Current Hematologic Malignancy Reports

, Volume 9, Issue 4, pp 389–399

I Walk the Line: How to Tell MDS From Other Bone Marrow Failure Conditions

Myelodysplastic Syndromes (M Sekeres, Section Editor)

Abstract

Myelodysplastic syndromes (MDS) are clonal hematopoietic stem cell disorders characterized by peripheral cytopenias and ineffective hematopoiesis. MDS is an example of an age-related malignancy and its increasing prevalence and incidence can be attributed to a greater life expectancy in developed countries. Although frequently encountered in hematology/oncology clinics, MDS may constitute a diagnostic challenge especially with equivocal bone marrow morphology. Certain syndromes of bone marrow failure (BMF) may mimic MDS and formulating a correct diagnosis is vital for adequate prognostication as well as therapeutic approaches. Metaphase karyotyping (MK) is a very important diagnostic tool and marker of prognosis and can be an indicator of response to certain therapies. Unfortunately, chromosomal abnormalities may only be found in approximately 50 % of patients with MDS. In this review, we discuss the diagnostic approaches to patients with pancytopenia with a particular focus on the growing number of somatic mutations through new molecular testing.

Keywords

Bone marrow failure Myelodysplastic syndrome Aplastic anemia Large granular lymphocytosis Paroxysmal nocturnal hemoglobinuria Molecular markers SNP arrays Somatic mutations 

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Tefferi A, Vardiman JW. Myelodysplastic syndromes. NEngl J Med. 2009;361(19):1872–85.CrossRefGoogle Scholar
  2. 2.
    Young NS. Acquired bone marrow failure. Blood: principles and practice of hematology. Philadelphia: JB Lippincott; 1995.Google Scholar
  3. 3.
    Alter BP. Diagnosis, genetics, and management of inherited bone marrow failure syndromes. HematologyAmSocHematolEducProgram. 2007;29–39.Google Scholar
  4. 4.
    Whitman SP, Archer KJ, Feng L, Baldus C, Becknell B, Carlson BD, et al. Absence of the wild-type allele predicts poor prognosis in adult de novo acute myeloid leukemia with normal cytogenetics and the internal tandem duplication of FLT3: a cancer and leukemia group B study. Cancer Res. 2001;61(19):7233–9.PubMedGoogle Scholar
  5. 5.
    Swerdlow SH, Campo E, Harris NL, Jaffe E, Pileri SA, Stein H et al. WHO classification of tumours of the haematopoietic and lymphoid tissues. Lyon, France: International Agency for Research on Cancer (IARC); 2008.Google Scholar
  6. 6.•
    Malcovati L, Hellstrom-Lindberg E, Bowen D, Ades L, Cermak J, Del Canizo C, et al. Diagnosis and treatment of primary myelodysplastic syndromes in adults: recommendations from the European LeukemiaNet. Blood. 2013;122(17):2943–64. doi:10.1182/blood-2013-03-492884. This is a consensus report on diagnosis and treatment of MDS from European LeukemiaNet and provides a thorough review of the evidence through its publication date.PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Haase D, Germing U, Schanz J, Pfeilstocker M, Nosslinger T, Hildebrandt B, et al. New insights into the prognostic impact of the karyotype in MDS and correlation with subtypes: evidence from a core dataset of 2124 patients. Blood. 2007;110(13):4385–95. doi:10.1182/blood-2007-03-082404.PubMedCrossRefGoogle Scholar
  8. 8.
    Sole F, Luno E, Sanzo C, Espinet B, Sanz GF, Cervera J, et al. Identification of novel cytogenetic markers with prognostic significance in a series of 968 patients with primary myelodysplastic syndromes. Haematologica. 2005;90(9):1168–78.PubMedGoogle Scholar
  9. 9.
    Schanz J, Steidl C, Fonatsch C, Pfeilstocker M, Nosslinger T, Tuechler H, et al. Coalesced multicentric analysis of 2,351 patients with myelodysplastic syndromes indicates an underestimation of poor-risk cytogenetics of myelodysplastic syndromes in the international prognostic scoring system. J Clin Oncol. 2011;29(15):1963–70. doi:10.1200/JCO.2010.28.3978.PubMedCrossRefGoogle Scholar
  10. 10.
    Pierre RV, Hoagland HC. Age-associated aneuploidy: loss of Y chromosome from human bone marrow cells with aging. Cancer. 1972;30(4):889–94.PubMedCrossRefGoogle Scholar
  11. 11.
    Wiktor A, Rybicki BA, Piao ZS, Shurafa M, Barthel B, Maeda K, et al. Clinical significance of Y chromosome loss in hematologic disease. Genes Chromosomes Cancer. 2000;27(1):11–6.PubMedCrossRefGoogle Scholar
  12. 12.
    Naqvi K, Jabbour E, Bueso-Ramos C, Pierce S, Borthakur G, Estrov Z, et al. Implications of discrepancy in morphologic diagnosis of myelodysplastic syndrome between referral and tertiary care centers. Blood. 2011;118(17):4690–3. doi:10.1182/blood-2011-03-342642.PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Matsui WH, Brodsky RA, Smith BD, Borowitz MJ, Jones RJ. Quantitative analysis of bone marrow CD34 cells in aplastic anemia and hypoplastic myelodysplastic syndromes. Leukemia. 2006;20(3):458–62.PubMedCrossRefGoogle Scholar
  14. 14.
    Leung W, Chen AR, Klann RC, Moss TJ, Davis JM, Noga SJ, et al. Frequent detection of tumor cells in hematopoietic grafts in neuroblastoma and Ewing’s sarcoma. Bone Marrow Transplant. 1998;22(10):971–9. doi:10.1038/sj.bmt.1701471.PubMedCrossRefGoogle Scholar
  15. 15.
    Maciejewski JP, Mufti GJ. Whole genome scanning as a cytogenetic tool in hematologic malignancies. Blood. 2008;112(4):965–74. doi:10.1182/blood-2008-02-130435.PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.••
    Bejar R, Stevenson K, Abdel-Wahab O, Galili N, Nilsson B, Garcia-Manero G, et al. Clinical effect of point mutations in myelodysplastic syndromes. N Engl J Med. 2011;364(26):2496–506. doi:10.1056/NEJMoa1013343. This large study describes novel somatic mutations in MDS. Authors identified somatic mutations in a large cohort of 439 patients. Mutations in TP53, EZH2, ETV6, RUNX1, and ASXL1 were found to be predictors of poor overall survival independently of established risk factors.PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Tiu RV, Gondek LP, O’Keefe CL, Elson P, Huh J, Mohamedali A, et al. Prognostic impact of SNP array karyotyping in myelodysplastic syndromes and related myeloid malignancies. Blood. 2011;117(17):4552–60. doi:10.1182/blood-2010-07-295857.PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Shimamura A, Alter BP. Pathophysiology and management of inherited bone marrow failure syndromes. Blood Rev. 2010;24(3):101–22.PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Tsangaris E, Klaassen R, Fernandez CV, Yanofsky R, Shereck E, Champagne J, et al. Genetic analysis of inherited bone marrow failure syndromes from one prospective, comprehensive and population-based cohort and identification of novel mutations. J Med Genet. 2011;48(9):618–28. doi:10.1136/jmg.2011.089821.PubMedCrossRefGoogle Scholar
  20. 20.
    Vulliamy TJ, Walne A, Baskaradas A, Mason PJ, Marrone A, Dokal I. Mutations in the reverse transcriptase component of telomerase (TERT) in patients with bone marrow failure. Blood Cells Mol Dis. 2005;34(3):257–63. doi:10.1016/j.bcmd.2004.12.008.PubMedCrossRefGoogle Scholar
  21. 21.
    Du HY, Pumbo E, Ivanovich J, An P, Maziarz RT, Reiss UM, et al. TERC and TERT gene mutations in patients with bone marrow failure and the significance of telomere length measurements. Blood. 2009;113(2):309–16.PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Armanios M. Syndromes of telomere shortening. Annu Rev Genomics Hum Genet. 2009;10:45–61. doi:10.1146/annurev-genom-082908-150046.PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Calado RT, Cooper JN, Padilla-Nash HM, Sloand EM, Wu CO, Scheinberg P, et al. Short telomeres result in chromosomal instability in hematopoietic cells and precede malignant evolution in human aplastic anemia. Leukemia. 2012;26(4):700–7. doi:10.1038/leu.2011.272.PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Scheinberg P, Cooper JN, Sloand EM, Wu CO, Calado RT, Young NS. Association of telomere length of peripheral blood leukocytes with hematopoietic relapse, malignant transformation, and survival in severe aplastic anemia. JAMA. 2010;304(12):1358–64.PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Aubert G, Hills M, Lansdorp PM. Telomere length measurement-caveats and a critical assessment of the available technologies and tools. Mutat Res. 2012;730(1–2):59–67. doi:10.1016/j.mrfmmm.2011.04.003.PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Gadalla SM, Cawthon R, Giri N, Alter BP, Savage SA. Telomere length in blood, buccal cells, and fibroblasts from patients with inherited bone marrow failure syndromes. Aging (Albany NY). 2010;2(11):867–74.Google Scholar
  27. 27.
    Brummendorf TH, Maciejewski JP, Mak J, Young NS, Lansdorp PM. Telomere length in leukocyte subpopulations of patients with aplastic anemia. Blood. 2001;97(4):895–900.PubMedCrossRefGoogle Scholar
  28. 28.
    Calado RT, Young NS. Telomere diseases. NEngl J Med. 2009;361(24):2353–65.CrossRefGoogle Scholar
  29. 29.
    Poloni A, Serrani F, Berardinelli E, Maurizi G, Mariani M, Costantini B, et al. Telomere length, c-myc and mad-1 expression could represent prognosis markers of myelodysplastic syndrome. Leuk Res. 2013;37(11):1538–44. doi:10.1016/j.leukres.2013.07.022.PubMedCrossRefGoogle Scholar
  30. 30.
    Rollison DE, Epling-Burnette PK, Park JY, Lee JH, Park H, Jonathan K, et al. Telomere length in myelodysplastic syndromes. Leuk Lymphoma. 2011;52(8):1528–36. doi:10.3109/10428194.2011.568648.PubMedCrossRefGoogle Scholar
  31. 31.
    Barrett J, Saunthararajah Y, Molldrem J. Myelodysplastic syndrome and aplastic anemia: distinct entities or diseases linked by a common pathophysiology? Semin Hematol. 2000;37(1):15–29.PubMedCrossRefGoogle Scholar
  32. 32.
    Bennett JM, Orazi A. Diagnostic criteria to distinguish hypocellular acute myeloid leukemia from hypocellular myelodysplastic syndromes and aplastic anemia: recommendations for a standardized approach. Haematologica. 2009;94(2):264–8.PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Dameshek W. Riddle: what do aplastic anemia, paroxysmal nocturnal hemoglobinuria (PNH) and “hypoplastic” leukemia have in common? (Editorial). Blood. 1967;30(2):251–4.PubMedGoogle Scholar
  34. 34.
    Young NS. The problem of clonality in aplastic anemia: Dr. Dameshek’s riddle, restated. Blood. 1992;79:1385–92.PubMedGoogle Scholar
  35. 35.
    Afable 2nd MG, Wlodarski M, Makishima H, Shaik M, Sekeres MA, Tiu RV, et al. SNP array-based karyotyping: differences and similarities between aplastic anemia and hypocellular myelodysplastic syndromes. Blood. 2011;117(25):6876–84. doi:10.1182/blood-2010-11-314393.PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Woll PS, Kjallquist U, Chowdhury O, Doolittle H, Wedge DC, Thongjuea S, et al. Myelodysplastic syndromes are propagated by rare and distinct human cancer stem cells in vivo. Cancer Cell. 2014;25(6):794–808. doi:10.1016/j.ccr.2014.03.036.PubMedCrossRefGoogle Scholar
  37. 37.
    Della Porta MG, Malcovati L, Boveri E, Travaglino E, Pietra D, Pascutto C, et al. Clinical relevance of bone marrow fibrosis and CD34-positive cell clusters in primary myelodysplastic syndromes. J Clin Oncol. 2009;27(5):754–62. doi:10.1200/JCO.2008.18.2246.PubMedCrossRefGoogle Scholar
  38. 38.
    de Planque MM, van Krieken JH, Kluin-Nelemans HC, Colla LP, van der Burgh F, Brand A, et al. Bone marrow histopathology of patients with severe aplastic anaemia before treatment and at follow-up. Br J Haematol. 1989;72(3):439–44.PubMedCrossRefGoogle Scholar
  39. 39.
    Young NS, Maciejewski J. The pathology of acquired aplastic anemia. N Engl J Med. 1997;336(19):1365–72.PubMedCrossRefGoogle Scholar
  40. 40.
    Leguit RJ, van den Tweel JG. The pathology of bone marrow failure. Histopathology. 2010;57(5):655–70. doi:10.1111/j.1365-2559.2010.03612.x.PubMedCrossRefGoogle Scholar
  41. 41.
    Charles RJ, Sabo KM, Kidd PG, Abkowitz JL. The pathophysiology of pure red cell aplasia: implications for therapy. Blood. 1996;87(11):4831–8.PubMedGoogle Scholar
  42. 42.
    DeZern AE, Pu J, McDevitt MA, Jones RJ, Brodsky RA. Burst-forming unit-erythroid assays to distinguish cellular bone marrow failure disorders. Exp Hematol. 2013;41(9):808–16. doi:10.1016/j.exphem.2013.04.013.PubMedCentralPubMedCrossRefGoogle Scholar
  43. 43.
    Fureder W, Paulitsch-Buckingham A, Rabitsch W, Jager E, Schwarzinger I, Sperr WR, et al. Evaluation of treatment responses and colony-forming progenitor cells in 50 patients with aplastic anemia after immunosuppressive therapy or hematopoietic stem cell transplantation: a single-center experience. Wien Klin Wochenschr. 2014. doi:10.1007/s00508-013-0484-2.PubMedGoogle Scholar
  44. 44.
    Geissler K, Hinterberger W, Bettelheim P, Haas O, Lechner K. Colony growth characteristics in chronic myelomonocytic leukemia. Leuk Res. 1988;12(5):373–7.PubMedCrossRefGoogle Scholar
  45. 45.
    Jerez A, Clemente MJ, Makishima H, Koskela H, Leblanc F, Peng Ng K, et al. STAT3 mutations unify the pathogenesis of chronic lymphoproliferative disorders of NK cells and T-cell large granular lymphocyte leukemia. Blood. 2012;120(15):3048–57. doi:10.1182/blood-2012-06-435297.PubMedCentralPubMedCrossRefGoogle Scholar
  46. 46.
    Koskela HL, Eldfors S, Ellonen P, van Adrichem AJ, Kuusanmaki H, Andersson EI, et al. Somatic STAT3 mutations in large granular lymphocytic leukemia. N Engl J Med. 2012;366(20):1905–13. doi:10.1056/NEJMoa1114885.PubMedCentralPubMedCrossRefGoogle Scholar
  47. 47.
    Ishida F, Matsuda K, Sekiguchi N, Makishima H, Taira C, Momose K, et al. STAT3 gene mutations and their association with pure red cell aplasia in large granular lymphocyte leukemia. Cancer Sci. 2014;105(3):342–6. doi:10.1111/cas.12341.PubMedCrossRefGoogle Scholar
  48. 48.
    Saunthararajah Y, Molldrem JL, Rivera M, Williams A, Stetler-Stevenson M, Sorbara L, et al. Coincident myelodysplastic syndrome and T-cell large granular lymphocytic disease: clinical and pathophysiological features. Br J Haematol. 2001;112(1):195–200.PubMedCrossRefGoogle Scholar
  49. 49.••
    Greenberg PL, Tuechler H, Schanz J, Sanz G, Garcia-Manero G, Sole F, et al. Revised international prognostic scoring system (IPSS-R) for myelodysplastic syndromes. Blood. 2012. doi:10.1182/blood-2012-03-420489. This report instituted a new (revised) prognostic scoring system for MDS that is now being implemented in the clinical setting.Google Scholar
  50. 50.
    List A, Dewald G, Bennett J, Giagounidis A, Raza A, Feldman E, et al. Lenalidomide in the myelodysplastic syndrome with chromosome 5q deletion. N Engl J Med. 2006;355(14):1456–65.PubMedCrossRefGoogle Scholar
  51. 51.
    List A, Kurtin S, Roe DJ, Buresh A, Mahadevan D, Fuchs D, et al. Efficacy of lenalidomide in myelodysplastic syndromes. N Engl J Med. 2005;352(6):549–57.PubMedCrossRefGoogle Scholar
  52. 52.
    Gondek LP, Tiu R, O’Keefe CL, Sekeres MA, Theil KS, Maciejewski JP. Chromosomal lesions and uniparental disomy detected by SNP arrays in MDS, MDS/MPD, and MDS-derived AML. Blood. 2008;111(3):1534–42.PubMedCentralPubMedCrossRefGoogle Scholar
  53. 53.
    Mohamedali A, Gaken J, Twine NA, Ingram W, Westwood N, Lea NC, et al. Prevalence and prognostic significance of allelic imbalance by single-nucleotide polymorphism analysis in low-risk myelodysplastic syndromes. Blood. 2007;110(9):3365–73.PubMedCrossRefGoogle Scholar
  54. 54.
    Tiu RV, Gondek LP, O’Keefe CL, Huh J, Sekeres MA, Elson P, et al. New lesions detected by single nucleotide polymorphism array-based chromosomal analysis have important clinical impact in acute myeloid leukemia. J Clin Oncol. 2009;27(31):5219–26.PubMedCentralPubMedCrossRefGoogle Scholar
  55. 55.
    Kosmider O, Gelsi-Boyer V, Cheok M, Grabar S, Della-Valle V, Picard F, et al. TET2 mutation is an independent favorable prognostic factor in myelodysplastic syndromes (MDSs). Blood. 2009;114(15):3285–91. doi:10.1182/blood-2009-04-215814.PubMedCrossRefGoogle Scholar
  56. 56.
    Jankowska AM, Szpurka H, Tiu RV, Makishima H, Afable M, Huh J, et al. Loss of heterozygosity 4q24 and TET2 mutations associated with myelodysplastic/myeloproliferative neoplasms. Blood. 2009;113(25):6403–10.PubMedCentralPubMedCrossRefGoogle Scholar
  57. 57.
    Smith AE, Mohamedali AM, Kulasekararaj A, Lim Z, Gaken J, Lea NC, et al. Next-generation sequencing of the TET2 gene in 355 MDS and CMML patients reveals low-abundance mutant clones with early origins, but indicates no definite prognostic value. Blood. 2010;116(19):3923–32. doi:10.1182/blood-2010-03-274704.PubMedCrossRefGoogle Scholar
  58. 58.
    Busque L, Patel JP, Figueroa ME, Vasanthakumar A, Provost S, Hamilou Z, et al. Recurrent somatic TET2 mutations in normal elderly individuals with clonal hematopoiesis. Nat Genet. 2012;44(11):1179–81. doi:10.1038/ng.2413.PubMedCentralPubMedCrossRefGoogle Scholar
  59. 59.
    Ewalt M, Galili NG, Mumtaz M, Churchill M, Rivera S, Borot F, et al. DNMT3a mutations in high-risk myelodysplastic syndrome parallel those found in acute myeloid leukemia. Blood Cancer J. 2011;1(3):e9. doi:10.1038/bcj.2011.7.PubMedCentralPubMedCrossRefGoogle Scholar
  60. 60.
    Walter MJ, Ding L, Shen D, Shao J, Grillot M, McLellan M, et al. Recurrent DNMT3A mutations in patients with myelodysplastic syndromes. Leukemia. 2011;25(7):1153–8. doi:10.1038/leu.2011.44.PubMedCentralPubMedCrossRefGoogle Scholar
  61. 61.
    Shlush LI, Zandi S, Mitchell A, Chen WC, Brandwein JM, Gupta V, et al. Identification of pre-leukaemic haematopoietic stem cells in acute leukaemia. Nature. 2014;506(7488):328–33. doi:10.1038/nature13038.PubMedCrossRefGoogle Scholar
  62. 62.
    Itzykson R, Kosmider O, Fenaux P. Somatic mutations and epigenetic abnormalities in myelodysplastic syndromes. Best Pract Res Clin Haematol. 2013;26(4):355–64. doi:10.1016/j.beha.2014.01.001.PubMedCrossRefGoogle Scholar
  63. 63.
    Kosmider O, Gelsi-Boyer V, Slama L, Dreyfus F, Beyne-Rauzy O, Quesnel B, et al. Mutations of IDH1 and IDH2 genes in early and accelerated phases of myelodysplastic syndromes and MDS/myeloproliferative neoplasms. Leukemia. 2010;24(5):1094–6. doi:10.1038/leu.2010.52.PubMedCrossRefGoogle Scholar
  64. 64.
    Yoshida K, Sanada M, Kato M, Kawahata R, Matsubara A, Takita J, et al. A nonsense mutation of IDH1 in myelodysplastic syndromes and related disorders. Leukemia. 2011;25(1):184–6. doi:10.1038/leu.2010.241.PubMedCrossRefGoogle Scholar
  65. 65.
    Patnaik MM, Hanson CA, Hodnefield JM, Lasho TL, Finke CM, Knudson RA, et al. Differential prognostic effect of IDH1 versus IDH2 mutations in myelodysplastic syndromes: a Mayo Clinic study of 277 patients. Leukemia. 2012;26(1):101–5. doi:10.1038/leu.2011.298.PubMedCrossRefGoogle Scholar
  66. 66.
    Thol F, Weissinger EM, Krauter J, Wagner K, Damm F, Wichmann M, et al. IDH1 mutations in patients with myelodysplastic syndromes are associated with an unfavorable prognosis. Haematologica. 2010;95(10):1668–74. doi:10.3324/haematol.2010.025494.PubMedCentralPubMedCrossRefGoogle Scholar
  67. 67.
    Gelsi-Boyer V, Trouplin V, Adelaide J, Bonansea J, Cervera N, Carbuccia N, et al. Mutations of polycomb-associated gene ASXL1 in myelodysplastic syndromes and chronic myelomonocytic leukaemia. Br J Haematol. 2009;145(6):788–800. doi:10.1111/j.1365-2141.2009.07697.x.PubMedCrossRefGoogle Scholar
  68. 68.
    Gelsi-Boyer V, Trouplin V, Roquain J, Adelaide J, Carbuccia N, Esterni B, et al. ASXL1 mutation is associated with poor prognosis and acute transformation in chronic myelomonocytic leukaemia. Br J Haematol. 2010;151(4):365–75. doi:10.1111/j.1365-2141.2010.08381.x.PubMedCrossRefGoogle Scholar
  69. 69.•
    Haferlach T, Nagata Y, Grossmann V, Okuno Y, Bacher U, Nagae G, et al. Landscape of genetic lesions in 944 patients with myelodysplastic syndromes. Leukemia. 2014;28(2):241–7. doi:10.1038/leu.2013.336. Authors performed targeted sequencing of 104 genes in a large cohort of 944 patients with various subtypes of MDS. Somatic mutations were found in nearly 90 % of patients. Incorporation of somatic mutation status of 14 selected genes into existing risk factors improved overall survival prediction of IPSS-R scoring system.PubMedCentralPubMedCrossRefGoogle Scholar
  70. 70.
    Chen TC, Hou HA, Chou WC, Tang JL, Kuo YY, Chen CY, et al. Dynamics of ASXL1 mutation and other associated genetic alterations during disease progression in patients with primary myelodysplastic syndrome. Blood Cancer J. 2014;4:e177. doi:10.1038/bcj.2013.74.PubMedCentralPubMedCrossRefGoogle Scholar
  71. 71.
    Traina F, Visconte V, Elson P, Tabarroki A, Jankowska AM, Hasrouni E, et al. Impact of molecular mutations on treatment response to DNMT inhibitors in myelodysplasia and related neoplasms. Leukemia. 2014;28(1):78–87. doi:10.1038/leu.2013.269.PubMedCrossRefGoogle Scholar
  72. 72.
    Sugimoto Y, Sekeres MA, Makishima H, Traina F, Visconte V, Jankowska A, et al. Cytogenetic and molecular predictors of response in patients with myeloid malignancies without del[5q] treated with lenalidomide. J Hematol Oncol. 2012;5:4. doi:10.1186/1756-8722-5-4.PubMedCentralPubMedCrossRefGoogle Scholar
  73. 73.
    Fu Y, Schroeder T, Zabelina T, Badbaran A, Bacher U, Kobbe G, et al. Postallogeneic monitoring with molecular markers detected by pretransplant next-generation or Sanger sequencing predicts clinical relapse in patients with myelodysplastic/myeloproliferative neoplasms. Eur J Haematol. 2014;92(3):189–94. doi:10.1111/ejh.12223.PubMedCrossRefGoogle Scholar
  74. 74.
    Nikoloski G, Langemeijer SM, Kuiper RP, Knops R, Massop M, Tonnissen ER, et al. Somatic mutations of the histone methyltransferase gene EZH2 in myelodysplastic syndromes. Nat Genet. 2010;42(8):665–7. doi:10.1038/ng.620.PubMedCrossRefGoogle Scholar
  75. 75.
    Makishima H, Jankowska AM, Tiu RV, Szpurka H, Sugimoto Y, Hu Z, et al. Novel homo- and hemizygous mutations in EZH2 in myeloid malignancies. Leukemia. 2010;24(10):1799–804. doi:10.1038/leu.2010.167.PubMedCrossRefGoogle Scholar
  76. 76.••
    Bejar R, Stevenson KE, Caughey BA, Abdel-Wahab O, Steensma DP, Galili N, et al. Validation of a prognostic model and the impact of mutations in patients with lower-risk myelodysplastic syndromes. J Clin Oncol. 2012;30(27):3376–82. doi:10.1200/jco.2011.40.7379. Study involved 288 patients with low-risk MDS. The mutation status of 22 genes was assessed and incorporated into Low-Risk Prognostic Scoring System. EZH2 mutations identified in 29 % of patients with low-risk MDS was an adverse risk factor in a multivariable model.PubMedCentralPubMedCrossRefGoogle Scholar
  77. 77.••
    Papaemmanuil E, Cazzola M, Boultwood J, Malcovati L, Vyas P, Bowen D, et al. Somatic SF3B1 mutation in myelodysplasia with ring sideroblasts. N Engl J Med. 2011;365(15):1384–95. doi:10.1056/NEJMoa1103283. Authors described SF3B1 mutations in a large cohort of 354 patients with MDS. SF3B1 was mutated in 20 % of cases and was enriched for in patients with ring siderobalsts (65 %). Mutated SF3B1 was also found to be a favorable prognostic factor in MDS.PubMedCentralPubMedCrossRefGoogle Scholar
  78. 78.
    Yoshida K, Sanada M, Shiraishi Y, Nowak D, Nagata Y, Yamamoto R, et al. Frequent pathway mutations of splicing machinery in myelodysplasia. Nature. 2011;478(7367):64–9. doi:10.1038/nature10496.PubMedCrossRefGoogle Scholar
  79. 79.
    Graubert TA, Shen D, Ding L, Okeyo-Owuor T, Lunn CL, Shao J, et al. Recurrent mutations in the U2AF1 splicing factor in myelodysplastic syndromes. Nat Genet. 2012;44(1):53–7. doi:10.1038/ng.1031.CrossRefGoogle Scholar
  80. 80.
    Makishima H, Visconte V, Sakaguchi H, Jankowska AM, Abu Kar S, Jerez A, et al. Mutations in the spliceosome machinery, a novel and ubiquitous pathway in leukemogenesis. Blood. 2012;119(14):3203–10. doi:10.1182/blood-2011-12-399774.PubMedCentralPubMedCrossRefGoogle Scholar
  81. 81.
    Visconte V, Rogers HJ, Singh J, Barnard J, Bupathi M, Traina F, et al. SF3B1 haploinsufficiency leads to formation of ring sideroblasts in myelodysplastic syndromes. Blood. 2012;120(16):3173–86. doi:10.1182/blood-2012-05-430876.PubMedCentralPubMedCrossRefGoogle Scholar
  82. 82.
    Malcovati L, Papaemmanuil E, Bowen DT, Boultwood J, Della Porta MG, Pascutto C, et al. Clinical significance of SF3B1 mutations in myelodysplastic syndromes and myelodysplastic/myeloproliferative neoplasms. Blood. 2011;118(24):6239–46. doi:10.1182/blood-2011-09-377275.PubMedCentralPubMedCrossRefGoogle Scholar
  83. 83.
    Matsuda K, Ishida F, Ito T, Nakazawa H, Miura S, Taira C, et al. Spliceosome-related gene mutations in myelodysplastic syndrome can be used as stable markers for monitoring minimal residual disease during follow-up. Leuk Res. 2012;36(11):1393–7. doi:10.1016/j.leukres.2012.07.019.PubMedCrossRefGoogle Scholar
  84. 84.
    Harada Y, Harada H. Molecular mechanisms that produce secondary MDS/AML by RUNX1/AML1 point mutations. J Cell Biochem. 2011;112(2):425–32. doi:10.1002/jcb.22974.PubMedCrossRefGoogle Scholar
  85. 85.
    Song WJ, Sullivan MG, Legare RD, Hutchings S, Tan X, Kufrin D, et al. Haploinsufficiency of CBFA2 causes familial thrombocytopenia with propensity to develop acute myelogenous leukaemia. Nat Genet. 1999;23(2):166–75. doi:10.1038/13793.PubMedCrossRefGoogle Scholar
  86. 86.
    Sanada M, Suzuki T, Shih LY, Otsu M, Kato M, Yamazaki S, et al. Gain-of-function of mutated C-CBL tumour suppressor in myeloid neoplasms. Nature. 2009;460(7257):904–8.PubMedCrossRefGoogle Scholar
  87. 87.
    Makishima H, Cazzolli H, Szpurka H, Dunbar A, Tiu R, Huh J, et al. Mutations of e3 ubiquitin ligase cbl family members constitute a novel common pathogenic lesion in myeloid malignancies. J Clin Oncol. 2009;27(36):6109–16.PubMedCentralPubMedCrossRefGoogle Scholar
  88. 88.
    Al-Kali A, Quintas-Cardama A, Luthra R, Bueso-Ramos C, Pierce S, Kadia T, et al. Prognostic impact of RAS mutations in patients with myelodysplastic syndrome. Am J Hematol. 2013;88(5):365–9. doi:10.1002/ajh.23410.PubMedCentralPubMedCrossRefGoogle Scholar
  89. 89.
    Kon A, Shih LY, Minamino M, Sanada M, Shiraishi Y, Nagata Y, et al. Recurrent mutations in multiple components of the cohesin complex in myeloid neoplasms. Nat Genet. 2013;45(10):1232–7. doi:10.1038/ng.2731.PubMedCrossRefGoogle Scholar
  90. 90.
    Damm F, Itzykson R, Kosmider O, Droin N, Renneville A, Chesnais V, et al. SETBP1 mutations in 658 patients with myelodysplastic syndromes, chronic myelomonocytic leukemia and secondary acute myeloid leukemias. Leukemia. 2013;27(6):1401–3. doi:10.1038/leu.2013.35.PubMedCrossRefGoogle Scholar
  91. 91.
    Laborde RR, Patnaik MM, Lasho TL, Finke CM, Hanson CA, Knudson RA, et al. SETBP1 mutations in 415 patients with primary myelofibrosis or chronic myelomonocytic leukemia: independent prognostic impact in CMML. Leukemia. 2013;27(10):2100–2. doi:10.1038/leu.2013.97.PubMedCentralPubMedCrossRefGoogle Scholar
  92. 92.
    Piazza R, Valletta S, Winkelmann N, Redaelli S, Spinelli R, Pirola A, et al. Recurrent SETBP1 mutations in atypical chronic myeloid leukemia. Nat Genet. 2013;45(1):18–24. doi:10.1038/ng.2495.PubMedCentralPubMedCrossRefGoogle Scholar
  93. 93.
    Sakaguchi H, Okuno Y, Muramatsu H, Yoshida K, Shiraishi Y, Takahashi M, et al. Exome sequencing identifies secondary mutations of SETBP1 and JAK3 in juvenile myelomonocytic leukemia. Nat Genet. 2013;45(8):937–41. doi:10.1038/ng.2698.PubMedCrossRefGoogle Scholar
  94. 94.
    Thol F, Suchanek KJ, Koenecke C, Stadler M, Platzbecker U, Thiede C, et al. SETBP1 mutation analysis in 944 patients with MDS and AML. Leukemia. 2013;27(10):2072–5. doi:10.1038/leu.2013.145.PubMedCrossRefGoogle Scholar
  95. 95.
    Damm F, Chesnais V, Nagata Y, Yoshida K, Scourzic L, Okuno Y, et al. BCOR and BCORL1 mutations in myelodysplastic syndromes and related disorders. Blood. 2013;122(18):3169–77. doi:10.1182/blood-2012-11-469619.PubMedCrossRefGoogle Scholar
  96. 96.•
    Papaemmanuil E, Gerstung M, Malcovati L, Tauro S, Gundem G, Van Loo P, et al. Clinical and biological implications of driver mutations in myelodysplastic syndromes. Blood. 2013;122(22):3616–27. doi:10.1182/blood-2013-08-518886. Mutation analysis in 738 patients identified oncogenic mutations in nearly 80 % of patients with MDS. Subclonal analysis also revealed the set of candidate driver mutations leading to clonal evolution. Leukemia-free survival was closely related to the number of driver mutations and deteriorated as the number of driver mutations increased.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Oncology, Division of Hematological MalignanciesJohns Hopkins UniversityBaltimoreUSA
  2. 2.Department of Oncology, Division of Hematological MalignanciesJohns Hopkins UniversityBaltimoreUSA

Personalised recommendations