promises to improve cure rates of ALL.

Summary

Development of monoclonal antibodies, CAR T, and potent TKI has improved the outcome of ALL. Advances in our understanding of ALL biology are expected to bring new therapeutic strategies in the upcoming years.

Keywords

Acute lymphoblastic leukemia Treatment Management Monoclonal antibodies Chimeric antigen receptor T cells 

Notes

Compliance with Ethical Standards

Conflict of Interest

Guillaume Richard-Carpentier reports grants from Cole Foundation, outside the submitted work. Hagop Kantarjian reports grants from Abb Vie, grants from Agios, grants from Amgen, grants from Ariad, grants from Astex, grants from BMS, grants from Cyclacel, grants from Daiichi-Sankyo, grants from Immunogen, grants from Jazz Pharma, grants from Novartis, grants from Pfizer, other from AbbVie, other from Actinium (Advisory Board), other from Agios, other from Amgen, other from Immunogen, other from Orsinex, other from Pfizer, and other from Takeda, during the conduct of the study. Elias Jabbour reports grants and personal fees from Takeda, grants and personal fees from Pfizer, grants and personal fees from Amgen, grants and personal fees from Abbvie, grants and personal fees from Spectrum, grants from Novartis, and from Bristol-Myers Squibb, during the conduct of the study.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. 1.
    SEER. SEER cancer stat facts: acute lymphocytic leukemia. National Cancer Institute. Bethesda, MD. https://seer.cancer.gov/statfacts/html/alyl.html. Accessed october 18th 2018.
  2. 2.
    Pui CH, Campana D, Pei D, Bowman WP, Sandlund JT, Kaste SC, et al. Treating childhood acute lymphoblastic leukemia without cranial irradiation. N Engl J Med. 2009;360(26):2730–41.  https://doi.org/10.1056/NEJMoa0900386.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Rowe JM, Buck G, Burnett AK, Chopra R, Wiernik PH, Richards SM, et al. Induction therapy for adults with acute lymphoblastic leukemia: results of more than 1500 patients from the international ALL trial: MRC UKALL XII/ECOG E2993. Blood. 2005;106(12):3760–7.  https://doi.org/10.1182/blood-2005-04-1623.CrossRefPubMedGoogle Scholar
  4. 4.
    Kantarjian H, Thomas D, O’Brien S, Cortes J, Giles F, Jeha S, et al. Long-term follow-up results of hyperfractionated cyclophosphamide, vincristine, doxorubicin, and dexamethasone (Hyper-CVAD), a dose-intensive regimen, in adult acute lymphocytic leukemia. Cancer. 2004;101(12):2788–801.  https://doi.org/10.1002/cncr.20668.CrossRefPubMedGoogle Scholar
  5. 5.
    Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pilera SA, Stein H, et al. WHO classification of tumours of haematopoietic and lymphoid tissues. Lyon: International Agency for Research on Cancer (IARC); 2017.Google Scholar
  6. 6.
    Raponi S, De Propris MS, Intoppa S, Milani ML, Vitale A, Elia L, et al. Flow cytometric study of potential target antigens (CD19, CD20, CD22, CD33) for antibody-based immunotherapy in acute lymphoblastic leukemia: analysis of 552 cases. Leuk Lymphoma. 2011;52(6):1098–107.  https://doi.org/10.3109/10428194.2011.559668.CrossRefPubMedGoogle Scholar
  7. 7.
    Thomas DA, O’Brien S, Jorgensen JL, Cortes J, Faderl S, Garcia-Manero G, et al. Prognostic significance of CD20 expression in adults with de novo precursor B-lineage acute lymphoblastic leukemia. Blood. 2009;113(25):6330–7.  https://doi.org/10.1182/blood-2008-04-151860.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Maury S, Huguet F, Leguay T, Lacombe F, Maynadie M, Girard S, et al. Adverse prognostic significance of CD20 expression in adults with Philadelphia chromosome-negative B-cell precursor acute lymphoblastic leukemia. Haematologica. 2010;95(2):324–8.  https://doi.org/10.3324/haematol.2009.010306.CrossRefPubMedGoogle Scholar
  9. 9.
    Coustan-Smith E, Mullighan CG, Onciu M, Behm FG, Raimondi SC, Pei D, et al. Early T-cell precursor leukaemia: a subtype of very high-risk acute lymphoblastic leukaemia. Lancet Oncol. 2009;10(2):147–56.  https://doi.org/10.1016/S1470-2045(08)70314-0.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    •• Zhang J, Ding L, Holmfeldt L, Wu G, Heatley SL, Payne-Turner D, et al. The genetic basis of early T-cell precursor acute lymphoblastic leukaemia. Nature. 2012;481(7380):157–63.  https://doi.org/10.1038/nature10725 This study provided insight on the mutational spectrum and transcriptional profile of ETP ALL demonstrating its similarities with normal and acute myeloid leukemia hematopoietic stem cells . CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Jain N, Lamb AV, O’Brien S, Ravandi F, Konopleva M, Jabbour E, et al. Early T-cell precursor acute lymphoblastic leukemia/lymphoma (ETP-ALL/LBL) in adolescents and adults: a high-risk subtype. Blood. 2016;127(15):1863–9.  https://doi.org/10.1182/blood-2015-08-661702.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Bond J, Graux C, Lhermitte L, Lara D, Cluzeau T, Leguay T, et al. Early response-based therapy stratification improves survival in adult early thymic precursor acute lymphoblastic leukemia: a group for research on adult acute lymphoblastic leukemia study. J Clin Oncol. 2017;35(23):2683–91.  https://doi.org/10.1200/JCO.2016.71.8585.CrossRefPubMedGoogle Scholar
  13. 13.
    Moorman AV, Harrison CJ, Buck GA, Richards SM, Secker-Walker LM, Martineau M, et al. Karyotype is an independent prognostic factor in adult acute lymphoblastic leukemia (ALL): analysis of cytogenetic data from patients treated on the Medical Research Council (MRC) UKALLXII/Eastern Cooperative Oncology Group (ECOG) 2993 trial. Blood. 2007;109(8):3189–97.  https://doi.org/10.1182/blood-2006-10-051912.CrossRefPubMedGoogle Scholar
  14. 14.
    Marks DI, Paietta EM, Moorman AV, Richards SM, Buck G, DeWald G, et al. T-cell acute lymphoblastic leukemia in adults: clinical features, immunophenotype, cytogenetics, and outcome from the large randomized prospective trial (UKALL XII/ECOG 2993). Blood. 2009;114(25):5136–45.  https://doi.org/10.1182/blood-2009-08-231217.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Moorman AV, Schwab C, Ensor HM, Russell LJ, Morrison H, Jones L, et al. IGH@ translocations, CRLF2 deregulation, and microdeletions in adolescents and adults with acute lymphoblastic leukemia. J Clin Oncol. 2012;30(25):3100–8.  https://doi.org/10.1200/JCO.2011.40.3907.CrossRefPubMedGoogle Scholar
  16. 16.
    Russell LJ, Enshaei A, Jones L, Erhorn A, Masic D, Bentley H, et al. IGH@ translocations are prevalent in teenagers and young adults with acute lymphoblastic leukemia and are associated with a poor outcome. J Clin Oncol. 2014;32(14):1453–62.  https://doi.org/10.1200/JCO.2013.51.3242.CrossRefPubMedGoogle Scholar
  17. 17.
    Lafage-Pochitaloff M, Baranger L, Hunault M, Cuccuini W, Lefebvre C, Bidet A, et al. Impact of cytogenetic abnormalities in adults with Ph-negative B-cell precursor acute lymphoblastic leukemia. Blood. 2017;130(16):1832–44.  https://doi.org/10.1182/blood-2017-05-783852.CrossRefPubMedGoogle Scholar
  18. 18.
    Issa GC, Kantarjian HM, Yin CC, Qiao W, Ravandi F, Thomas D, et al. Prognostic impact of pretreatment cytogenetics in adult Philadelphia chromosome-negative acute lymphoblastic leukemia in the era of minimal residual disease. Cancer. 2017;123(3):459–67.  https://doi.org/10.1002/cncr.30376.CrossRefPubMedGoogle Scholar
  19. 19.
    Motllo C, Ribera JM, Morgades M, Granada I, Montesinos P, Gonzalez-Campos J, et al. Prognostic significance of complex karyotype and monosomal karyotype in adult patients with acute lymphoblastic leukemia treated with risk-adapted protocols. Cancer. 2014;120(24):3958–64.  https://doi.org/10.1002/cncr.28950.CrossRefPubMedGoogle Scholar
  20. 20.
    Jeha S, Pei D, Raimondi SC, Onciu M, Campana D, Cheng C, et al. Increased risk for CNS relapse in pre-B cell leukemia with the t(1;19)/TCF3-PBX1. Leukemia. 2009;23(8):1406–9.  https://doi.org/10.1038/leu.2009.42.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Garg R, Kantarjian H, Thomas D, Faderl S, Ravandi F, Lovshe D, et al. Adults with acute lymphoblastic leukemia and translocation (1;19) abnormality have a favorable outcome with hyperfractionated cyclophosphamide, vincristine, doxorubicin, and dexamethasone alternating with methotrexate and high-dose cytarabine chemotherapy. Cancer. 2009;115(10):2147–54.  https://doi.org/10.1002/cncr.24266.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Burmeister T, Gokbuget N, Schwartz S, Fischer L, Hubert D, Sindram A, et al. Clinical features and prognostic implications of TCF3-PBX1 and ETV6-RUNX1 in adult acute lymphoblastic leukemia. Haematologica. 2010;95(2):241–6.  https://doi.org/10.3324/haematol.2009.011346.CrossRefPubMedGoogle Scholar
  23. 23.
    Hunger SP, Mullighan CG. Redefining ALL classification: toward detecting high-risk ALL and implementing precision medicine. Blood. 2015;125(26):3977–87.  https://doi.org/10.1182/blood-2015-02-580043.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Den Boer ML, van Slegtenhorst M, De Menezes RX, Cheok MH, Buijs-Gladdines JG, Peters ST, et al. A subtype of childhood acute lymphoblastic leukaemia with poor treatment outcome: a genome-wide classification study. Lancet Oncol. 2009;10(2):125–34.  https://doi.org/10.1016/S1470-2045(08)70339-5.CrossRefGoogle Scholar
  25. 25.
    Roberts KG, Morin RD, Zhang J, Hirst M, Zhao Y, Su X, et al. Genetic alterations activating kinase and cytokine receptor signaling in high-risk acute lymphoblastic leukemia. Cancer Cell. 2012;22(2):153–66.  https://doi.org/10.1016/j.ccr.2012.06.005.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    •• Roberts KG, Li Y, Payne-Turner D, Harvey RC, Yang YL, Pei D, et al. Targetable kinase-activating lesions in Ph-like acute lymphoblastic leukemia. N Engl J Med. 2014;371(11):1005–15.  https://doi.org/10.1056/NEJMoa1403088 This study provides description of the frequency and spectrum of genetic alterations in Ph-like ALL and demonstrates proof of principles that these mutations activate signaling pathways which could be inhibited by tyrosine kinase inhibitors . CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Roberts KG, Gu Z, Payne-Turner D, McCastlain K, Harvey RC, Chen IM, et al. High frequency and poor outcome of Philadelphia chromosome-like acute lymphoblastic leukemia in adults. J Clin Oncol. 2017;35(4):394–401.  https://doi.org/10.1200/JCO.2016.69.0073.CrossRefPubMedGoogle Scholar
  28. 28.
    Jain N, Roberts KG, Jabbour E, Patel K, Eterovic AK, Chen K, et al. Ph-like acute lymphoblastic leukemia: a high-risk subtype in adults. Blood. 2017;129(5):572–81.  https://doi.org/10.1182/blood-2016-07-726588.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Mullighan CG, Miller CB, Radtke I, Phillips LA, Dalton J, Ma J, et al. BCR-ABL1 lymphoblastic leukaemia is characterized by the deletion of Ikaros. Nature. 2008;453(7191):110–4.  https://doi.org/10.1038/nature06866.CrossRefPubMedGoogle Scholar
  30. 30.
    Patel B, Rai L, Buck G, Richards SM, Mortuza Y, Mitchell W, et al. Minimal residual disease is a significant predictor of treatment failure in non T-lineage adult acute lymphoblastic leukaemia: final results of the international trial UKALL XII/ECOG2993. Br J Haematol. 2010;148(1):80–9.  https://doi.org/10.1111/j.1365-2141.2009.07941.x.CrossRefPubMedGoogle Scholar
  31. 31.
    Gokbuget N, Kneba M, Raff T, Trautmann H, Bartram CR, Arnold R, et al. Adult patients with acute lymphoblastic leukemia and molecular failure display a poor prognosis and are candidates for stem cell transplantation and targeted therapies. Blood. 2012;120(9):1868–76.  https://doi.org/10.1182/blood-2011-09-377713.CrossRefPubMedGoogle Scholar
  32. 32.
    Beldjord K, Chevret S, Asnafi V, Huguet F, Boulland ML, Leguay T, et al. Oncogenetics and minimal residual disease are independent outcome predictors in adult patients with acute lymphoblastic leukemia. Blood. 2014;123(24):3739–49.  https://doi.org/10.1182/blood-2014-01-547695.CrossRefPubMedGoogle Scholar
  33. 33.
    Dhedin N, Huynh A, Maury S, Tabrizi R, Beldjord K, Asnafi V, et al. Role of allogeneic stem cell transplantation in adult patients with Ph-negative acute lymphoblastic leukemia. Blood. 2015;125(16):2486–96; quiz 586.  https://doi.org/10.1182/blood-2014-09-599894.CrossRefPubMedGoogle Scholar
  34. 34.
    Berry DA, Zhou S, Higley H, Mukundan L, Fu S, Reaman GH, et al. Association of minimal residual disease with clinical outcome in pediatric and adult acute lymphoblastic leukemia: a meta-analysis. JAMA Oncol. 2017;3(7):e170580.  https://doi.org/10.1001/jamaoncol.2017.0580.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    van Dongen JJ, van der Velden VH, Bruggemann M, Orfao A. Minimal residual disease diagnostics in acute lymphoblastic leukemia: need for sensitive, fast, and standardized technologies. Blood. 2015;125(26):3996–4009.  https://doi.org/10.1182/blood-2015-03-580027.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Thomas DA, Faderl S, O’Brien S, Bueso-Ramos C, Cortes J, Garcia-Manero G, et al. Chemoimmunotherapy with hyper-CVAD plus rituximab for the treatment of adult Burkitt and Burkitt-type lymphoma or acute lymphoblastic leukemia. Cancer. 2006;106(7):1569–80.  https://doi.org/10.1002/cncr.21776.CrossRefPubMedGoogle Scholar
  37. 37.
    Corazzelli G, Frigeri F, Russo F, Frairia C, Arcamone M, Esposito G, et al. RD-CODOX-M/IVAC with rituximab and intrathecal liposomal cytarabine in adult Burkitt lymphoma and ‘unclassifiable’ highly aggressive B-cell lymphoma. Br J Haematol. 2012;156(2):234–44.  https://doi.org/10.1111/j.1365-2141.2011.08947.x.CrossRefPubMedGoogle Scholar
  38. 38.
    Hoelzer D, Walewski J, Dohner H, Viardot A, Hiddemann W, Spiekermann K, et al. Improved outcome of adult Burkitt lymphoma/leukemia with rituximab and chemotherapy: report of a large prospective multicenter trial. Blood. 2014;124(26):3870–9.  https://doi.org/10.1182/blood-2014-03-563627.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    •• Ribrag V, Koscielny S, Bosq J, Leguay T, Casasnovas O, Fornecker LM, et al. Rituximab and dose-dense chemotherapy for adults with Burkitt’s lymphoma: a randomised, controlled, open-label, phase 3 trial. Lancet. 2016;387(10036):2402–11.  https://doi.org/10.1016/S0140-6736(15)01317-3 This study confirmed the benefit of adding rituximab to intensive chemotherapy for the treatment of adults with Burkitt's lymphoma/leukemia in terms of event-free survival and overal survival . CrossRefPubMedGoogle Scholar
  40. 40.
    Dunleavy K, Pittaluga S, Shovlin M, Steinberg SM, Cole D, Grant C, et al. Low-intensity therapy in adults with Burkitt’s lymphoma. N Engl J Med. 2013;369(20):1915–25.  https://doi.org/10.1056/NEJMoa1308392.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Dunleavy K, Roschewski M, Abramson JS, Link B, Parekh S, Jagadeesh D, et al. Risk-adapted therapy in adults with burkitt lymphoma: updated results of a multicenter prospective phase ii study of DA-EPOCH-R. Hematol Oncol. 2017;35(S2):133–4.  https://doi.org/10.1002/hon.2437_122.CrossRefGoogle Scholar
  42. 42.
    Stock W, La M, Sanford B, Bloomfield CD, Vardiman JW, Gaynon P, et al. What determines the outcomes for adolescents and young adults with acute lymphoblastic leukemia treated on cooperative group protocols? A comparison of Children’s Cancer Group and Cancer and Leukemia Group B studies. Blood. 2008;112(5):1646–54.  https://doi.org/10.1182/blood-2008-01-130237.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Boissel N, Auclerc MF, Lheritier V, Perel Y, Thomas X, Leblanc T, et al. Should adolescents with acute lymphoblastic leukemia be treated as old children or young adults? Comparison of the French FRALLE-93 and LALA-94 trials. J Clin Oncol. 2003;21(5):774–80.  https://doi.org/10.1200/JCO.2003.02.053.CrossRefPubMedGoogle Scholar
  44. 44.
    de Bont JM, Holt B, Dekker AW, van der Does-van den Berg A, Sonneveld P, Pieters R. Significant difference in outcome for adolescents with acute lymphoblastic leukemia treated on pediatric vs adult protocols in the Netherlands. Leukemia. 2004;18(12):2032–5.  https://doi.org/10.1038/sj.leu.2403538.CrossRefPubMedGoogle Scholar
  45. 45.
    Hallbook H, Gustafsson G, Smedmyr B, Soderhall S, Heyman M, Swedish Adult Acute Lymphocytic Leukemia G, et al. Treatment outcome in young adults and children >10 years of age with acute lymphoblastic leukemia in Sweden: a comparison between a pediatric protocol and an adult protocol. Cancer. 2006;107(7):1551–61.  https://doi.org/10.1002/cncr.22189.CrossRefPubMedGoogle Scholar
  46. 46.
    Ramanujachar R, Richards S, Hann I, Goldstone A, Mitchell C, Vora A, et al. Adolescents with acute lymphoblastic leukaemia: outcome on UK national paediatric (ALL97) and adult (UKALLXII/E2993) trials. Pediatr Blood Cancer. 2007;48(3):254–61.  https://doi.org/10.1002/pbc.20749.CrossRefPubMedGoogle Scholar
  47. 47.
    DeAngelo DJ, Stevenson KE, Dahlberg SE, Silverman LB, Couban S, Supko JG, et al. Long-term outcome of a pediatric-inspired regimen used for adults aged 18-50 years with newly diagnosed acute lymphoblastic leukemia. Leukemia. 2015;29(3):526–34.  https://doi.org/10.1038/leu.2014.229.CrossRefPubMedGoogle Scholar
  48. 48.
    Huguet F, Leguay T, Raffoux E, Thomas X, Beldjord K, Delabesse E, et al. Pediatric-inspired therapy in adults with Philadelphia chromosome-negative acute lymphoblastic leukemia: the GRAALL-2003 study. J Clin Oncol. 2009;27(6):911–8.  https://doi.org/10.1200/JCO.2008.18.6916.CrossRefPubMedGoogle Scholar
  49. 49.
    Hough R, Rowntree C, Goulden N, Mitchell C, Moorman A, Wade R, et al. Efficacy and toxicity of a paediatric protocol in teenagers and young adults with Philadelphia chromosome negative acute lymphoblastic leukaemia: results from UKALL 2003. Br J Haematol. 2016;172(3):439–51.  https://doi.org/10.1111/bjh.13847.CrossRefPubMedGoogle Scholar
  50. 50.
    Toft N, Birgens H, Abrahamsson J, Griskevicius L, Hallbook H, Heyman M, et al. Results of NOPHO ALL2008 treatment for patients aged 1-45 years with acute lymphoblastic leukemia. Leukemia. 2018;32(3):606–15.  https://doi.org/10.1038/leu.2017.265.CrossRefPubMedGoogle Scholar
  51. 51.
    Ribera JM, Oriol A, Sanz MA, Tormo M, Fernandez-Abellan P, del Potro E, et al. Comparison of the results of the treatment of adolescents and young adults with standard-risk acute lymphoblastic leukemia with the Programa Espanol de Tratamiento en Hematologia pediatric-based protocol ALL-96. J Clin Oncol. 2008;26(11):1843–9.  https://doi.org/10.1200/JCO.2007.13.7265.CrossRefPubMedGoogle Scholar
  52. 52.
    Gökbuget N, Beck J, Brandt K, Brüggemann M, Burmeister T, Diedrich H, et al. Significant improvement of outcome in adolescents and young adults (AYAs) aged 15–35 years with acute lymphoblastic leukemia (ALL) with a pediatric derived adult ALL protocol; results of 1529 AYAs in 2 consecutive trials of the German Multicenter Study Group For Adult ALL (GMALL). Blood. 2013;122(21):839.Google Scholar
  53. 53.
    Storring JM, Minden MD, Kao S, Gupta V, Schuh AC, Schimmer AD, et al. Treatment of adults with BCR-ABL negative acute lymphoblastic leukaemia with a modified paediatric regimen. Br J Haematol. 2009;146(1):76–85.  https://doi.org/10.1111/j.1365-2141.2009.07712.x.CrossRefPubMedGoogle Scholar
  54. 54.
    Hayakawa F, Sakura T, Yujiri T, Kondo E, Fujimaki K, Sasaki O, et al. Markedly improved outcomes and acceptable toxicity in adolescents and young adults with acute lymphoblastic leukemia following treatment with a pediatric protocol: a phase II study by the Japan Adult Leukemia Study Group. Blood Cancer J. 2014;4:e252.  https://doi.org/10.1038/bcj.2014.72.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Rytting ME, Jabbour EJ, Jorgensen JL, Ravandi F, Franklin AR, Kadia TM, et al. Final results of a single institution experience with a pediatric-based regimen, the augmented Berlin-Frankfurt-Munster, in adolescents and young adults with acute lymphoblastic leukemia, and comparison to the hyper-CVAD regimen. Am J Hematol. 2016;91(8):819–23.  https://doi.org/10.1002/ajh.24419.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Husson O, Huijgens PC, van der Graaf WTA. Psychosocial challenges and health-related quality of life of adolescents and young adults with hematologic malignancies. Blood. 2018;132(4):385–92.  https://doi.org/10.1182/blood-2017-11-778555.CrossRefPubMedGoogle Scholar
  57. 57.
    Thomas DA, O’Brien S, Faderl S, Garcia-Manero G, Ferrajoli A, Wierda W, et al. Chemoimmunotherapy with a modified hyper-CVAD and rituximab regimen improves outcome in de novo Philadelphia chromosome-negative precursor B-lineage acute lymphoblastic leukemia. J Clin Oncol. 2010;28(24):3880–9.  https://doi.org/10.1200/JCO.2009.26.9456.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    •• Maury S, Chevret S, Thomas X, Heim D, Leguay T, Huguet F, et al. Rituximab in B-lineage adult acute lymphoblastic leukemia. N Engl J Med. 2016;375(11):1044–53.  https://doi.org/10.1056/NEJMoa1605085 This study demonstrated that addition of rituximab to standard chemotherapy improves the outcome of patients with B-cell ALL in terms of event-free survival . CrossRefPubMedGoogle Scholar
  59. 59.
    Teeling JL, French RR, Cragg MS, van den Brakel J, Pluyter M, Huang H, et al. Characterization of new human CD20 monoclonal antibodies with potent cytolytic activity against non-Hodgkin lymphomas. Blood. 2004;104(6):1793–800.  https://doi.org/10.1182/blood-2004-01-0039.CrossRefPubMedGoogle Scholar
  60. 60.
    Teeling JL, Mackus WJ, Wiegman LJ, van den Brakel JH, Beers SA, French RR, et al. The biological activity of human CD20 monoclonal antibodies is linked to unique epitopes on CD20. J Immunol. 2006;177(1):362–71.CrossRefPubMedGoogle Scholar
  61. 61.
    Bazarbachi AH, Yilmaz M, Ravandi F, Thomas DA, Khouri M, Garcia-Manero G, et al. A phase 2 study of hyper-CVAD plus ofatumumab as frontline therapy in CD20+ acute lymphoblastic leukemia (ALL): updated results. J Clin Oncol. 2018;36(15_suppl):7041.  https://doi.org/10.1200/JCO.2018.36.15_suppl.7041.CrossRefGoogle Scholar
  62. 62.
    Goede V, Fischer K, Busch R, Engelke A, Eichhorst B, Wendtner CM, et al. Obinutuzumab plus chlorambucil in patients with CLL and coexisting conditions. N Engl J Med. 2014;370(12):1101–10.  https://doi.org/10.1056/NEJMoa1313984.CrossRefPubMedGoogle Scholar
  63. 63.
    DeAngelo DJ, Yu D, Johnson JL, Coutre SE, Stone RM, Stopeck AT, et al. Nelarabine induces complete remissions in adults with relapsed or refractory T-lineage acute lymphoblastic leukemia or lymphoblastic lymphoma: Cancer and Leukemia Group B study 19801. Blood. 2007;109(12):5136–42.  https://doi.org/10.1182/blood-2006-11-056754.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Gokbuget N, Basara N, Baurmann H, Beck J, Bruggemann M, Diedrich H, et al. High single-drug activity of nelarabine in relapsed T-lymphoblastic leukemia/lymphoma offers curative option with subsequent stem cell transplantation. Blood. 2011;118(13):3504–11.  https://doi.org/10.1182/blood-2011-01-329441.CrossRefPubMedGoogle Scholar
  65. 65.
    Abaza Y, Kantarjian MH, Faderl S, Jabbour E, Jain N, Thomas D, et al. Hyper-CVAD plus nelarabine in newly diagnosed adult T-cell acute lymphoblastic leukemia and T-lymphoblastic lymphoma. Am J Hematol. 2018;93(1):91–9.  https://doi.org/10.1002/ajh.24947.CrossRefPubMedGoogle Scholar
  66. 66.
    Dunsmore KP, Winter S, Devidas M, Wood BL, Esiashvili N, Eisenberg N, et al. COG AALL0434: a randomized trial testing nelarabine in newly diagnosed t-cell malignancy. J Clin Oncol. 2018;36(15_suppl):10500.  https://doi.org/10.1200/JCO.2018.36.15_suppl.10500.CrossRefGoogle Scholar
  67. 67.
    Daver N, Thomas D, Ravandi F, Cortes J, Garris R, Jabbour E, et al. Final report of a phase II study of imatinib mesylate with hyper-CVAD for the front-line treatment of adult patients with Philadelphia chromosome-positive acute lymphoblastic leukemia. Haematologica. 2015;100(5):653–61.  https://doi.org/10.3324/haematol.2014.118588.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Fielding AK, Rowe JM, Buck G, Foroni L, Gerrard G, Litzow MR, et al. UKALLXII/ECOG2993: addition of imatinib to a standard treatment regimen enhances long-term outcomes in Philadelphia positive acute lymphoblastic leukemia. Blood. 2014;123(6):843–50.  https://doi.org/10.1182/blood-2013-09-529008.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Wassmann B, Pfeifer H, Goekbuget N, Beelen DW, Beck J, Stelljes M, et al. Alternating versus concurrent schedules of imatinib and chemotherapy as front-line therapy for Philadelphia-positive acute lymphoblastic leukemia (Ph+ ALL). Blood. 2006;108(5):1469–77.  https://doi.org/10.1182/blood-2005-11-4386.CrossRefPubMedGoogle Scholar
  70. 70.
    Kim DY, Joo YD, Lim SN, Kim SD, Lee JH, Lee JH, et al. Nilotinib combined with multiagent chemotherapy for newly diagnosed Philadelphia-positive acute lymphoblastic leukemia. Blood. 2015;126(6):746–56.  https://doi.org/10.1182/blood-2015-03-636548.CrossRefPubMedGoogle Scholar
  71. 71.
    Ravandi F, O’Brien S, Thomas D, Faderl S, Jones D, Garris R, et al. First report of phase 2 study of dasatinib with hyper-CVAD for the frontline treatment of patients with Philadelphia chromosome-positive (Ph+) acute lymphoblastic leukemia. Blood. 2010;116(12):2070–7.  https://doi.org/10.1182/blood-2009-12-261586.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    •• Jabbour E, Kantarjian H, Ravandi F, Thomas D, Huang X, Faderl S, et al. Combination of hyper-CVAD with ponatinib as first-line therapy for patients with Philadelphia chromosome-positive acute lymphoblastic leukaemia: a single-centre, phase 2 study. Lancet Oncol. 2015;16(15):1547–55.  https://doi.org/10.1016/S1470-2045(15)00207-7 This study shows excellent results with the combination of hyper-CVAD and ponatinib for treatment of Ph-positive ALL. With this regimen, patient who achieves and remain in complete molecular remission have excellent outcome without allogeneic stem cell transplantation.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Short NJ, Kantarjian HM, Ravandi F, Daver NG, Pemmaraju N, Thomas DA, et al. Frontline hyper-CVAD plus ponatinib for patients with Philadelphia chromosome-positive acute lymphoblastic leukemia: Updated results of a phase II study. J Clin Oncol. 2017;35(15_suppl):7013.  https://doi.org/10.1200/JCO.2017.35.15_suppl.7013.CrossRefGoogle Scholar
  74. 74.
    Zabriskie MS, Eide CA, Tantravahi SK, Vellore NA, Estrada J, Nicolini FE, et al. BCR-ABL1 compound mutations combining key kinase domain positions confer clinical resistance to ponatinib in Ph chromosome-positive leukemia. Cancer Cell. 2014;26(3):428–42.  https://doi.org/10.1016/j.ccr.2014.07.006.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Chalandon Y, Thomas X, Hayette S, Cayuela JM, Abbal C, Huguet F, et al. Randomized study of reduced-intensity chemotherapy combined with imatinib in adults with Ph-positive acute lymphoblastic leukemia. Blood. 2015;125(24):3711–9.  https://doi.org/10.1182/blood-2015-02-627935.CrossRefPubMedGoogle Scholar
  76. 76.
    Vignetti M, Fazi P, Cimino G, Martinelli G, Di Raimondo F, Ferrara F, et al. Imatinib plus steroids induces complete remissions and prolonged survival in elderly Philadelphia chromosome-positive patients with acute lymphoblastic leukemia without additional chemotherapy: results of the Gruppo Italiano Malattie Ematologiche dell’Adulto (GIMEMA) LAL0201-B protocol. Blood. 2007;109(9):3676–8.  https://doi.org/10.1182/blood-2006-10-052746.CrossRefPubMedGoogle Scholar
  77. 77.
    Foa R, Vitale A, Vignetti M, Meloni G, Guarini A, De Propris MS, et al. Dasatinib as first-line treatment for adult patients with Philadelphia chromosome-positive acute lymphoblastic leukemia. Blood. 2011;118(25):6521–8.  https://doi.org/10.1182/blood-2011-05-351403.CrossRefPubMedGoogle Scholar
  78. 78.
    Rousselot P, Coude MM, Gokbuget N, Gambacorti Passerini C, Hayette S, Cayuela JM, et al. Dasatinib and low-intensity chemotherapy in elderly patients with Philadelphia chromosome-positive ALL. Blood. 2016;128(6):774–82.  https://doi.org/10.1182/blood-2016-02-700153.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Martinelli G, Piciocchi A, Papayannidis C, Paolini S, Robustelli V, Soverini S, et al. First report of the Gimema LAL1811 phase ii prospective study of the combination of steroids with ponatinib as frontline therapy of elderly or unfit patients with Philadelphia chromosome-positive acute lymphoblastic leukemia. Blood. 2017;130(Suppl 1):99.Google Scholar
  80. 80.
    Ottmann OG, Pfeifer H, Cayuela J-M, Spiekermann K, Jung W, Beck J, et al. Nilotinib (Tasigna®) and low intensity chemotherapy for first-line treatment of elderly patients with BCR-ABL1-positive acute lymphoblastic leukemia: final results of a prospective multicenter trial (EWALL-PH02). Blood. 2018;132(Suppl 1):31.  https://doi.org/10.1182/blood-2018-99-114552.CrossRefGoogle Scholar
  81. 81.
    Trinquand A, Tanguy-Schmidt A, Ben Abdelali R, Lambert J, Beldjord K, Lengline E, et al. Toward a NOTCH1/FBXW7/RAS/PTEN-based oncogenetic risk classification of adult T-cell acute lymphoblastic leukemia: a Group for Research in Adult Acute Lymphoblastic Leukemia study. J Clin Oncol. 2013;31(34):4333–42.  https://doi.org/10.1200/JCO.2012.48.5292.CrossRefPubMedGoogle Scholar
  82. 82.
    Ravandi F, Jorgensen JL, Thomas DA, O’Brien S, Garris R, Faderl S, et al. Detection of MRD may predict the outcome of patients with Philadelphia chromosome-positive ALL treated with tyrosine kinase inhibitors plus chemotherapy. Blood. 2013;122(7):1214–21.  https://doi.org/10.1182/blood-2012-11-466482.CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Short NJ, Jabbour E, Sasaki K, Patel K, O’Brien SM, Cortes JE, et al. Impact of complete molecular response on survival in patients with Philadelphia chromosome-positive acute lymphoblastic leukemia. Blood. 2016;128(4):504–7.  https://doi.org/10.1182/blood-2016-03-707562.CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Fielding AK, Richards SM, Chopra R, Lazarus HM, Litzow MR, Buck G, et al. Outcome of 609 adults after relapse of acute lymphoblastic leukemia (ALL); an MRC UKALL12/ECOG 2993 study. Blood. 2007;109(3):944–50.  https://doi.org/10.1182/blood-2006-05-018192.CrossRefPubMedGoogle Scholar
  85. 85.
    Tavernier E, Boiron JM, Huguet F, Bradstock K, Vey N, Kovacsovics T, et al. Outcome of treatment after first relapse in adults with acute lymphoblastic leukemia initially treated by the LALA-94 trial. Leukemia. 2007;21(9):1907–14.  https://doi.org/10.1038/sj.leu.2404824.CrossRefPubMedGoogle Scholar
  86. 86.
    Gokbuget N, Stanze D, Beck J, Diedrich H, Horst HA, Huttmann A, et al. Outcome of relapsed adult lymphoblastic leukemia depends on response to salvage chemotherapy, prognostic factors, and performance of stem cell transplantation. Blood. 2012;120(10):2032–41.  https://doi.org/10.1182/blood-2011-12-399287.CrossRefPubMedGoogle Scholar
  87. 87.
    Gokbuget N, Dombret H, Ribera JM, Fielding AK, Advani A, Bassan R, et al. International reference analysis of outcomes in adults with B-precursor Ph-negative relapsed/refractory acute lymphoblastic leukemia. Haematologica. 2016;101(12):1524–33.  https://doi.org/10.3324/haematol.2016.144311.CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    O’Brien S, Thomas D, Ravandi F, Faderl S, Cortes J, Borthakur G, et al. Outcome of adults with acute lymphocytic leukemia after second salvage therapy. Cancer. 2008;113(11):3186–91.  https://doi.org/10.1002/cncr.23919.CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    •• Kantarjian H, Stein A, Gokbuget N, Fielding AK, Schuh AC, Ribera JM, et al. Blinatumomab versus chemotherapy for advanced acute lymphoblastic leukemia. N Engl J Med. 2017;376(9):836–47.  https://doi.org/10.1056/NEJMoa1609783 This study demonstrated that blinatumomab achieves higher rates of complete remission and improves overall survival compared to chemotherapy in patients with relapsed or refractory B-ALL. This led to the FDA-approval of blinatumomab for adult and children patients with relapsed or refractory B-cell precursor ALL.CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Topp MS, Gokbuget N, Stein AS, Zugmaier G, O’Brien S, Bargou RC, et al. Safety and activity of blinatumomab for adult patients with relapsed or refractory B-precursor acute lymphoblastic leukaemia: a multicentre, single-arm, phase 2 study. Lancet Oncol. 2015;16(1):57–66.  https://doi.org/10.1016/S1470-2045(14)71170-2.CrossRefPubMedGoogle Scholar
  91. 91.
    Topp MS, Gokbuget N, Zugmaier G, Klappers P, Stelljes M, Neumann S, et al. Phase II trial of the anti-CD19 bispecific T cell-engager blinatumomab shows hematologic and molecular remissions in patients with relapsed or refractory B-precursor acute lymphoblastic leukemia. J Clin Oncol. 2014;32(36):4134–40.  https://doi.org/10.1200/JCO.2014.56.3247.CrossRefPubMedGoogle Scholar
  92. 92.
    Martinelli G, Boissel N, Chevallier P, Ottmann O, Gokbuget N, Topp MS, et al. Complete hematologic and molecular response in adult patients with relapsed/refractory Philadelphia chromosome-positive B-precursor acute lymphoblastic leukemia following treatment with blinatumomab: results from a phase II, single-arm, multicenter study. J Clin Oncol. 2017;35(16):1795–802.  https://doi.org/10.1200/JCO.2016.69.3531.CrossRefPubMedGoogle Scholar
  93. 93.
    Topp MS, Kufer P, Gokbuget N, Goebeler M, Klinger M, Neumann S, et al. Targeted therapy with the T-cell-engaging antibody blinatumomab of chemotherapy-refractory minimal residual disease in B-lineage acute lymphoblastic leukemia patients results in high response rate and prolonged leukemia-free survival. J Clin Oncol. 2011;29(18):2493–8.  https://doi.org/10.1200/JCO.2010.32.7270.CrossRefPubMedGoogle Scholar
  94. 94.
    •• Gokbuget N, Dombret H, Bonifacio M, Reichle A, Graux C, Faul C, et al. Blinatumomab for minimal residual disease in adults with B-cell precursor acute lymphoblastic leukemia. Blood. 2018;131(14):1522–31.  https://doi.org/10.1182/blood-2017-08-798322 This study led the FDA to expand the approval of blinatumomab to adult and children patients with B-ALL who are in complete remission but still have measurable residual disease . CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    •• Kantarjian HM, DeAngelo DJ, Stelljes M, Martinelli G, Liedtke M, Stock W, et al. Inotuzumab ozogamicin versus standard therapy for acute lymphoblastic leukemia. N Engl J Med. 2016;375(8):740–53.  https://doi.org/10.1056/NEJMoa1509277 This study demonstrated that inotuzumab achieves higher rates of complete remission and improves overall survival compared to chemotherapy in patients with relapsed or refractory B-ALL. This led to the FDA-approval of inotuzumab for adult patients with relapsed or refractory B-cell precursor ALL.CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Kantarjian H, Thomas D, Jorgensen J, Kebriaei P, Jabbour E, Rytting M, et al. Results of inotuzumab ozogamicin, a CD22 monoclonal antibody, in refractory and relapsed acute lymphocytic leukemia. Cancer. 2013;119(15):2728–36.  https://doi.org/10.1002/cncr.28136.CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    DeAngelo DJ, Stock W, Stein AS, Shustov A, Liedtke M, Schiffer CA, et al. Inotuzumab ozogamicin in adults with relapsed or refractory CD22-positive acute lymphoblastic leukemia: a phase 1/2 study. Blood Adv. 2017;1(15):1167–80.  https://doi.org/10.1182/bloodadvances.2016001925.CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Jabbour E, Ravandi F, Kebriaei P, Huang X, Short NJ, Thomas D, et al. Salvage Chemoimmunotherapy with Inotuzumab Ozogamicin combined with mini-hyper-CVD for patients with relapsed or refractory Philadelphia chromosome-negative acute lymphoblastic leukemia: a phase 2 clinical trial. JAMA Oncol. 2018;4(2):230–4.  https://doi.org/10.1001/jamaoncol.2017.2380.CrossRefPubMedGoogle Scholar
  99. 99.
    Maude SL, Laetsch TW, Buechner J, Rives S, Boyer M, Bittencourt H, et al. Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N Engl J Med. 2018;378(5):439–48.  https://doi.org/10.1056/NEJMoa1709866.CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    Sasaki K, Kantarjian HM, Ravandi F, Short NJ, Kebriaei P, Huang X, et al. Sequential combination of low-intensity chemotherapy (mini-hyper-CVD) plus inotuzumab ozogamicin with or without blinatumomab in patients with relapsed/refractory Philadelphia chromosome-negative acute lymphoblastic leukemia (ALL): a phase 2 trial. Blood. 2018;132(Suppl 1):553.  https://doi.org/10.1182/blood-2018-99-115162.CrossRefGoogle Scholar
  101. 101.
    Jabbour E, Sasaki K, Ravandi F, Huang X, Short NJ, Khouri M, et al. Chemoimmunotherapy with inotuzumab ozogamicin combined with mini-hyper-CVD, with or without blinatumomab, is highly effective in patients with Philadelphia chromosome-negative acute lymphoblastic leukemia in first salvage. Cancer. 2018;124(20):4044–55.  https://doi.org/10.1002/cncr.31720.CrossRefPubMedGoogle Scholar
  102. 102.
    Assi R, Kantarjian H, Short NJ, Daver N, Takahashi K, Garcia-Manero G, et al. Safety and efficacy of blinatumomab in combination with a tyrosine kinase inhibitor for the treatment of relapsed Philadelphia chromosome-positive leukemia. Clin Lymphoma Myeloma Leuk. 2017;17(12):897–901.  https://doi.org/10.1016/j.clml.2017.08.101.CrossRefPubMedGoogle Scholar
  103. 103.
    Stein AS, Larson RA, Schuh AC, Stevenson W, Lech-Maranda E, Tran Q, et al. Exposure-adjusted adverse events comparing blinatumomab with chemotherapy in advanced acute lymphoblastic leukemia. Blood Adv. 2018;2(13):1522–31.  https://doi.org/10.1182/bloodadvances.2018019034.CrossRefPubMedPubMedCentralGoogle Scholar
  104. 104.
    Richard-Carpentier G, Kantarjian HM, Short NJ, Ravandi F, Ferrajoli A, Schroeder HM, et al. A phase ii study of the Hyper-CVAD regimen in sequential combination with blinatumomab as frontline therapy for adults with B-cell acute lymphoblastic leukemia (B-ALL). Blood. 2018;132(Suppl 1):32.  https://doi.org/10.1182/blood-2018-99-117470.CrossRefGoogle Scholar
  105. 105.
    Park JH, Riviere I, Gonen M, Wang X, Senechal B, Curran KJ, et al. Long-term follow-up of CD19 CAR therapy in acute lymphoblastic leukemia. N Engl J Med. 2018;378(5):449–59.  https://doi.org/10.1056/NEJMoa1709919.CrossRefPubMedGoogle Scholar
  106. 106.
    Neelapu SS, Tummala S, Kebriaei P, Wierda W, Gutierrez C, Locke FL, et al. Chimeric antigen receptor T-cell therapy—assessment and management of toxicities. Nat Rev Clin Oncol. 2018;15(1):47–62.  https://doi.org/10.1038/nrclinonc.2017.148.CrossRefPubMedGoogle Scholar
  107. 107.
    Kantarjian H, Ravandi F, Short NJ, Huang X, Jain N, Sasaki K, et al. Inotuzumab ozogamicin in combination with low-intensity chemotherapy for older patients with Philadelphia chromosome-negative acute lymphoblastic leukaemia: a single-arm, phase 2 study. Lancet Oncol. 2018;19(2):240–8.  https://doi.org/10.1016/S1470-2045(18)30011-1.CrossRefPubMedGoogle Scholar
  108. 108.
    Bassan R, Bourquin JP, DeAngelo DJ, Chiaretti S. New approaches to the management of adult acute lymphoblastic leukemia. J Clin Oncol. 2018:JCO2017773648.  https://doi.org/10.1200/JCO.2017.77.3648.

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Guillaume Richard-Carpentier
    • 1
  • Hagop Kantarjian
    • 1
  • Elias Jabbour
    • 1
    Email author
  1. 1.Department of LeukemiaUniversity of Texas, MD Anderson Cancer CenterHoustonUSA

Personalised recommendations