Current Hematologic Malignancy Reports

, Volume 12, Issue 2, pp 143–152 | Cite as

Who Should Receive a Transplant for Acute Lymphoblastic Leukaemia?

Acute Lymphocytic Leukemias (K Ballen, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Acute Lymphocytic Leukemias

Abstract

Allogeneic haematopoietic cell transplantation continues to be an important curative therapy for acute lymphoblastic leukaemia (ALL). Traditionally accepted indications for allografting adult ALL patients need reevaluation in light of outcomes with paediatric-like intensive regimens. Minimal residual disease status and oncogenetics can be used for restratification of standard risk patients. A greater body of data on haematopoietic cell transplantation (HCT) outcomes from haploidentical and cord blood donor sources has been generated in recent years. In this review, we describe the indications for allografting adult ALL patients in first complete remission (CR1). Role of minimal residual disease (MRD) in optimising HCT for ALL is delineated. We also discuss how alternative donors, haploidentical and cord blood and reduced intensity conditioning make allografts more accessible to patients with high-risk ALL. Recent data on use of monoclonal antibodies and chimeric antigen receptor (CAR)-modified T cells in adult ALL patients are also reviewed.

Keywords

Acute lymphoblastic leukaemia Allogeneic haematopoietic cell transplantation Minimal residual disease Pre-transplant conditioning Prognostic factors Monoclonal antibodies 

Notes

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as • Of importance •• Of major importance

  1. 1.
    El Fakih R, Kharfan-Dabaja MA, Aljurf M. Refining the role of hematopoietic cell transplantation for acute lymphoblastic leukemia as novel therapies emerge. Biol Blood Marrow Transplant. 2016.Google Scholar
  2. 2.
    Annino L, Vegna ML, Camera A, Specchia G, Visani G, Fioritoni G, et al. Treatment of adult acute lymphoblastic leukemia (ALL): long-term follow-up of the GIMEMA ALL 0288 randomized study. Blood. 2002;99(3):863–71.CrossRefPubMedGoogle Scholar
  3. 3.
    Bassan R, Hoelzer D. Modern therapy of acute lymphoblastic leukemia. J Clin Oncol. 2011;29(5):532–43.CrossRefPubMedGoogle Scholar
  4. 4.
    Fielding AK, Richards SM, Chopra R, Lazarus HM, Litzow MR, Buck G, et al. Outcome of 609 adults after relapse of acute lymphoblastic leukemia (ALL); an MRC UKALL12/ECOG 2993 study. Blood. 2007;109(3):944–50.CrossRefPubMedGoogle Scholar
  5. 5.
    Larson RA, Dodge RK, Burns CP, Lee EJ, Stone RM, Schulman P, et al. A five-drug remission induction regimen with intensive consolidation for adults with acute lymphoblastic leukemia: cancer and leukemia group B study 8811. Blood. 1995;85(8):2025–37.PubMedGoogle Scholar
  6. 6.
    Linker C, Damon L, Ries C, Navarro W. Intensified and shortened cyclical chemotherapy for adult acute lymphoblastic leukemia. J Clin Oncol. 2002;20(10):2464–71.CrossRefPubMedGoogle Scholar
  7. 7.
    Rowe JM, Buck G, Burnett AK, Chopra R, Wiernik PH, Richards SM, et al. Induction therapy for adults with acute lymphoblastic leukemia: results of more than 1500 patients from the international ALL trial: MRC UKALL XII/ECOG E2993. Blood. 2005;106(12):3760–7.CrossRefPubMedGoogle Scholar
  8. 8.
    Toft N BH, Abrahamsson J, et al. Adults and children (1-45 years) with Ph-negative ALL have almost identical outcomes in risk stratified analysis of NOPHO ALL 2008 Haematologica. 2016;101(S1).Google Scholar
  9. 9.
    Huguet F, Leguay T, Raffoux E, Thomas X, Beldjord K, Delabesse E, et al. Pediatric-inspired therapy in adults with Philadelphia chromosome-negative acute lymphoblastic leukemia: the GRAALL-2003 study. J Clin Oncol. 2009;27(6):911–8.CrossRefPubMedGoogle Scholar
  10. 10.
    Stock WLS, Advani AS. Favorable outcomes for older adolescents and young adults (AYA) with acute lymphoblastic leukemia (ALL): early results of U.S. Intergroup trial C10403. Blood. 2014;124(21):796.Google Scholar
  11. 11.
    Goldstone AH, Richards SM, Lazarus HM, Tallman MS, Buck G, Fielding AK, et al. In adults with standard-risk acute lymphoblastic leukemia, the greatest benefit is achieved from a matched sibling allogeneic transplantation in first complete remission, and an autologous transplantation is less effective than conventional consolidation/maintenance chemotherapy in all patients: final results of the International ALL Trial (MRC UKALL XII/ECOG E2993). Blood. 2008;111(4):1827–33.CrossRefPubMedGoogle Scholar
  12. 12.
    Yanada M, Matsuo K, Suzuki T, Naoe T. Allogeneic hematopoietic stem cell transplantation as part of postremission therapy improves survival for adult patients with high-risk acute lymphoblastic leukemia: a metaanalysis. Cancer. 2006;106(12):2657–63.CrossRefPubMedGoogle Scholar
  13. 13.
    Attal M, Blaise D, Marit G, Payen C, Michallet M, Vernant JP, et al. Consolidation treatment of adult acute lymphoblastic leukemia: a prospective, randomized trial comparing allogeneic versus autologous bone marrow transplantation and testing the impact of recombinant interleukin-2 after autologous bone marrow transplantation. BGMT Group Blood. 1995;86(4):1619–28.PubMedGoogle Scholar
  14. 14.
    Hunault M, Harousseau JL, Delain M, Truchan-Graczyk M, Cahn JY, Witz F, et al. Better outcome of adult acute lymphoblastic leukemia after early genoidentical allogeneic bone marrow transplantation (BMT) than after late high-dose therapy and autologous BMT: a GOELAMS trial. Blood. 2004;104(10):3028–37.CrossRefPubMedGoogle Scholar
  15. 15.
    Jabbour E, O’Brien S, Konopleva M, Kantarjian H. New insights into the pathophysiology and therapy of adult acute lymphoblastic leukemia. Cancer. 2015;121(15):2517–28.CrossRefPubMedGoogle Scholar
  16. 16.
    Rowe JM. Prognostic factors in adult acute lymphoblastic leukaemia. Br J Haematol. 2010;150(4):389–405.PubMedGoogle Scholar
  17. 17.
    Hoelzer D, Thiel E, Loffler H, Buchner T, Ganser A, Heil G, et al. Prognostic factors in a multicenter study for treatment of acute lymphoblastic leukemia in adults. Blood. 1988;71(1):123–31.PubMedGoogle Scholar
  18. 18.
    Moorman AV, Harrison CJ, Buck GA, Richards SM, Secker-Walker LM, Martineau M, et al. Karyotype is an independent prognostic factor in adult acute lymphoblastic leukemia (ALL): analysis of cytogenetic data from patients treated on the Medical Research Council (MRC) UKALLXII/Eastern Cooperative Oncology Group (ECOG) 2993 trial. Blood. 2007;109(8):3189–97.CrossRefPubMedGoogle Scholar
  19. 19.
    •• Dhedin N, Huynh A, Maury S, Tabrizi R, Beldjord K, Asnafi V, et al. Role of allogeneic stem cell transplantation in adult patients with Ph-negative acute lymphoblastic leukemia. Blood. 2015;125(16):2486–96. quiz 586. Using data from the GRAALL database, investigators showed that MRD and oncogenetics are better risk stratification tools compared to conventional risk factors in adult patients treated on paediatric intensive protocols. CrossRefPubMedGoogle Scholar
  20. 20.
    Seftel MD, Neuberg D, Zhang MJ, Wang HL, Ballen KK, Bergeron J, et al. Pediatric-inspired therapy compared to allografting for Philadelphia chromosome-negative adult ALL in first complete remission. Am J Hematol. 2016;91(3):322–9.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Beldjord K, Chevret S, Asnafi V, Huguet F, Boulland ML, Leguay T, et al. Oncogenetics and minimal residual disease are independent outcome predictors in adult patients with acute lymphoblastic leukemia. Blood. 2014;123(24):3739–49.CrossRefPubMedGoogle Scholar
  22. 22.
    Bassan R, Spinelli O, Oldani E, Intermesoli T, Tosi M, Peruta B, et al. Different molecular levels of post-induction minimal residual disease may predict hematopoietic stem cell transplantation outcome in adult Philadelphia-negative acute lymphoblastic leukemia. Blood Cancer J. 2014;4:e225.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Hunger SP, Mullighan CG. Redefining ALL classification: toward detecting high-risk ALL and implementing precision medicine. Blood. 2015;125(26):3977–87.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Jain N, Lamb AV, O’Brien S, Ravandi F, Konopleva M, Jabbour E, et al. Early T-cell precursor acute lymphoblastic leukemia/lymphoma (ETP-ALL/LBL) in adolescents and adults: a high-risk subtype. Blood. 2016;127(15):1863–9.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Marks DI, Alonso L, Radia R. Allogeneic hematopoietic cell transplantation in adult patients with acute lymphoblastic leukemia. Hematol Oncol Clin North Am. 2014;28(6):995–1009.CrossRefPubMedGoogle Scholar
  26. 26.
    Schlenk RF, Dohner H. Genomic applications in the clinic: use in treatment paradigm of acute myeloid leukemia. Hematol Am Soc Hematol Educ Program. 2013;2013:324–30.Google Scholar
  27. 27.
    Marks DI, Perez WS, He W, Zhang MJ, Bishop MR, Bolwell BJ, et al. Unrelated donor transplants in adults with Philadelphia-negative acute lymphoblastic leukemia in first complete remission. Blood. 2008;112(2):426–34.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Sebban C, Lepage E, Vernant JP, Gluckman E, Attal M, Reiffers J, et al. Allogeneic bone marrow transplantation in adult acute lymphoblastic leukemia in first complete remission: a comparative study. French Group of Therapy of Adult Acute Lymphoblastic Leukemia. J Clin Oncol. 1994;12(12):2580–7.CrossRefPubMedGoogle Scholar
  29. 29.
    Thomas X, Boiron JM, Huguet F, Dombret H, Bradstock K, Vey N, et al. Outcome of treatment in adults with acute lymphoblastic leukemia: analysis of the LALA-94 trial. J Clin Oncol. 2004;22(20):4075–86.CrossRefPubMedGoogle Scholar
  30. 30.
    Bassan R, Spinelli O, Oldani E, Intermesoli T, Tosi M, Peruta B, et al. Improved risk classification for risk-specific therapy based on the molecular study of minimal residual disease (MRD) in adult acute lymphoblastic leukemia (ALL). Blood. 2009;113(18):4153–62.CrossRefPubMedGoogle Scholar
  31. 31.
    Lee HJ, Thompson JE, Wang ES, Wetzler M. Philadelphia chromosome-positive acute lymphoblastic leukemia: current treatment and future perspectives. Cancer. 2011;117(8):1583–94.CrossRefPubMedGoogle Scholar
  32. 32.
    Pullarkat V, Slovak ML, Kopecky KJ, Forman SJ, Appelbaum FR. Impact of cytogenetics on the outcome of adult acute lymphoblastic leukemia: results of Southwest Oncology Group 9400 study. Blood. 2008;111(5):2563–72.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Brissot E, Labopin M, Beckers MM, Socie G, Rambaldi A, Volin L, et al. Tyrosine kinase inhibitors improve long-term outcome of allogeneic hematopoietic stem cell transplantation for adult patients with Philadelphia chromosome positive acute lymphoblastic leukemia. Haematologica. 2015;100(3):392–9.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Fielding AK, Rowe JM, Buck G, Foroni L, Gerrard G, Litzow MR, et al. UKALLXII/ECOG2993: addition of imatinib to a standard treatment regimen enhances long-term outcomes in Philadelphia positive acute lymphoblastic leukemia. Blood. 2014;123(6):843–50.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Tanguy-Schmidt A, Rousselot P, Chalandon Y, Cayuela JM, Hayette S, Vekemans MC, et al. Long-term follow-up of the imatinib GRAAPH-2003 study in newly diagnosed patients with de novo Philadelphia chromosome-positive acute lymphoblastic leukemia: a GRAALL study. Biol Blood Marrow Transplant. 2013;19(1):150–5.CrossRefPubMedGoogle Scholar
  36. 36.
    Lee S, Kim DW, Cho BS, Yoon JH, Shin SH, Yahng SA, et al. Impact of minimal residual disease kinetics during imatinib-based treatment on transplantation outcome in Philadelphia chromosome-positive acute lymphoblastic leukemia. Leukemia. 2012;26(11):2367–74.CrossRefPubMedGoogle Scholar
  37. 37.
    Segal E, Martens M, Wang H, Brazauskas R, Weisdorf D, Sandmaier BM. Comparison of post-allogeneic hematopoietic cell transplantation (HCT) outcomes after matched related donor versus matched unrelated donor HCT in adults with acute lymphoblastic leukemia. Blood. 2015;126(23):2017.Google Scholar
  38. 38.
    Marks DI, Aversa F, Lazarus HM. Alternative donor transplants for adult acute lymphoblastic leukaemia: a comparison of the three major options. Bone Marrow Transplant. 2006;38(7):467–75.CrossRefPubMedGoogle Scholar
  39. 39.
    Nishiwaki S, Inamoto Y, Sakamaki H, Kurokawa M, Iida H, Ogawa H, et al. Allogeneic stem cell transplantation for adult Philadelphia chromosome-negative acute lymphocytic leukemia: comparable survival rates but different risk factors between related and unrelated transplantation in first complete remission. Blood. 2010;116(20):4368–75.CrossRefPubMedGoogle Scholar
  40. 40.
    Laughlin MJ, Eapen M, Rubinstein P, Wagner JE, Zhang MJ, Champlin RE, et al. Outcomes after transplantation of cord blood or bone marrow from unrelated donors in adults with leukemia. N Engl J Med. 2004;351(22):2265–75.CrossRefPubMedGoogle Scholar
  41. 41.
    Rocha V, Labopin M, Sanz G, Arcese W, Schwerdtfeger R, Bosi A, et al. Transplants of umbilical-cord blood or bone marrow from unrelated donors in adults with acute leukemia. N Engl J Med. 2004;351(22):2276–85.CrossRefPubMedGoogle Scholar
  42. 42.
    Eapen M, Rocha V, Sanz G, Scaradavou A, Zhang MJ, Arcese W, et al. Effect of graft source on unrelated donor haemopoietic stem-cell transplantation in adults with acute leukaemia: a retrospective analysis. Lancet Oncol. 2010;11(7):653–60.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    •• Marks DI, Woo KA, Zhong X, Appelbaum FR, Bachanova V, Barker JN, et al. Unrelated umbilical cord blood transplant for adult acute lymphoblastic leukemia in first and second complete remission: a comparison with allografts from adult unrelated donors. Haematologica. 2014;99(2):322–8. Landmark CIBMTR research showing equivalent outcomes in adult ALL with cord blood and well-matched unrelated donor allografts. CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Ferra C, Sanz J, de la Camara R, Sanz G, Bermudez A, Valcarcel D, et al. Unrelated transplantation for poor-prognosis adult acute lymphoblastic leukemia: long-term outcome analysis and study of the impact of hematopoietic graft source. Biol Blood Marrow Transplant. 2010;16(7):957–66.CrossRefPubMedGoogle Scholar
  45. 45.
    Milano F, Gooley T, Wood B, Woolfrey A, Flowers ME, Doney K, et al. Cord-blood transplantation in patients with minimal residual disease. N Engl J Med. 2016;375(10):944–53.CrossRefPubMedGoogle Scholar
  46. 46.
    Reisner Y, Hagin D, Martelli MF. Haploidentical hematopoietic transplantation: current status and future perspectives. Blood. 2011;118(23):6006–17.CrossRefPubMedGoogle Scholar
  47. 47.
    Ciurea SO, Zhang MJ, Bacigalupo AA, Bashey A, Appelbaum FR, Aljitawi OS, et al. Haploidentical transplant with posttransplant cyclophosphamide vs matched unrelated donor transplant for acute myeloid leukemia. Blood. 2015;126(8):1033–40.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Huang XJ, Chang YJ. Unmanipulated HLA-mismatched/haploidentical blood and marrow hematopoietic stem cell transplantation. Biol Blood Marrow Transplant. 2011;17(2):197–204.CrossRefPubMedGoogle Scholar
  49. 49.
    Wang Y, Liu QF, Xu LP, Liu KY, Zhang XH, Ma X, et al. Haploidentical versus matched-sibling transplant in adults with philadelphia-negative high-risk acute lymphoblastic leukemia: a biologically phase III randomized study. Clin Cancer Res. 2016;22(14):3467–76.CrossRefPubMedGoogle Scholar
  50. 50.
    Marks DI, Forman SJ, Blume KG, Perez WS, Weisdorf DJ, Keating A, et al. A comparison of cyclophosphamide and total body irradiation with etoposide and total body irradiation as conditioning regimens for patients undergoing sibling allografting for acute lymphoblastic leukemia in first or second complete remission. Biol Blood Marrow Transplant. 2006;12(4):438–53.CrossRefPubMedGoogle Scholar
  51. 51.
    Zwaan CM, Kaspers GJ, Pieters R, Ramakers-Van Woerden NL, den Boer ML, Wunsche R, et al. Cellular drug resistance profiles in childhood acute myeloid leukemia: differences between FAB types and comparison with acute lymphoblastic leukemia. Blood. 2000;96(8):2879–86.PubMedGoogle Scholar
  52. 52.
    Kunter G, Perkins JB, Pidala J, Nishihori T, Kharfan-Dabaja MA, Field T, et al. Pharmacokinetically-targeted BU and fludarabine as conditioning before allogeneic hematopoietic cell transplantation for adults with ALL in first remission. Bone Marrow Transplant. 2014;49(1):11–6.CrossRefPubMedGoogle Scholar
  53. 53.
    Santarone S, Pidala J, Di Nicola M, Field T, Alsina M, Ayala E, et al. Fludarabine and pharmacokinetic-targeted busulfan before allografting for adults with acute lymphoid leukemia. Biol Blood Marrow Transplant. 2011;17(10):1505–11.CrossRefPubMedGoogle Scholar
  54. 54.
    Kebriaei P, Basset R, Ledesma C, Ciurea S, Parmar S, Shpall EJ, et al. Clofarabine combined with busulfan provides excellent disease control in adult patients with acute lymphoblastic leukemia undergoing allogeneic hematopoietic stem cell transplantation. Biol Blood Marrow Transplant. 2012;18(12):1819–26.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Kebriaei P, Anasetti C, et al. Comparison of total body irradiation-based with intravenous busulfan-based chemotherapy-only conditioning regimens for myeloablative hematopoietic cell transplantation (HCT) in adults with acute lymphoblastic leukemia. Blood. 2016(ASH Abstract).Google Scholar
  56. 56.
    Bacigalupo A, Ballen K, Rizzo D, Giralt S, Lazarus H, Ho V, et al. Defining the intensity of conditioning regimens: working definitions. Biol Blood Marrow Transplant. 2009;15(12):1628–33.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Martino R, Giralt S, Caballero MD, Mackinnon S, Corradini P, Fernandez-Aviles F, et al. Allogeneic hematopoietic stem cell transplantation with reduced-intensity conditioning in acute lymphoblastic leukemia: a feasibility study. Haematologica. 2003;88(5):555–60.PubMedGoogle Scholar
  58. 58.
    Massenkeil G, Nagy M, Neuburger S, Tamm I, Lutz C, le Coutre P, et al. Survival after reduced-intensity conditioning is not inferior to standard high-dose conditioning before allogeneic haematopoietic cell transplantation in acute leukaemias. Bone Marrow Transplant. 2005;36(8):683–9.CrossRefPubMedGoogle Scholar
  59. 59.
    Hamaki T, Kami M, Kanda Y, Yuji K, Inamoto Y, Kishi Y, et al. Reduced-intensity stem-cell transplantation for adult acute lymphoblastic leukemia: a retrospective study of 33 patients. Bone Marrow Transplant. 2005;35(6):549–56.CrossRefPubMedGoogle Scholar
  60. 60.
    Marks DI, Wang T, Perez WS, Antin JH, Copelan E, Gale RP, et al. The outcome of full-intensity and reduced-intensity conditioning matched sibling or unrelated donor transplantation in adults with Philadelphia chromosome-negative acute lymphoblastic leukemia in first and second complete remission. Blood. 2010;116(3):366–74.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Mohty M, Labopin M, Volin L, Gratwohl A, Socie G, Esteve J, et al. Reduced-intensity versus conventional myeloablative conditioning allogeneic stem cell transplantation for patients with acute lymphoblastic leukemia: a retrospective study from the European Group for Blood and Marrow Transplantation. Blood. 2010;116(22):4439–43.CrossRefPubMedGoogle Scholar
  62. 62.
    Larson RA, Dodge RK, Linker CA, Stone RM, Powell BL, Lee EJ, et al. A randomized controlled trial of filgrastim during remission induction and consolidation chemotherapy for adults with acute lymphoblastic leukemia: CALGB study 9111. Blood. 1998;92(5):1556–64.PubMedGoogle Scholar
  63. 63.
    Kantarjian H, Thomas D, O’Brien S, Cortes J, Giles F, Jeha S, et al. Long-term follow-up results of hyperfractionated cyclophosphamide, vincristine, doxorubicin, and dexamethasone (Hyper-CVAD), a dose-intensive regimen, in adult acute lymphocytic leukemia. Cancer. 2004;101(12):2788–801.CrossRefPubMedGoogle Scholar
  64. 64.
    DeAngelo DJ. The use of novel monoclonal antibodies in the treatment of acute lymphoblastic leukemia. Hematol Am Soc Hematol Educ Program. 2015;2015:400–5.Google Scholar
  65. 65.
    Sadelain M. CAR therapy: the CD19 paradigm. J Clin Invest. 2015;125(9):3392–400.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Patel B, Rai L, Buck G, Richards SM, Mortuza Y, Mitchell W, et al. Minimal residual disease is a significant predictor of treatment failure in non T-lineage adult acute lymphoblastic leukaemia: final results of the international trial UKALL XII/ECOG2993. Br J Haematol. 2010;148(1):80–9.CrossRefPubMedGoogle Scholar
  67. 67.
    Gokbuget N, Kneba M, Raff T, Trautmann H, Bartram CR, Arnold R, et al. Adult patients with acute lymphoblastic leukemia and molecular failure display a poor prognosis and are candidates for stem cell transplantation and targeted therapies. Blood. 2012;120(9):1868–76.CrossRefPubMedGoogle Scholar
  68. 68.
    Spinelli O, Peruta B, Tosi M, Guerini V, Salvi A, Zanotti MC, et al. Clearance of minimal residual disease after allogeneic stem cell transplantation and the prediction of the clinical outcome of adult patients with high-risk acute lymphoblastic leukemia. Haematologica. 2007;92(5):612–8.CrossRefPubMedGoogle Scholar
  69. 69.
    Bader P, Kreyenberg H, Henze GH, Eckert C, Reising M, Willasch A, et al. Prognostic value of minimal residual disease quantification before allogeneic stem-cell transplantation in relapsed childhood acute lymphoblastic leukemia: the ALL-REZ BFM Study Group. J Clin Oncol. 2009;27(3):377–84.CrossRefPubMedGoogle Scholar
  70. 70.
    Gokbuget N, Hoelzer D. Treatment with monoclonal antibodies in acute lymphoblastic leukemia: current knowledge and future prospects. Ann Hematol. 2004;83(4):201–5.CrossRefPubMedGoogle Scholar
  71. 71.
    Thomas DA, O’Brien S, Faderl S, Garcia-Manero G, Ferrajoli A, Wierda W, et al. Chemoimmunotherapy with a modified hyper-CVAD and rituximab regimen improves outcome in de novo Philadelphia chromosome-negative precursor B-lineage acute lymphoblastic leukemia. J Clin Oncol. 2010;28(24):3880–9.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Maury S, Huguet F, Leguay T, Lacombe F, Maynadie M, Girard S, et al. Adverse prognostic significance of CD20 expression in adults with Philadelphia chromosome-negative B-cell precursor acute lymphoblastic leukemia. Haematologica. 2010;95(2):324–8.CrossRefPubMedGoogle Scholar
  73. 73.
    • Maury S, Chevret S, Thomas X, Heim D, Leguay T, Huguet F, et al. Rituximab in B-lineage adult acute lymphoblastic leukemia. N Engl J Med. 2016;375(11):1044–53. Randomized study by the GRAALL group showing improved EFS and improved OS trend with rituximab addition to standard chemotherapy in CD20-positive ALL.CrossRefPubMedGoogle Scholar
  74. 74.
    Maury S, Thomas X, Heim D, et al. Addition of rituximab improves the outcome of adult patients with CD20-positive, Ph-negative, B-cell precursor acute lymphoblastic leukemia (BCP-ALL): results of the randomized GRAALL-R 2005 study. Blood. 2015;126(23):1.Google Scholar
  75. 75.
    Ozsahin H, Fluss J, McLin V, Wacker P, Miralbell R, Helg C. Rituximab with interleukin-2 after autologous bone marrow transplantation for acute lymphocytic leukemia in second remission. Med Pediatr Oncol. 2002;38(4):300–1.CrossRefPubMedGoogle Scholar
  76. 76.
    Jandula BM, Nomdedeu J, Marin P, Vivancos P. Rituximab can be useful as treatment for minimal residual disease in bcr-abl-positive acute lymphoblastic leukemia. Bone Marrow Transplant. 2001;27(2):225–7.CrossRefPubMedGoogle Scholar
  77. 77.
    Topp MS, Gokbuget N, Zugmaier G, Degenhard E, Goebeler ME, Klinger M, et al. Long-term follow-up of hematologic relapse-free survival in a phase 2 study of blinatumomab in patients with MRD in B-lineage ALL. Blood. 2012;120(26):5185–7.CrossRefPubMedGoogle Scholar
  78. 78.
    • Topp MS, Gokbuget N, Stein AS, Zugmaier G, O’Brien S, Bargou RC, et al. Safety and activity of blinatumomab for adult patients with relapsed or refractory B-precursor acute lymphoblastic leukaemia: a multicentre, single-arm, phase 2 study. Lancet Oncol. 2015;16(1):57–66. Phase 2 trial showing high response rate, including MRD response with two cycles of blinatumomab salvage in relapsed or refractory ALL.CrossRefPubMedGoogle Scholar
  79. 79.
    Topp MSSA, Gökbuget N, et al. Blinatumomab improved overall survival in patients with relapsed or refractory Philadelphia negative B-cell precursor acute lymphoblastic leukaemia in a randomised, open-label phase 3 study (TOWER). Haematologica. 2016;101(S1):24–5.Google Scholar
  80. 80.
    Dhruva SS, Prasad V. Application of Medicare’s new technology add-on payment program for blinatumomab. JAMA Oncol. 2016;2(2):165–6.CrossRefPubMedGoogle Scholar
  81. 81.
    Kantarjian H, Gandhi V, Cortes J, Verstovsek S, Du M, Garcia-Manero G, et al. Phase 2 clinical and pharmacologic study of clofarabine in patients with refractory or relapsed acute leukemia. Blood. 2003;102(7):2379–86.CrossRefPubMedGoogle Scholar
  82. 82.
    DeAngelo DJ. Nelarabine for the treatment of patients with relapsed or refractory T-cell acute lymphoblastic leukemia or lymphoblastic lymphoma. Hematol Oncol Clin North Am. 2009;23(5):1121–35. vii–viii.CrossRefPubMedGoogle Scholar
  83. 83.
    O’Brien S, Schiller G, Lister J, Damon L, Goldberg S, Aulitzky W, et al. High-dose vincristine sulfate liposome injection for advanced, relapsed, and refractory adult Philadelphia chromosome-negative acute lymphoblastic leukemia. J Clin Oncol. 2013;31(6):676–83.CrossRefPubMedGoogle Scholar
  84. 84.
    Gokbuget N, Basara N, Baurmann H, Beck J, Bruggemann M, Diedrich H, et al. High single-drug activity of nelarabine in relapsed T-lymphoblastic leukemia/lymphoma offers curative option with subsequent stem cell transplantation. Blood. 2011;118(13):3504–11.CrossRefPubMedGoogle Scholar
  85. 85.
    • Kantarjian HM, DeAngelo DJ, Stelljes M, Martinelli G, Liedtke M, Stock W, et al. Inotuzumab ozogamicin versus standard therapy for acute lymphoblastic leukemia. N Engl J Med. 2016;375(8):740–53. Randomized study demonstrating better outcomes with inotuzumab salvage as bridge to potentially curative HCT in relapsed or refractory ALL.CrossRefPubMedGoogle Scholar
  86. 86.
    Davila ML, Riviere I, Wang X, Bartido S, Park J, Curran K, et al. Efficacy and toxicity management of 19-28z CAR T cell therapy in B cell acute lymphoblastic leukemia. Sci Transl Med. 2014;6(224):224ra25.CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Lee DW, Kochenderfer JN, Stetler-Stevenson M, Cui YK, Delbrook C, Feldman SA, et al. T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial. Lancet. 2015;385(9967):517–28.CrossRefPubMedGoogle Scholar
  88. 88.
    Maude SL, Frey N, Shaw PA, Aplenc R, Barrett DM, Bunin NJ, et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. N Engl J Med. 2014;371(16):1507–17.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Adult BMT UnitUniversity Hospitals Bristol NHS Foundation TrustBristolUK

Personalised recommendations