Advertisement

Current Hematologic Malignancy Reports

, Volume 13, Issue 6, pp 543–554 | Cite as

Checkpoint Inhibitors Hodgkin Lymphoma and Non-Hodgkin Lymphoma

  • Bei Hu
  • Ryan Jacobs
  • Nilanjan GhoshEmail author
B-cell NHL, T-cell NHL, and Hodgkin Lymphoma (J Amengual, Section Editor)
Part of the following topical collections:
  1. Topical Collection on B-cell NHL, T-cell NHL, and Hodgkin Lymphoma

Abstract

Purpose of the Review

The ligation of PD-1 with PD-L1 activates a critical immune checkpoint leading to T cell dysfunction, exhaustion, and tolerance. Anti-PD-1 or anti-PD-L1 monoclonal antibodies can reverse the immune checkpoint, releasing the brake on T cell responses. We provide a comprehensive review of the literature on the activity of checkpoint inhibitors in lymphoma.

Recent Findings

We discuss the latest findings with checkpoint inhibitors in lymphoma and new promising studies incorporating these agents.

Summary

Classical Hodgkin lymphoma is very sensitive to PD1/PL1 blockade due to genetic alterations in 9p21.1 leading to the high expression of PDL1. Although majority of NHLs have a much lower sensitivity to PD1/PDL1 blockade, a few subtypes such as primary CNS lymphoma, primary testicular lymphoma, primary mediastinal lymphoma harbor 9p21.1 alterations making them vulnerable to PD1 blockade. EBV-associated lymphomas have a virally mediated increased expression of PDL1 making them sensitive to PD1 blockade.

Keywords

Immunotherapy Checkpoint blockade Non-Hodgkin lymphoma Hodgkin lymphoma PD-1 PD-L1 Nivolumab Pembrolizumab 

Notes

Compliance with Ethical Standards

Conflict of Interest

Nilanjan Ghosh reports personal fees from Seattle Genetics, Pharmacyclics, Gilead, Abbvie, Celgene, Juno Therapeutics, outside the submitted work. Ryan Jacobs reports personal fees from Pharmacyclics, Genentech, Astra Zeneca, TG Therapeutics, Gilead, Spectrum and Juno therapeutics. Bei Hu has no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. 1.
    Ishida Y, Agata Y, Shibahara K, Honjo T. Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. EMBO J. 1992;11(11):3887–95.PubMedPubMedCentralGoogle Scholar
  2. 2.
    Freeman GJ, Long AJ, Iwai Y, Bourque K, Chernova T, Nishimura H, et al. Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J Exp Med. 2000;192(7):1027–34.PubMedPubMedCentralGoogle Scholar
  3. 3.
    Latchman Y, Wood CR, Chernova T, Chaudhary D, Borde M, Chernova I, et al. PD-L2 is a second ligand for PD-1 and inhibits T cell activation. Nat Immunol. 2001;2(3):261–8.PubMedGoogle Scholar
  4. 4.
    Butte MJ, Keir ME, Phamduy TB, Sharpe AH, Freeman GJ. Programmed death-1 ligand 1 interacts specifically with the B7-1 costimulatory molecule to inhibit T cell responses. Immunity. 2007;27(1):111–22.PubMedPubMedCentralGoogle Scholar
  5. 5.
    Park JJ, Omiya R, Matsumura Y, Sakoda Y, Kuramasu A, Augustine MM, et al. B7-H1/CD80 interaction is required for the induction and maintenance of peripheral T-cell tolerance. Blood. 2010;116(8):1291–8.PubMedPubMedCentralGoogle Scholar
  6. 6.
    •• Ansell SM, et al. PD-1 blockade with nivolumab in relapsed or refractory Hodgkin’s lymphoma. N Engl J Med. 2015;372(4):311–9 This study lead to the FDA approval of nivolumab in relapsed/refractory classical Hodgkin lymphoma. PubMedGoogle Scholar
  7. 7.
    Armand P, Shipp MA, Ribrag V, Michot JM, Zinzani PL, Kuruvilla J, et al. Programmed death-1 blockade with pembrolizumab in patients with classical Hodgkin lymphoma after brentuximab vedotin failure. J Clin Oncol. 2016;34(31):3733–9.PubMedPubMedCentralGoogle Scholar
  8. 8.
    Armand P, et al. Pembrolizumab in patients with classical Hodgkin lymphoma after brentuximab vedotin failure: long term efficacy from phase Ib Keynote-013 study. Blood. 2016;128:1108.Google Scholar
  9. 9.
    Younes A, Santoro A, Shipp M, Zinzani PL, Timmerman JM, Ansell S, et al. Nivolumab for classical Hodgkin’s lymphoma after failure of both autologous stem-cell transplantation and brentuximab vedotin: a multicentre, multicohort, single-arm phase 2 trial. Lancet Oncol. 2016;17(9):1283–94.PubMedPubMedCentralGoogle Scholar
  10. 10.
    Fanale M, Engert A, Younes A, Armand P, Ansell S, Zinzani PL, et al. Nivolumab for relapsed/refractory classical Hodgkin lymphoma after autologous transplant: full results after extended follow-up of the phase 2 CHECKMATE 205 trial. Hematol Oncol. 2017;35(S2):135–6.Google Scholar
  11. 11.
    •• Chen R, et al. Phase II study of the efficacy and safety of pembrolizumab for relapsed/refractory classic Hodgkin lymphoma. J Clin Oncol. 2017;35(19):2125–32 This study lead to the FDA approval of nivolumab in relapsed/refractory classical Hodgkin lymphoma. PubMedPubMedCentralGoogle Scholar
  12. 12.
    Zinzani PL, et al. Pembrolizumab monotherapy in patients with primary refractory classical Hodgkin lymphoma : subgroup analysis of the phase 2 KEYNOTE-087 study. Hematol Oncol. 2017;35(S2):136–7.Google Scholar
  13. 13.
    Herrera AF, Moskowitz AJ, Bartlett NL, Vose JM, Ramchandren R, Feldman TA, et al. Interim results of brentuximab vedotin in combination with nivolumab in patients with relapsed or refractory Hodgkin lymphoma. Blood. 2018;131(11):1183–94.PubMedPubMedCentralGoogle Scholar
  14. 14.
    Ansell S, et al. A phase I study of nivolumab in combination with ipilimumab for relapsed or refractory hematologic malignancies (CheckMate 039). Blood. 2016;128:183.Google Scholar
  15. 15.
    Herbaux C, Gauthier J, Brice P, Drumez E, Ysebaert L, Doyen H, et al. Efficacy and tolerability of nivolumab after allogeneic transplantation for relapsed Hodgkin lymphoma. Blood. 2017;129(18):2471–8.PubMedGoogle Scholar
  16. 16.
    Zinzani PL, Ribrag V, Moskowitz CH, Michot JM, Kuruvilla J, Balakumaran A, et al. Safety and tolerability of pembrolizumab in patients with relapsed/refractory primary mediastinal large B-cell lymphoma. Blood. 2017;130(3):267–70.PubMedPubMedCentralGoogle Scholar
  17. 17.
    Melani C, Major A, Schowinsky J, Roschewski M, Pittaluga S, Jaffe ES, et al. PD-1 blockade in mediastinal gray-zone lymphoma. N Engl J Med. 2017;377(1):89–91.PubMedPubMedCentralGoogle Scholar
  18. 18.
    Nayak L, Iwamoto FM, LaCasce A, Mukundan S, Roemer MGM, Chapuy B, et al. PD-1 blockade with nivolumab in relapsed/refractory primary central nervous system and testicular lymphoma. Blood. 2017;129(23):3071–3.PubMedPubMedCentralGoogle Scholar
  19. 19.
    •• Lesokhin AM, et al. Nivolumab in patients with relapsed or refractory hematologic malignancy: preliminary results of a phase Ib study. J Clin Oncol. 2016;34(23):2698–704 This study describes the activity of nivolumab in NHL. PubMedPubMedCentralGoogle Scholar
  20. 20.
    Armand P, Nagler A, Weller EA, Devine SM, Avigan DE, Chen YB, et al. Disabling immune tolerance by programmed death-1 blockade with pidilizumab after autologous hematopoietic stem-cell transplantation for diffuse large B-cell lymphoma: results of an international phase II trial. J Clin Oncol. 2013;31(33):4199–206.PubMedPubMedCentralGoogle Scholar
  21. 21.
    Ding W, LaPlant BR, Call TG, Parikh SA, Leis JF, He R, et al. Pembrolizumab in patients with CLL and Richter transformation or with relapsed CLL. Blood. 2017;129(26):3419–27.PubMedPubMedCentralGoogle Scholar
  22. 22.
    Jain N et al. Nivolumab combined with ibrutinib for CLL and Richter transformation: a phase II trial. Am Soc Hematology. 2016.Google Scholar
  23. 23.
    Westin JR, Chu F, Zhang M, Fayad LE, Kwak LW, Fowler N, et al. Safety and activity of PD1 blockade by pidilizumab in combination with rituximab in patients with relapsed follicular lymphoma: a single group, open-label, phase 2 trial. Lancet Oncol. 2014;15(1):69–77.PubMedGoogle Scholar
  24. 24.
    Palomba ML, Till BG, Park SI, Morschhauser F, Cartron G, Marks R, et al. A phase IB study evaluating the safety and clinical activity of atezolizumab combined with obinutuzumab in patients with relapsed or refractory non-Hodgkin lymphoma (NHL). Hematol Oncol. 2017;35:137–8.Google Scholar
  25. 25.
    Nastoupil LJ, Westin JR, Fowler NH, Fanale MA, Samaniego F, Oki Y, et al. Response rates with pembrolizumab in combination with rituximab in patients with relapsed follicular lymphoma: interim results of an on open-label, phase II study. J Clin Oncol. 2017;35:7519–9.Google Scholar
  26. 26.
    Younes A et al. Safety and efficacy of atezolizumab in combination with obinutuzumab and bendamustine in patients with previously untreated follicular lymphoma: an interim analysis. Blood. 2017;481.Google Scholar
  27. 27.
    Khodadoust M et al. Pembrolizumab for treatment of relapsed/refractory mycosis fungoides and Sezary syndrome: clinical efficacy in a Citn multicenter phase 2 study. Am Soc Hematology. 2016.Google Scholar
  28. 28.
    Li X, Cheng Y, Zhang M, Yan J, Li L, Fu X, et al. Activity of pembrolizumab in relapsed/refractory NK/T-cell lymphoma. J Hematol Oncol. 2018;11(1):15.PubMedPubMedCentralGoogle Scholar
  29. 29.
    Kwong YL, Chan TSY, Tan D, Kim SJ, Poon LM, Mow B, et al. PD1 blockade with pembrolizumab is highly effective in relapsed or refractory NK/T-cell lymphoma failing l-asparaginase. Blood. 2017;129(17):2437–42.PubMedGoogle Scholar
  30. 30.
    Yamamoto R, Nishikori M, Kitawaki T, Sakai T, Hishizawa M, Tashima M, et al. PD-1-PD-1 ligand interaction contributes to immunosuppressive microenvironment of Hodgkin lymphoma. Blood. 2008;111(6):3220–4.PubMedGoogle Scholar
  31. 31.
    Green MR, Monti S, Rodig SJ, Juszczynski P, Currie T, O’Donnell E, et al. Integrative analysis reveals selective 9p24.1 amplification, increased PD-1 ligand expression, and further induction via JAK2 in nodular sclerosing Hodgkin lymphoma and primary mediastinal large B-cell lymphoma. Blood. 2010;116(17):3268–77.PubMedPubMedCentralGoogle Scholar
  32. 32.
    Roemer MG, et al. PD-L1 and PD-L2 genetic alterations define classical Hodgkin lymphoma and predict outcome. J Clin Oncol. 2016;34(23):2690–7.PubMedPubMedCentralGoogle Scholar
  33. 33.
    Chen BJ, Chapuy B, Ouyang J, Sun HH, Roemer MGM, Xu ML, et al. PD-L1 expression is characteristic of a subset of aggressive B-cell lymphomas and virus-associated malignancies. Clin Cancer Res. 2013;19(13):3462–73.PubMedPubMedCentralGoogle Scholar
  34. 34.
    Nishijima TF, Shachar SS, Nyrop KA, Muss HB. Safety and tolerability of PD-1/PD-L1 inhibitors compared with chemotherapy in patients with advanced cancer: a meta-analysis. Oncologist. 2017;22(4):470–9.PubMedPubMedCentralGoogle Scholar
  35. 35.
    Cohen JB, et al. Nivolumab treatment beyond investigator-assessed progression: outocmes in patients with relapsed/refractory classical Hodgkin lymphoma from the Phase 2 CHECKMATE 205 study. Blood. 2017;130:650.Google Scholar
  36. 36.
    Seymour L, Bogaerts J, Perrone A, Ford R, Schwartz LH, Mandrekar S, et al. iRECIST: guidelines for response criteria for use in trials testing immunotherapeutics. Lancet Oncol. 2017;18(3):e143–52.PubMedPubMedCentralGoogle Scholar
  37. 37.
    Cheson BD, Ansell S, Schwartz L, Gordon LI, Advani R, Jacene HA, et al. Refinement of the Lugano classification lymphoma response criteria in the era of immunomodulatory therapy. Blood. 2016;128(21):2489–96.PubMedGoogle Scholar
  38. 38.
    Larkin J, Chiarion-Sileni V, Gonzalez R, Grob JJ, Cowey CL, Lao CD, et al. Combined Nivolumab and Ipilimumab or monotherapy in untreated melanoma. N Engl J Med. 2015;373(1):23–34.PubMedPubMedCentralGoogle Scholar
  39. 39.
    Shi M, Roemer MGM, Chapuy B, Liao X, Sun H, Pinkus GS, et al. Expression of programmed cell death 1 ligand 2 (PD-L2) is a distinguishing feature of primary mediastinal (thymic) large B-cell lymphoma and associated with PDCD1LG2 copy gain. Am J Surg Pathol. 2014;38(12):1715–23.PubMedPubMedCentralGoogle Scholar
  40. 40.
    Twa DD, et al. Genomic rearrangements involving programmed death ligands are recurrent in primary mediastinal large B-cell lymphoma. Blood. 2014;123(13):2062–5.PubMedGoogle Scholar
  41. 41.
    Van Roosbroeck K, et al. Genomic alterations of the JAK2 and PDL loci occur in a broad spectrum of lymphoid malignancies. Genes Chromosomes Cancer. 2016;55(5):428–41.PubMedGoogle Scholar
  42. 42.
    Eberle FC, Salaverria I, Steidl C, Summers TA, Pittaluga S, Neriah SB, et al. Gray zone lymphoma: chromosomal aberrations with immunophenotypic and clinical correlations. Mod Pathol. 2011;24(12):1586–97.PubMedGoogle Scholar
  43. 43.
    Chapuy B, Roemer MGM, Stewart C, Tan Y, Abo RP, Zhang L, et al. Targetable genetic features of primary testicular and primary central nervous system lymphomas. Blood. 2016;127(7):869–81.PubMedPubMedCentralGoogle Scholar
  44. 44.
    Kiyasu J, Miyoshi H, Hirata A, Arakawa F, Ichikawa A, Niino D, et al. Expression of programmed cell death ligand 1 is associated with poor overall survival in patients with diffuse large B-cell lymphoma. Blood. 2015;126(19):2193–201.PubMedPubMedCentralGoogle Scholar
  45. 45.
    Rossille D, Azzaoui I, Feldman AL, Maurer MJ, Labouré G, Parrens M, et al. Soluble programmed death-ligand 1 as a prognostic biomarker for overall survival in patients with diffuse large B-cell lymphoma: a replication study and combined analysis of 508 patients. Leukemia. 2017;31(4):988–91.PubMedPubMedCentralGoogle Scholar
  46. 46.
    Andorsky DJ, Yamada RE, Said J, Pinkus GS, Betting DJ, Timmerman JM. Programmed death ligand 1 is expressed by non-hodgkin lymphomas and inhibits the activity of tumor-associated T cells. Clin Cancer Res. 2011;17(13):4232–44.PubMedGoogle Scholar
  47. 47.
    Chong EA, Melenhorst JJ, Lacey SF, Ambrose DE, Gonzalez V, Levine BL, et al. PD-1 blockade modulates chimeric antigen receptor (CAR)-modified T cells: refueling the CAR. Blood. 2017;129(8):1039–41.PubMedPubMedCentralGoogle Scholar
  48. 48.
    Byrd JC, Brown JR, O’Brien S, Barrientos JC, Kay NE, Reddy NM, et al. Ibrutinib versus ofatumumab in previously treated chronic lymphoid leukemia. N Engl J Med. 2014;371(3):213–23.PubMedPubMedCentralGoogle Scholar
  49. 49.
    Burger JA, Tedeschi A, Barr PM, Robak T, Owen C, Ghia P, et al. Ibrutinib as initial therapy for patients with chronic lymphocytic leukemia. N Engl J Med. 2015;373(25):2425–37.PubMedPubMedCentralGoogle Scholar
  50. 50.
    Byrd JC, Harrington B, O’Brien S, Jones JA, Schuh A, Devereux S, et al. Acalabrutinib (ACP-196) in relapsed chronic lymphocytic leukemia. N Engl J Med. 2016;374(4):323–32.PubMedGoogle Scholar
  51. 51.
    Seymour JF, Kipps TJ, Eichhorst B, Hillmen P, D’Rozario J, Assouline S, et al. Venetoclax-rituximab in relapsed or refractory chronic lymphocytic leukemia. N Engl J Med. 2018;378(12):1107–20.PubMedGoogle Scholar
  52. 52.
    Furman RR, Sharman JP, Coutre SE, Cheson BD, Pagel JM, Hillmen P, et al. Idelalisib and rituximab in relapsed chronic lymphocytic leukemia. N Engl J Med. 2014;370(11):997–1007.PubMedPubMedCentralGoogle Scholar
  53. 53.
    Ramsay AG, Clear AJ, Fatah R, Gribben JG. Multiple inhibitory ligands induce impaired T-cell immunologic synapse function in chronic lymphocytic leukemia that can be blocked with lenalidomide: establishing a reversible immune evasion mechanism in human cancer. Blood. 2012;120(7):1412–21.PubMedPubMedCentralGoogle Scholar
  54. 54.
    Ramsay AG, Johnson AJ, Lee AM, Gorgün G, le Dieu R, Blum W, et al. Chronic lymphocytic leukemia T cells show impaired immunological synapse formation that can be reversed with an immunomodulating drug. J Clin Invest. 2008;118(7):2427–37.PubMedPubMedCentralGoogle Scholar
  55. 55.
    Brusa D, Serra S, Coscia M, Rossi D, D’Arena G, Laurenti L, et al. The PD-1/PD-L1 axis contributes to T-cell dysfunction in chronic lymphocytic leukemia. Haematologica. 2013;98(6):953–63.PubMedPubMedCentralGoogle Scholar
  56. 56.
    Grzywnowicz M, Zaleska J, Mertens D, Tomczak W, Wlasiuk P, Kosior K, et al. Programmed death-1 and its ligand are novel immunotolerant molecules expressed on leukemic B cells in chronic lymphocytic leukemia. PLoS One. 2012;7(4):e35178.PubMedPubMedCentralGoogle Scholar
  57. 57.
    Xerri L, Chetaille B, Seriari N, Attias C, Guillaume Y, Arnoulet C, et al. Programmed death 1 is a marker of angioimmunoblastic T-cell lymphoma and B-cell small lymphocytic lymphoma/chronic lymphocytic leukemia. Hum Pathol. 2008;39(7):1050–8.PubMedGoogle Scholar
  58. 58.
    Muenst S, Hoeller S, Willi N, Dirnhofer S, Tzankov A. Diagnostic and prognostic utility of PD-1 in B cell lymphomas. Dis Markers. 2010;29(1):47–53.PubMedPubMedCentralGoogle Scholar
  59. 59.
    Tonino SH, van de Berg PJ, Yong SL, ten Berge IJ, Kersten MJ, van Lier RAW, et al. Expansion of effector T cells associated with decreased PD-1 expression in patients with indolent B cell lymphomas and chronic lymphocytic leukemia. Leuk Lymphoma. 2012;53(9):1785–94.PubMedGoogle Scholar
  60. 60.
    Sagiv-Barfi I, Kohrt HEK, Czerwinski DK, Ng PP, Chang BY, Levy R. Therapeutic antitumor immunity by checkpoint blockade is enhanced by ibrutinib, an inhibitor of both BTK and ITK. Proc Natl Acad Sci U S A. 2015;112(9):E966–72.PubMedPubMedCentralGoogle Scholar
  61. 61.
    O’Brien S, et al. Single-agent ibrutinib in treatment-naive and relapsed/refractory chronic lymphocytic leukemia: a 5-year experience. Blood. 2018;131(17):1910–9.PubMedPubMedCentralGoogle Scholar
  62. 62.
    Ahn IE, Farooqui MZH, Tian X, Valdez J, Sun C, Soto S, et al. Depth and durability of response to ibrutinib in CLL: 5-year follow-up of a phase 2 study. Blood. 2018;131(21):2357–66.PubMedGoogle Scholar
  63. 63.
    Byrd JC, et al. Three-year follow-up of treatment-naive and previously treated patients with CLL and SLL receiving single-agent ibrutinib. Blood. 2015;125(16):2497–506.PubMedPubMedCentralGoogle Scholar
  64. 64.
    Parikh SA, Habermann TM, Chaffee KG, Call TG, Ding W, Leis JF, et al. Hodgkin transformation of chronic lymphocytic leukemia: incidence, outcomes, and comparison to de novo Hodgkin lymphoma. Am J Hematol. 2015;90(4):334–8.PubMedPubMedCentralGoogle Scholar
  65. 65.
    Langerbeins P, Busch R, Anheier N, Dürig J, Bergmann M, Goebeler ME, et al. Poor efficacy and tolerability of R-CHOP in relapsed/refractory chronic lymphocytic leukemia and Richter transformation. Am J Hematol. 2014;89(12):E239–43.PubMedGoogle Scholar
  66. 66.
    Rogers KA, Huang Y, Ruppert AS, Salem G, Stephens DM, Heerema NA, et al. A single-institution retrospective cohort study of first-line R-EPOCH chemoimmunotherapy for Richter syndrome demonstrating complex chronic lymphocytic leukaemia karyotype as an adverse prognostic factor. Br J Haematol. 2018;180(2):259–66.PubMedGoogle Scholar
  67. 67.
    Jain P, Keating M, Wierda W, Estrov Z, Ferrajoli A, Jain N, et al. Outcomes of patients with chronic lymphocytic leukemia after discontinuing ibrutinib. Blood. 2015;125(13):2062–7.PubMedPubMedCentralGoogle Scholar
  68. 68.
    Rossi D, Spina V, Gaidano G. Biology and treatment of Richter syndrome. Blood. 2018;131(25):2761–72.PubMedGoogle Scholar
  69. 69.
    He R, Ding W, Viswanatha DS, Chen D, Shi M, van Dyke D, et al. PD-1 expression in chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL/SLL) and large B-cell Richter transformation (DLBCL-RT): a characteristic feature of DLBCL-RT and potential surrogate marker for clonal relatedness. Am J Surg Pathol. 2018;42(7):843–54.PubMedGoogle Scholar
  70. 70.
    Fabbri G, Khiabanian H, Holmes AB, Wang J, Messina M, Mullighan CG, et al. Genetic lesions associated with chronic lymphocytic leukemia transformation to Richter syndrome. J Exp Med. 2013;210(11):2273–88.PubMedPubMedCentralGoogle Scholar
  71. 71.
    Smeltzer JP, Jones JM, Ziesmer SC, Grote DM, Xiu B, Ristow KM, et al. Pattern of CD14+ follicular dendritic cells and PD1+ T cells independently predicts time to transformation in follicular lymphoma. Clin Cancer Res. 2014;20(11):2862–72.PubMedPubMedCentralGoogle Scholar
  72. 72.
    Richendollar BG, Pohlman B, Elson P, Hsi ED. Follicular programmed death 1-positive lymphocytes in the tumor microenvironment are an independent prognostic factor in follicular lymphoma. Hum Pathol. 2011;42(4):552–7.PubMedGoogle Scholar
  73. 73.
    Carreras J, Lopez-Guillermo A, Roncador G, Villamor N, Colomo L, Martinez A, et al. High numbers of tumor-infiltrating programmed cell death 1-positive regulatory lymphocytes are associated with improved overall survival in follicular lymphoma. J Clin Oncol. 2009;27(9):1470–6.PubMedGoogle Scholar
  74. 74.
    Yang ZZ, et al. PD-1 expression defines two distinct T-cell sub-populations in follicular lymphoma that differentially impact patient survival. Blood Cancer J. 2015;5:e281.PubMedPubMedCentralGoogle Scholar
  75. 75.
    Wang Y, Wu L, Tian C, Zhang Y. PD-1-PD-L1 immune-checkpoint blockade in malignant lymphomas. Ann Hematol. 2018;97(2):229–37.PubMedGoogle Scholar
  76. 76.
    Dorfman DM, Brown JA, Shahsafaei A, Freeman GJ. Programmed death-1 (PD-1) is a marker of germinal center-associated T cells and angioimmunoblastic T-cell lymphoma. Am J Surg Pathol. 2006;30(7):802–10.PubMedPubMedCentralGoogle Scholar
  77. 77.
    Miyoshi H, Kiyasu J, Kato T, Yoshida N, Shimono J, Yokoyama S, et al. PD-L1 expression on neoplastic or stromal cells is respectively a poor or good prognostic factor for adult T-cell leukemia/lymphoma. Blood. 2016;128(10):1374–81.PubMedGoogle Scholar
  78. 78.
    Han L, et al. Role of programmed death ligands in effective T-cell interactions in extranodal natural killer/T-cell lymphoma. Oncol Lett. 2014;8(4):1461–9.PubMedPubMedCentralGoogle Scholar
  79. 79.
    Kantekure K, et al. Expression patterns of the immunosuppressive proteins PD-1/CD279 and PD-L1/CD274 at different stages of cutaneous T-cell lymphoma/mycosis fungoides. Am J Dermatopathol. 2012;34(1):126–8.PubMedPubMedCentralGoogle Scholar
  80. 80.
    Hebart H, Lang P, Woessmann W. Nivolumab for refractory anaplastic large cell lymphoma: a case report. Ann Intern Med. 2016;165(8):607–8.PubMedGoogle Scholar
  81. 81.
    Tsukasaki K, Hermine O, Bazarbachi A, Ratner L, Ramos JC, Harrington W Jr, et al. Definition, prognostic factors, treatment, and response criteria of adult T-cell leukemia-lymphoma: a proposal from an international consensus meeting. J Clin Oncol. 2009;27(3):453–9.PubMedPubMedCentralGoogle Scholar
  82. 82.
    Kataoka K, Iwanaga M, Yasunaga JI, Nagata Y, Kitanaka A, Kameda T, et al. Prognostic relevance of integrated genetic profiling in adult T-cell leukemia/lymphoma. Blood. 2018;131(2):215–25.PubMedGoogle Scholar
  83. 83.
    Ratner L, Waldmann TA, Janakiram M, Brammer JE. Rapid progression of adult T-cell leukemia-lymphoma after PD-1 inhibitor therapy. N Engl J Med. 2018;378(20):1947–8.PubMedGoogle Scholar
  84. 84.
    Wartewig T, Kurgyis Z, Keppler S, Pechloff K, Hameister E, Öllinger R, et al. PD-1 is a haploinsufficient suppressor of T cell lymphomagenesis. Nature. 2017;552(7683):121–5.PubMedPubMedCentralGoogle Scholar
  85. 85.
    Kinosada H, Yasunaga JI, Shimura K, Miyazato P, Onishi C, Iyoda T, et al. HTLV-1 bZIP factor enhances T-cell proliferation by impeding the suppressive signaling of co-inhibitory receptors. PLoS Pathog. 2017;13(1):e1006120.PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Hematologic Malignancies and Blood DisordersLevine Cancer Institute, Atrium HealthCharlotteUSA

Personalised recommendations