Advertisement

Current Hematologic Malignancy Reports

, Volume 10, Issue 2, pp 104–111 | Cite as

Next-Generation Sequencing-Based Panel Testing for Myeloid Neoplasms

  • Frank C. Kuo
  • Fei Dong
Acute Myeloid Leukemias (R Stone, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Acute Myeloid Leukemias

Abstract

Our ability to interrogate a broad array of genetic alterations in myeloid neoplasm has increased significantly with the advance in next-generation sequencing (NGS). In addition to morphologic examination, flow cytometry, and cytogenetics, NGS-based testing can add additional information to the diagnostic workup. More than a dozen myeloid-focused NGS-based panels are now available from commercial and academic laboratories. In this review, we examine the content of these panels in the context of our current understanding of driver alterations in myeloid neoplasms. With improved turnaround time, decreasing costs, and an expanding knowledge of the therapeutic and prognostic significance of the detected variants, NGS-based panel testing is likely to play a major role in the management of patients with myeloid neoplasm in the coming decade.

Keywords

Next-generation sequencing Myeloid neoplasm Acute myeloid leukemia Myelodysplastic syndromes 

Notes

Compliance with Ethics Guidelines

Conflict of Interest

Dr. Frank C. Kuo and Dr. Fei Dong each declare no potential conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. 1.
    Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med. 1997;3:730–7.CrossRefPubMedGoogle Scholar
  2. 2.
    Wilson A, Trumpp A. Bone-marrow haematopoietic-stem-cell niches. Nat Rev Immunol. 2006;6:93–106.CrossRefPubMedGoogle Scholar
  3. 3.
    Shlush LI, Zandi S, Mitchell A, Chen WC, Brandwein JM, Gupta V, et al. Identification of pre-leukaemic haematopoietic stem cells in acute leukaemia. Nature. 2014;506:328–33.CrossRefPubMedGoogle Scholar
  4. 4.
    Cancer Genome Atlas Research Network. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N Engl J Med. 2013;368:2059–74.CrossRefGoogle Scholar
  5. 5.
    Steensma DP. The beginning of the end of the beginning in cancer genomics. N Engl J Med. 2013;368:2138–40.CrossRefPubMedGoogle Scholar
  6. 6.
    Duncavage EJ, Abel HJ, Szankasi P, Kelley TW, Pfeifer JD. Targeted next generation sequencing of clinically significant gene mutations and translocations in leukemia. Mod Pathol. 2012;25:795–804.CrossRefPubMedGoogle Scholar
  7. 7.
    OncoPlex [Internet]. Available from: http://tests.labmed.washington.edu/UW-OncoPlex.
  8. 8.
  9. 9.
    RHP URL [Internet]. Available from: http://bwhpathology.partners.org/rhp - camd.aspx.
  10. 10.
  11. 11.
    Quest myeloid panel [Internet]. Available from: http://education.questdiagnostics.com/faq/FAQ160.
  12. 12.
    ARUP myeloid [Internet]. Available from: http://ltd.aruplab.com/Tests/Pub/2011117.
  13. 13.
  14. 14.
  15. 15.
  16. 16.
  17. 17.
    Fulgent [Internet]. Available from: http://fulgentdiagnostics.com/test/cancer-2800/.
  18. 18.
  19. 19.
  20. 20.
    Rainedance [Internet]. Available from: http://raindancetech.com/thunderbolts-myeloid-panel/.
  21. 21.
    Trusight Myeloid [Internet]. Available from: http://www.illumina.com/products/trusight-myeloid.html.
  22. 22.
    Döhner K, Schlenk RF, Habdank M, Scholl C, Rücker FG, Corbacioglu A, et al. Mutant nucleophosmin (NPM1) predicts favorable prognosis in younger adults with acute myeloid leukemia and normal cytogenetics: interaction with other gene mutations. Blood. 2005;106:3740–6.CrossRefPubMedGoogle Scholar
  23. 23.
    Thiede C, Koch S, Creutzig E, Steudel C, Illmer T, Schaich M, et al. Prevalence and prognostic impact of NPM1 mutations in 1485 adult patients with acute myeloid leukemia (AML). Blood. 2006;107:4011–20.CrossRefPubMedGoogle Scholar
  24. 24.
    Falini B, Mecucci C, Tiacci E, Alcalay M, Rosati R, Pasqualucci L, et al. Cytoplasmic nucleophosmin in acute myelogenous leukemia with a normal karyotype. N Engl J Med. 2005;352:254–66.CrossRefPubMedGoogle Scholar
  25. 25.
    Nakao M, Yokota S, Iwai T, Kaneko H, Horiike S, Kashima K, et al. Internal tandem duplication of the flt3 gene found in acute myeloid leukemia. Leukemia. 1996;10:1911–8.PubMedGoogle Scholar
  26. 26.
    Kottaridis PD, Gale RE, Frew ME, Harrison G, Langabeer SE, Belton AA, et al. The presence of a FLT3 internal tandem duplication in patients with acute myeloid leukemia (AML) adds important prognostic information to cytogenetic risk group and response to the first cycle of chemotherapy: analysis of 854 patients from the United Kingdom Medical Research Council AML 10 and 12 trials. Blood. 2001;98:1752–9.CrossRefPubMedGoogle Scholar
  27. 27.
    Paschka P, Marcucci G, Ruppert AS, Mrózek K, Chen H, Kittles RA, et al. Adverse prognostic significance of KIT mutations in adult acute myeloid leukemia with inv(16) and t(8;21): a Cancer and Leukemia Group B study. J Clin Oncol. 2006;24:3904–11.CrossRefPubMedGoogle Scholar
  28. 28.
    Care RS, Valk PJM, Goodeve AC, Abu-Duhier FM, Geertsma-Kleinekoort WMC, Wilson GA, et al. Incidence and prognosis of c-KIT and FLT3 mutations in core binding factor (CBF) acute myeloid leukaemias. Br J Haematol. 2003;121:775–7.CrossRefPubMedGoogle Scholar
  29. 29.
    Yamamoto Y, Kiyoi H, Nakano Y, Suzuki R, Kodera Y, Miyawaki S, et al. Activating mutation of D835 within the activation loop of FLT3 in human hematologic malignancies. Blood. 2001;97:2434–9.CrossRefPubMedGoogle Scholar
  30. 30.
    Abu-Duhier FM, Goodeve AC, Wilson GA, Care RS, Peake IR, Reilly JT. Identification of novel FLT-3 Asp835 mutations in adult acute myeloid leukaemia. Br J Haematol. 2001;113:983–8.CrossRefPubMedGoogle Scholar
  31. 31.
    Maxson JE, Gotlib J, Pollyea DA, Fleischman AG, Agarwal A, Eide CA, et al. Oncogenic CSF3R mutations in chronic neutrophilic leukemia and atypical CML. N Engl J Med. 2013;368:1781–90.CrossRefPubMedCentralPubMedGoogle Scholar
  32. 32.
    Kosmider O, Itzykson R, Chesnais V, Lasho T, Laborde R, Knudson R, et al. Mutation of the colony-stimulating factor-3 receptor gene is a rare event with poor prognosis in chronic myelomonocytic leukemia. Leukemia. 2013;27:1946–9.CrossRefPubMedGoogle Scholar
  33. 33.
    Gits J, van Leeuwen D, Carroll HP, Touw IP, Ward AC. Multiple pathways contribute to the hyperproliferative responses from truncated granulocyte colony-stimulating factor receptors. Leukemia. 2006;20:2111–8.CrossRefPubMedGoogle Scholar
  34. 34.
    Maxson JE, Luty SB, MacManiman JD, Abel ML, Druker BJ, Tyner JW. Ligand independence of the T618I mutation in the colony-stimulating factor 3 receptor (CSF3R) protein results from loss of O-linked glycosylation and increased receptor dimerization. J Biol Chem. 2014;289:5820–7.CrossRefPubMedCentralPubMedGoogle Scholar
  35. 35.
    Klampfl T, Gisslinger H, Harutyunyan AS, Nivarthi H, Rumi E, Milosevic JD, et al. Somatic mutations of calreticulin in myeloproliferative neoplasms. N Engl J Med. 2013;369:2379–90.CrossRefPubMedGoogle Scholar
  36. 36.
    Nangalia J, Massie CE, Baxter EJ, Nice FL, Gundem G, Wedge DC, et al. Somatic CALR mutations in myeloproliferative neoplasms with nonmutated JAK2. N Engl J Med. 2013;369:2391–405.CrossRefPubMedCentralPubMedGoogle Scholar
  37. 37.•
    Tefferi A, Guglielmelli P, Lasho TL, Rotunno G, Finke C, Mannarelli C, et al. CALR and ASXL1 mutations-based molecular prognostication in primary myelofibrosis: an international study of 570 patients. Leukemia. 2014;28:1494–500. This study looked at large numbers of patients with and without CALR mutations with very long follow-up and confirmed the clinical characteristics of the CALR-mutated group and showed the similar outcome between these groups.CrossRefPubMedGoogle Scholar
  38. 38.
    Ha JS, Kim YK. Calreticulin exon 9 mutations in myeloproliferative neoplasms. Ann Lab Med. 2015;31:22–7.CrossRefGoogle Scholar
  39. 39.
    Vannucchi AM, Rotunno G, Bartalucci N, Raugei G, Carrai V, Balliu M, et al. Calreticulin mutation-specific immunostaining in myeloproliferative neoplasms: pathogenetic insight and diagnostic value. Leukemia. 2014;28:1–29.CrossRefGoogle Scholar
  40. 40.
    Mardis ER, Ding L, Dooling DJ, Larson DE, McLellan MD, Chen K, et al. Recurring mutations found by sequencing an acute myeloid leukemia genome. N Engl J Med. 2009;361:1058–66.CrossRefPubMedCentralPubMedGoogle Scholar
  41. 41.
    Figueroa ME, Abdel-Wahab O, Lu C, Ward PS, Patel J, Shih A, et al. Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer Cell. 2010;18:553–67.CrossRefPubMedCentralPubMedGoogle Scholar
  42. 42.
    Delhommeau F, Dupont S, Della Valle V, James C, Trannoy S, Massé A, et al. Mutation in TET2 in myeloid cancers. N Engl J Med. 2009;360:2289–301.CrossRefPubMedGoogle Scholar
  43. 43.
    Metzeler KH, Maharry K, Radmacher MD, Mrózek K, Margeson D, Becker H, et al. TET2 mutations improve the new European LeukemiaNet risk classification of acute myeloid leukemia: a Cancer and Leukemia Group B study. J Clin Oncol. 2011;29:1373–81.CrossRefPubMedCentralPubMedGoogle Scholar
  44. 44.
    Chou WC, Chou SC, Liu CY, Chen CY, Hou HA, Kuo YY, et al. TET2 mutation is an unfavorable prognostic factor in acute myeloid leukemia patients with intermediate-risk cytogenetics. Blood. 2011;118:3803–10.CrossRefPubMedGoogle Scholar
  45. 45.
    Ley TJ, Ding L, Walter MJ, McLellan MD, Lamprecht T, Larson DE, et al. DNMT3A mutations in acute myeloid leukemia. N Engl J Med. 2010;363:2424–33.CrossRefPubMedCentralPubMedGoogle Scholar
  46. 46.
    Thol F, Damm F, Lüdeking A, Winschel C, Wagner K, Morgan M, et al. Incidence and prognostic influence of DNMT3A mutations in acute myeloid leukemia. J Clin Oncol. 2011;29:2889–96.CrossRefPubMedGoogle Scholar
  47. 47.
    Gelsi-Boyer V, Trouplin V, Adélaïde J, Bonansea J, Cervera N, Carbuccia N, et al. Mutations of polycomb-associated gene ASXL1 in myelodysplastic syndromes and chronic myelomonocytic leukaemia. Br J Haematol. 2009;145:788–800.CrossRefPubMedGoogle Scholar
  48. 48.
    Metzeler KH, Becker H, Maharry K, Radmacher MD, Kohlschmidt J, Mrózek K, et al. ASXL1 mutations identify a high-risk subgroup of older patients with primary cytogenetically normal AML within the ELN Favorable genetic category. Blood. 2011;118:6920–9.CrossRefPubMedCentralPubMedGoogle Scholar
  49. 49.
    Abdel-Wahab O, Adli M, LaFave LM, Gao J, Hricik T, Shih AH, et al. ASXL1 mutations promote myeloid transformation through loss of PRC2-mediated gene repression. Cancer Cell. 2012;22:180–93.CrossRefPubMedCentralPubMedGoogle Scholar
  50. 50.
    Piazza R, Valletta S, Winkelmann N, Redaelli S, Spinelli R, Pirola A, et al. Recurrent SETBP1 mutations in atypical chronic myeloid leukemia. 2013;45(1):18–24.Google Scholar
  51. 51.
    Makishima H, Yoshida K, Nguyen N, Przychodzen B, Sanada M, Okuno Y, et al. Somatic SETBP1 mutations in myeloid malignancies. Nat Genet. 2013;45:942–6.CrossRefPubMedCentralPubMedGoogle Scholar
  52. 52.
    Sakaguchi H, Okuno Y, Muramatsu H, Yoshida K, Shiraishi Y, Takahashi M, et al. Exome sequencing identifies secondary mutations of SETBP1 and JAK3 in juvenile myelomonocytic leukemia. Nat Genet. 2013;45:937–41.CrossRefPubMedGoogle Scholar
  53. 53.
    Meggendorfer M, Bacher U, Alpermann T, Haferlach C, Kern W, Gambacorti-Passerini C, et al. SETBP1 mutations occur in 9% of MDS/MPN and in 4% of MPN cases and are strongly associated with atypical CML, monosomy 7, isochromosome i(17)(q10), ASXL1 and CBL mutations. Leukemia. 2013;27:1852–60.CrossRefPubMedGoogle Scholar
  54. 54.
    Thol F, Suchanek KJ, Koenecke C, Stadler M, Platzbecker U, Thiede C, et al. SETBP1 mutation analysis in 944 patients with MDS and AML. Leukemia. 2013;27:2072–5.CrossRefPubMedGoogle Scholar
  55. 55.
    Damm F, Itzykson R, Kosmider O, Droin N, Renneville A, Chesnais V, et al. SETBP1 mutations in 658 patients with myelodysplastic syndromes, chronic myelomonocytic leukemia and secondary acute myeloid leukemias. Leukemia. 2013;27:1401–3.CrossRefPubMedGoogle Scholar
  56. 56.
    Schichman SA, Caligiuri MA, Gu Y, Strout MP, Canaani E, Bloomfield CD, et al. ALL-1 partial duplication in acute leukemia. Proc Natl Acad Sci U S A. 1994;91:6236–9.CrossRefPubMedCentralPubMedGoogle Scholar
  57. 57.
    Grossmann V, Tiacci E, Holmes AB, Kohlmann A, Martelli MP, Kern W, et al. Whole-exome sequencing identifies somatic mutations of BCOR in acute myeloid leukemia with normal karyotype. Blood. 2011;118:6153–63.CrossRefPubMedGoogle Scholar
  58. 58.
    Damm F, Chesnais V, Nagata Y, Yoshida K, Scourzic L, Okuno Y, et al. BCOR and BCORL1 mutations in myelodysplastic syndromes and related disorders. Blood. 2013;122:3169–77.CrossRefPubMedGoogle Scholar
  59. 59.
    Jankowska AM, Makishima H, Tiu RV, Szpurka H, Huang Y, Traina F, et al. Mutational spectrum analysis of chronic myelomonocytic leukemia includes genes associated with epigenetic regulation: UTX, EZH2, and DNMT3A. Blood. 2011;118:3932–41.CrossRefPubMedCentralPubMedGoogle Scholar
  60. 60.
    Van Haaften G, Dalgliesh GL, Davies H, Chen L, Bignell G, Greenman C, et al. Somatic mutations of the histone H3K27 demethylase gene UTX in human cancer. Nat Genet. 2009;41:521–3.CrossRefPubMedCentralPubMedGoogle Scholar
  61. 61.
    Haferlach C, Dicker F, Herholz H, Schnittger S, Kern W, Haferlach T. Mutations of the TP53 gene in acute myeloid leukemia are strongly associated with a complex aberrant karyotype. Leukemia. 2008;22:1539–41.CrossRefPubMedGoogle Scholar
  62. 62.•
    Krauth M, Alpermann T, Bacher U, Eder C, Dicker F, Ulke M, et al. WT1 mutations are secondary events in AML, show varying frequencies and impact on prognosis between genetic subgroups. Leukemia. 2014. doi:  10.1038/leu.2014.243. This large study examined more than 3000 cases of AML and found WT1 mutations in 5 % of patients with independent adverse effect of EFS besides age and FLT3-ITD status.
  63. 63.
    Van Vlierberghe P, Patel J, Abdel-Wahab O, Lobry C, Hedvat CV, Balbin M, et al. PHF6 mutations in adult acute myeloid leukemia. Leukemia. 2011;25:130–4.CrossRefPubMedGoogle Scholar
  64. 64.
    Preudhomme C, Sagot C, Boissel N, Cayuela J-M, Tigaud I, de Botton S, et al. Favorable prognostic significance of CEBPA mutations in patients with de novo acute myeloid leukemia: a study from the Acute Leukemia French Association (ALFA). Blood. 2002;100:2717–23.CrossRefPubMedGoogle Scholar
  65. 65.
    Fröhling S, Schlenk RF, Stolze I, Bihlmayr J, Benner A, Kreitmeier S, et al. CEBPA mutations in younger adults with acute myeloid leukemia and normal cytogenetics: prognostic relevance and analysis of cooperating mutations. J Clin Oncol. 2004;22:624–33.CrossRefPubMedGoogle Scholar
  66. 66.
    Tang JL, Hou HA, Chen CY, Liu CY, Chou WC, Tseng MH, et al. AML1/RUNX1 mutations in 470 adult patients with de novo acute myeloid leukemia: prognostic implication and interaction with other gene alterations. Blood. 2009;114:5352–61.CrossRefPubMedGoogle Scholar
  67. 67.
    Gaidzik VI, Bullinger L, Schlenk RF, Zimmermann AS, Rock J, Paschka P, et al. RUNX1 mutations in acute myeloid leukemia: results from a comprehensive genetic and clinical analysis from the AML study group. J Clin Oncol. 2011;29:1364–72.CrossRefPubMedGoogle Scholar
  68. 68.
    Yoshida K, Sanada M, Shiraishi Y, Nowak D, Nagata Y, Yamamoto R, et al. Frequent pathway mutations of splicing machinery in myelodysplasia. Nature. 2011;478:64–9.CrossRefPubMedGoogle Scholar
  69. 69.
    Graubert TA, Shen D, Ding L, Okeyo-Owuor T, Lunn CL, Shao J, et al. Recurrent mutations in the U2AF1 splicing factor in myelodysplastic syndromes. Nat Genet. 2011;44:53–7.CrossRefPubMedCentralPubMedGoogle Scholar
  70. 70.
    Adamia S, Bar-Natan M, Haibe-Kains B, Pilarski PM, Bach C, Pevzner S, et al. NOTCH2 and FLT3 gene mis-splicings are common events in patients with acute myeloid leukemia (AML): new potential targets in AML. Blood. 2014;123:2816–25.CrossRefPubMedCentralPubMedGoogle Scholar
  71. 71.
    Brooks AN, Choi PS, De Waal L, Sharifnia T, Imielinski M, Saksena G, et al. A pan-cancer analysis of transcriptome changes associated with somatic mutations in U2AF1 reveals commonly altered splicing events. PLoS One. 2014;9(1)9-23.Google Scholar
  72. 72.
    Chen L, Kostadima M, Martens JHA, Canu G, Garcia SP, Turro E, et al. Transcriptional diversity during lineage commitment of human blood progenitors. Science. 2014;345(6204):1251033.CrossRefPubMedCentralPubMedGoogle Scholar
  73. 73.
    Papaemmanuil E, Cazzola M, Boultwood J, Malcovati L, Vyas P, Bowen D, et al. Somatic SF3B1 mutation in myelodysplasia with ring sideroblasts. N Engl J Med. 2011;365(15):1384–95.CrossRefPubMedCentralPubMedGoogle Scholar
  74. 74.
    Kon A, Shih L-Y, Minamino M, Sanada M, Shiraishi Y, Nagata Y, et al. Recurrent mutations in multiple components of the cohesin complex in myeloid neoplasms. Nat Genet. 2013;45:1232–7.CrossRefPubMedGoogle Scholar
  75. 75.
    Thol F, Bollin R, Gehlhaar M, Walter C, Dugas M, Suchanek KJ, et al. Mutations in the cohesin complex in acute myeloid leukemia: clinical and prognostic implications. Blood. 2014;123:914–20.CrossRefPubMedGoogle Scholar
  76. 76.•
    Lindsley RC, Mar BG, Mazzola E, Grauman PV, Shareef S, Allen SL, et al. Acute myeloid leukemia ontogeny is defined by distinct somatic mutations. Blood. 2014;2014-11-610543. The classification of AML into de novo, secondary and therapy-related depends on the availability of detailed clinical history and is sometimes subject. This study looks for genetic classifiers and identify SF3B1, U2AF1, ZRSR2, STAG2, ASXL1, EZH2, BCOR and SRSF2 as marker for secondary AML which included some AML previously thought to be de novo or therapy-related. Google Scholar
  77. 77.
    Rahul K, Borhane G, Jung Bok L, Claudia I, Hopkins MB. Pleiotropic roles of Notch signaling in normal, malignant, and developmental hematopoiesis in the human. EMBO Rep. 2014;15:1128–38.CrossRefGoogle Scholar
  78. 78.
    Wouters BJ, Jordà MA, Keeshan K, Louwers I, Erpelinck-Verschueren CAJ, Tielemans D, et al. Distinct gene expression profiles of acute myeloid/T-lymphoid leukemia with silenced CEBPA and mutations in NOTCH1. Blood. 2007;110:3706–14.CrossRefPubMedCentralPubMedGoogle Scholar
  79. 79.
    Gambacorti-Passerini C, Donadoni C, Parmiani A, Pirola A, Redaelli S, Signore G, et al. Recurrent ETNK1 mutations in atypical chronic myeloid leukemia. Blood. 2015;125:499–503.CrossRefPubMedGoogle Scholar
  80. 80.
    Yoda A, Adelmant G, Tamburini J, Chapuy B, Shindoh N, Yoda Y, et al. Mutations in G protein β subunits promote transformation and kinase inhibitor resistance. Nat Med. 2015;21:71–5.CrossRefPubMedGoogle Scholar
  81. 81.•
    Genovese G, Kähler AK, Handsaker RE, Lindberg J, Rose SA, Bakhoum SF, et al. Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence. N Engl J Med. 2014;371:2477–87. This and the previous studies looked at large cohort of individuals with no known hematologic abnormalities and found variants in genes known to be associated with myeloid neoplasm. The frequency and allele fractions of these alterations increase with age. It remains to be seen whether these alterations are “pre-neoplastic” or not.Google Scholar
  82. 82.•
    Jaiswal S, Fontanillas P, Flannick J, Manning A, Grauman PV, Mar BG, et al. Age-related clonal hematopoiesis associated with adverse outcomes. N Engl J Med. 2014;371:2488–98. This and the previous studies looked at large cohort of individuals with no known hematologic abnormalities and found variants in genes known to be associated with myeloid neoplasm. The frequency and allele fractions of these alterations increase with age. It remains to be seen whether these alterations are “pre-neoplastic” or not.CrossRefPubMedGoogle Scholar
  83. 83.
    Sakai H, Fujigaki H, Mazur SJ, Appella E. Wild-type p53-induced phosphatase 1 (Wip1) forestalls cellular premature senescence at physiological oxygen levels by regulating DNA damage response signaling during DNA replication. Cell Cycle. 2014;13:14.CrossRefGoogle Scholar
  84. 84.
    Zhang L, Chen LH, Wan H, Yang R, Wang Z, Feng J, et al. Exome sequencing identifies somatic gain-of-function PPM1D mutations in brainstem gliomas. Nat Genet. 2014;46:726–30.CrossRefPubMedCentralPubMedGoogle Scholar
  85. 85.
    Ruark E, Snape K, Humburg P, Loveday C, Bajrami I, Brough R, et al. Mosaic PPM1D mutations are associated with predisposition to breast and ovarian cancer. Nature. 2013;493:406–10.CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Center for Advanced Molecular Diagnostics, Department of PathologyBrigham and Women’s Hospital, Harvard Medical SchoolBostonUSA

Personalised recommendations