Current Hematologic Malignancy Reports

, Volume 13, Issue 5, pp 341–347 | Cite as

Making Sense of Prognostic Models in Chronic Myelomonocytic Leukemia

  • Aziz NazhaEmail author
  • Mrinal M. Patnaik
Myelodysplastic Syndromes (M Savona, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Myelodysplastic Syndromes


Purpose of Review

To evaluate established prognostic models in chronic myelomonocytic leukemia (CMML) and describe the challenges associated with their application in clinical practice.

Recent Findings

CMML is a clonal hematopoietic stem cell disorder with heterogeneous clinical and molecular features. Outcomes of CMML patients can vary from indolent disease with expected survival measured in years versus proliferative subtypes with rapid progression to acute myeloid leukemia and survival measured in months. Several prognostic scoring systems have been developed to risk stratify CMML patients. While all these models are valid, they demonstrate significant predictive heterogeneity.


Significant intra-patient (applying different models in the same patient giving rise to different prognostic results) and intra-model (patients in a similar prognostic group by a given model can be reclassified to different risk groups by other models) heterogeneities exist when applying current CMML prognostic models in the clinic. A personalized prediction approach may open new opportunities in risk stratifying patients with CMML and other myeloid malignancies.


Models Prognosis CMML 


Funding Information

Current publication is supported in part by grants from the “The Gerstner Family Career Development Award” and the Mayo Clinic Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA. This publication was supported by CTSA Grant Number KL2 TR000136 from the National Center for Advancing Translational Science (NCATS). Its contents are solely the responsibility of the authors and do not necessarily represent the official views of the NI.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.


Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Patnaik MM, Tefferi A. Chronic myelomonocytic leukemia: 2016 update on diagnosis, risk stratification, and management. Am J Hematol. 2016;91(6):631–42.CrossRefPubMedGoogle Scholar
  2. 2.
    Patnaik MM, Wassie EA, Lasho TL, Hanson CA, Ketterling R, Tefferi A. Blast transformation in chronic myelomonocytic leukemia: risk factors, genetic features, survival, and treatment outcome. Am J Hematol. 2015;90(5):411–6.CrossRefPubMedGoogle Scholar
  3. 3.
    Solal-Celigny P, Desaint B, Herrera A, Chastang C, Amar M, Vroclans M, et al. Chronic myelomonocytic leukemia according to FAB classification: analysis of 35 cases. Blood. 1984;63(3):634–8.PubMedGoogle Scholar
  4. 4.
    Vardiman JW, Harris NL, Brunning RD. The World Health Organization (WHO) classification of the myeloid neoplasms. Blood. 2002;100(7):2292–302.CrossRefPubMedGoogle Scholar
  5. 5.
    Patnaik MM, Tefferi A. Cytogenetic and molecular abnormalities in chronic myelomonocytic leukemia. Blood Cancer J. 2016;6:e393.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Patnaik MM, Lasho TL, Vijayvargiya P, Finke CM, Hanson CA, Ketterling RP, et al. Prognostic interaction between ASXL1 and TET2 mutations in chronic myelomonocytic leukemia. Blood Cancer J. 2016;6:e385.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Elena C, Galli A, Such E, Meggendorfer M, Germing U, Rizzo E, et al. Integrating clinical features and genetic lesions in the risk assessment of patients with chronic myelomonocytic leukemia. Blood. 2016;128(10):1408–17.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Itzykson R, Kosmider O, Renneville A, Gelsi-Boyer V, Meggendorfer M, Morabito M, et al. Prognostic score including gene mutations in chronic myelomonocytic leukemia. J Clin Oncol. 2013;31(19):2428–36.CrossRefPubMedGoogle Scholar
  9. 9.
    Patnaik MM, Itzykson R, Lasho TL, Kosmider O, Finke CM, Hanson CA, et al. ASXL1 and SETBP1 mutations and their prognostic contribution in chronic myelomonocytic leukemia: a two-center study of 466 patients. Leukemia. 2014;28(11):2206–12.CrossRefPubMedGoogle Scholar
  10. 10.
    Bennett JM, Catovsky D, Daniel MT, Flandrin G, Galton DAG, Gralnick H, et al. The chronic myeloid leukaemias: guidelines for distinguishing chronic granulocytic, atypical chronic myeloid, and chronic myelomonocytic leukaemia. Proposals by the French-American-British Cooperative Leukaemia Group. Br J Haematol. 1994;87(4):746–54.CrossRefPubMedGoogle Scholar
  11. 11.
    Arber DA, Orazi A, Hasserjian R, Thiele J, Borowitz MJ, le Beau MM, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016;127(20):2391–405.CrossRefGoogle Scholar
  12. 12.
    Nazha A, Narkhede M, Radivoyevitch T, Seastone DJ, Patel BJ, Gerds AT, et al. Incorporation of molecular data into the Revised International Prognostic Scoring System in treated patients with myelodysplastic syndromes. Leukemia. 2016;30(11):2214–20.CrossRefPubMedGoogle Scholar
  13. 13.
    •• Nazha A, Al-Issa K, Hamilton BK, et al. Adding molecular data to prognostic models can improve predictive power in treated patients with myelodysplastic syndromes. Leukemia. 2017;31(12):2848–50. This is the first study to incorporate molecular data into four commonly used prognostic models in MDS and CMML.CrossRefPubMedGoogle Scholar
  14. 14.
    Sanz GF, Sanz MA, Vallespi T, et al. Two regression models and a scoring system for predicting survival and planning treatment in myelodysplastic syndromes: a multivariate analysis of prognostic factors in 370 patients. Blood. 1989;74(1):395–408.PubMedGoogle Scholar
  15. 15.
    Aul C, Gattermann N, Heyll A, Germing U, Derigs G, Schneider W. Primary myelodysplastic syndromes: analysis of prognostic factors in 235 patients and proposals for an improved scoring system. Leukemia. 1992;6(1):52–9.PubMedGoogle Scholar
  16. 16.
    Morel P, Hebbar M, Lai JL, Duhamel A, Preudhomme C, Wattel E, et al. Cytogenetic analysis has strong independent prognostic value in de novo myelodysplastic syndromes and can be incorporated in a new scoring system: a report on 408 cases. Leukemia. 1993;7(9):1315–23.PubMedGoogle Scholar
  17. 17.
    Greenberg P, Cox C, LeBeau MM, Fenaux P, Morel P, Sanz G, et al. International scoring system for evaluating prognosis in myelodysplastic syndromes. Blood. 1997;89(6):2079–88.PubMedGoogle Scholar
  18. 18.
    Nazha A, Seastone D, Keng M, et al. The revised international prognostic scoring system (IPSS-R) is not predictive of survival in patients with secondary myelodysplastic syndromes. Leuk Lymphoma. 2015:1–12.Google Scholar
  19. 19.
    Nazha A, Komrokji RS, Garcia-Manero G, et al. The efficacy of current prognostic models in predicting outcome of patients with myelodysplastic syndromes at the time of hypomethylating agent failure. Haematologica. 2016;101(6):e224–7.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Kantarjian H, O'Brien S, Ravandi F, Cortes J, Shan J, Bennett JM, et al. Proposal for a new risk model in myelodysplastic syndrome that accounts for events not considered in the original International Prognostic Scoring System. Cancer. 2008;113(6):1351–61.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Greenberg PL, Tuechler H, Schanz J, Sanz G, Garcia-Manero G, Sole F, et al. Revised international prognostic scoring system for myelodysplastic syndromes. Blood. 2012;120(12):2454–65.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Nazha A, Seastone DP, Keng M, Hobson S, Kalaycio M, Maciejewski JP, et al. The Revised International Prognostic Scoring System (IPSS-R) is not predictive of survival in patients with secondary myelodysplastic syndromes. Leuk Lymphoma. 2015;56(12):3437–9.CrossRefPubMedGoogle Scholar
  23. 23.
    Onida F, Kantarjian HM, Smith TL, Ball G, Keating MJ, Estey EH, et al. Prognostic factors and scoring systems in chronic myelomonocytic leukemia: a retrospective analysis of 213 patients. Blood. 2002;99(3):840–9.CrossRefPubMedGoogle Scholar
  24. 24.
    Germing U, Strupp C, Aivado M, Gattermann N. New prognostic parameters for chronic myelomonocytic leukemia. Blood. 2002;100(2):731–2. author reply 2-3CrossRefPubMedGoogle Scholar
  25. 25.
    Beran M, Wen S, Shen Y, Onida F, Jelinek J, Cortes J, et al. Prognostic factors and risk assessment in chronic myelomonocytic leukemia: validation study of the M.D. Anderson Prognostic Scoring System. Leuk Lymphoma. 2007;48(6):1150–60.CrossRefPubMedGoogle Scholar
  26. 26.
    Such E, Cervera J, Costa D, Sole F, Vallespi T, Luno E, et al. Cytogenetic risk stratification in chronic myelomonocytic leukemia. Haematologica. 2011;96(3):375–83.CrossRefPubMedGoogle Scholar
  27. 27.
    Such E, Germing U, Malcovati L, Cervera J, Kuendgen A, Della Porta MG, et al. Development and validation of a prognostic scoring system for patients with chronic myelomonocytic leukemia. Blood. 2013;121(15):3005–15.CrossRefPubMedGoogle Scholar
  28. 28.
    Patnaik MM, Padron E, LaBorde RR, et al. Mayo prognostic model for WHO-defined chronic myelomonocytic leukemia: ASXL1 and spliceosome component mutations and outcomes. Leukemia. 2013;27:1504–10.CrossRefPubMedGoogle Scholar
  29. 29.
    Patel BJ, Przychodzen B, Thota S, Radivoyevitch T, Visconte V, Kuzmanovic T, et al. Genomic determinants of chronic myelomonocytic leukemia. Leukemia. 2017;31(12):2815–23.CrossRefPubMedGoogle Scholar
  30. 30.
    Itzykson R, Kosmider O, Renneville A, Morabito M, Preudhomme C, Berthon C, et al. Clonal architecture of chronic myelomonocytic leukemias. Blood. 2013;121(12):2186–98.CrossRefPubMedGoogle Scholar
  31. 31.
    •• Patnaik MM, Tefferi A. Cytogenetic and molecular abnormalities in chronic myelomonocytic leukemia. Blood Cancer J. 2016;6:e393. Important study that characterizes the clinical and molecular landscapes in CMML.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    • Padron E, Garcia-Manero G, Patnaik MM, et al. An international data set for CMML validates prognostic scoring systems and demonstrates a need for novel prognostication strategies. Blood Cancer J. 2015;5(7):e333. This study evaluated the prognostic impact of estachlised models in a large international cohort of CMML patients from seven US and European centers. CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Nazha A, Patnaik MM, Komrokji RS, et al. Model heterogeneity in predicting outcomes in patients with chronic myelomonocytic leukemia (CMML): an overestimation of survival in lower-risk group. Blood. 2017;130(Suppl 1):4255.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Leukemia Program, Leukemia Program, Department of Hematology and Medical OncologyCleveland ClinicClevelandUSA
  2. 2.Lerner College of Medicine, Department of Hematology and Medical Oncology, Taussig Cancer InstituteCleveland ClinicClevelandUSA
  3. 3.Division of HematologyMayo ClinicRochesterUSA

Personalised recommendations