Current Hematologic Malignancy Reports

, Volume 9, Issue 2, pp 109–117

Novel Therapeutics in Acute Myeloid Leukemia

Acute Leukemias (F Ravandi, Section Editor)

Abstract

Acute myeloid leukemia (AML) is a heterogenous disease, and the standard treatment with cytotoxic chemotherapy has remained largely unchanged for over four decades. As more is being learned about AML and the potential molecular targets found within the leukemia cells, an abundance of targeted therapies are becoming available for study in the treatment of this challenging disease. This review serves to provide a brief overview of some of several agents currently being studied and developed in AML.

Keywords

Acute myeloid leukemia Cytotoxic chemotherapy Novel therapeutics Pharmacokinetically advantageous broad cytotoxics Heterogeneity 

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Yates JW, Wallace Jr HJ, Ellison RR, Holland JF. Cytosine arabinoside (NSC-63878) and daunorubicin (NSC-83142) therapy in acute nonlymphocytic leukemia. Cancer Chemother Rep. 1973;57(4):485–8.PubMedGoogle Scholar
  2. 2.
    Lowenberg B, Ossenkoppele GJ, van Putten W, et al. High-dose daunorubicin in older patients with acute myeloid leukemia. N Engl J Med. 2009;361(13):1235–48.PubMedCrossRefGoogle Scholar
  3. 3.
    •• Fernandez HF, Sun Z, Yao X, et al. Anthracycline dose intensification in acute myeloid leukemia. N Engl J Med. 2009;361(13):1249–59. This study showed a survival benefit with higher dose daunorubicin in younger patients Google Scholar
  4. 4.
    Lowenberg B, Pabst T, Vellenga E, et al. Cytarabine dose for acute myeloid leukemia. N Engl J Med. 2011;364(11):1027–36.PubMedCrossRefGoogle Scholar
  5. 5.
    Mayer RJ, Davis RB, Schiffer CA, et al. Intensive postremission chemotherapy in adults with acute myeloid leukemia. Cancer and Leukemia Group B. N Engl J Med. 1994;331(14):896–903.PubMedCrossRefGoogle Scholar
  6. 6.
    Byrd JC, Dodge RK, Carroll A, et al. Patients with t(8;21)(q22;q22) and acute myeloid leukemia have superior failure-free and overall survival when repetitive cycles of high-dose cytarabine are administered. J Clin Oncol. 1999;17(12):3767–75.PubMedGoogle Scholar
  7. 7.
    Wheatley D, Dutcher J, Wiernik P, et al. A systematic collaborative overview of randomized trials comparing idarubicin with daunorubicin (or other anthracyclines) as induction therapy for acute myeloid leukaemia. Br J Haematol. 1998;103(1):100–9.CrossRefGoogle Scholar
  8. 8.
    Byrd JC, Ruppert AS, Mrozek K, et al. Repetitive cycles of high-dose cytarabine benefit patients with acute myeloid leukemia and inv(16)(p13q22) or t(16;16)(p13;q22): results from CALGB 8461. J Clin Oncol. 2004;22(6):1087–94.PubMedCrossRefGoogle Scholar
  9. 9.
    Patel JP, Gönen M, Figueroa ME, et al. Prognostic Relevance of Integrated Genetic Profiling in Acute Myeloid Leukemia. N Engl J Med. 2012;366(12):1079–89.PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Smith CC, Shah NP. The role of kinase inhibitors in the treatment of patients with acute myeloid leukemia. Am Soc Clin Oncol Educ Book. 2013;2013:313–8.CrossRefGoogle Scholar
  11. 11.
    Marcucci G, Haferlach T, Dohner H. Molecular genetics of adult acute myeloid leukemia: prognostic and therapeutic implications. J Clin Oncol. 2011;29(5):475–86.PubMedCrossRefGoogle Scholar
  12. 12.
    Fathi AT, Chabner BA. FLT3 inhibition as therapy in acute myeloid leukemia: a record of trials and tribulations. Oncologist. 2011;16(8):1162–74.PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Small D, Levenstein M, Kim E, et al. STK-1, the human homolog of Flk-2/Flt-3, is selectively expressed in CD34+ human bone marrow cells and is involved in the proliferation of early progenitor/stem cells. Proc Natl Acad Sci U S A. 1994;91(2):459–63.PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Levis M, Allebach J, Tse KF, et al. A FLT3-targeted tyrosine kinase inhibitor is cytotoxic to leukemia cells in vitro and in vivo. Blood. 2002;99(11):3885–91.PubMedCrossRefGoogle Scholar
  15. 15.
    Mizuki M, Fenski R, Halfter H, et al. Flt3 mutations from patients with acute myeloid leukemia induce transformation of 32D cells mediated by the Ras and STAT5 pathways. Blood. 2000;96(12):3907–14.PubMedGoogle Scholar
  16. 16.
    Kottaridis PD, Gale RE, Frew ME, et al. The presence of a FLT3 internal tandem duplication in patients with acute myeloid leukemia (AML) adds important prognostic information to cytogenetic risk group and response to the first cycle of chemotherapy: analysis of 854 patients from the United Kingdom Medical Research Council AML 10 and 12 trials. Blood. 2001;98(6):1752–9.PubMedCrossRefGoogle Scholar
  17. 17.
    Gilliland DG, Griffin JD. The roles of FLT3 in hematopoiesis and leukemia. Blood. 2002;100(5):1532–42.PubMedCrossRefGoogle Scholar
  18. 18.
    Kiyoi H, Towatari M, Yokota S, et al. Internal tandem duplication of the FLT3 gene is a novel modality of elongation mutation which causes constitutive activation of the product. Leukemia. 1998;12(9):1333–7.PubMedCrossRefGoogle Scholar
  19. 19.
    Shih LY, Huang CF, Wu JH, et al. Internal tandem duplication of FLT3 in relapsed acute myeloid leukemia: a comparative analysis of bone marrow samples from 108 adult patients at diagnosis and relapse. Blood. 2002;100(7):2387–92.PubMedCrossRefGoogle Scholar
  20. 20.
    Pratz KW, Cortes J, Roboz GJ, et al. A pharmacodynamic study of the FLT3 inhibitor KW-2449 yields insight into the basis for clinical response. Blood. 2009;113(17):3938–46.PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Zhang W, Konopleva M, Shi Y-x, et al. Mutant FLT3: A Direct Target of Sorafenib in Acute Myelogenous Leukemia. J Natl Cancer Inst. 2008;100(3):184–98.PubMedCrossRefGoogle Scholar
  22. 22.
    Mori S, Cortes J, Kantarjian H, Zhang W, Andreef M, Ravandi F. Potential role of sorafenib in the treatment of acute myeloid leukemia. Leuk Lymphoma. 2008;49(12):2246–55.PubMedCrossRefGoogle Scholar
  23. 23.
    Zhang W, Konopleva M, Ruvolo VR, et al. Sorafenib induces apoptosis of AML cells via Bim-mediated activation of the intrinsic apoptotic pathway. Leukemia. 2008;22(4):808–18.PubMedCrossRefGoogle Scholar
  24. 24.
    Ravandi F, Cortes JE, Jones D, et al. Phase I/II Study of Combination Therapy With Sorafenib, Idarubicin, and Cytarabine in Younger Patients With Acute Myeloid Leukemia. J Clin Oncol. 2010;28(11):1856–62.PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Crump M, Hedley D, Kamel-Reid S, et al. A randomized phase I clinical and biologic study of two schedules of sorafenib in patients with myelodysplastic syndrome or acute myeloid leukemia: a NCIC (National Cancer Institute of Canada) Clinical Trials Group Study. Leuk Lymphoma. 2010;51(2):252–60.PubMedCrossRefGoogle Scholar
  26. 26.
    Man CH, Fung TK, Ho C, et al. Sorafenib treatment of FLT3-ITD + acute myeloid leukemia: favorable initial outcome and mechanisms of subsequent nonresponsiveness associated with the emergence of a D835 mutation. Blood. 2012;119(22):5133–43.PubMedCrossRefGoogle Scholar
  27. 27.
    Macdonald DA, Assouline SE, Brandwein J, et al. A phase I/II study of sorafenib in combination with low dose cytarabine in elderly patients with acute myeloid leukemia or high-risk myelodysplastic syndrome from the National Cancer Institute of Canada Clinical Trials Group: trial IND.186. Leuk Lymphoma. 2013;54(4):760–6.PubMedCrossRefGoogle Scholar
  28. 28.
    Ravandi F, Alattar ML, Grunwald MR, et al. Phase 2 study of azacytidine plus sorafenib in patients with acute myeloid leukemia and FLT-3 internal tandem duplication mutation. Blood. 2013;121(23):4655–62.PubMedCrossRefGoogle Scholar
  29. 29.
    Serve H, Krug U, Wagner R, et al. Sorafenib in Combination With Intensive Chemotherapy in Elderly Patients With Acute Myeloid Leukemia: Results From a Randomized, Placebo-Controlled Trial. J Clin Oncol. 2013;31(25):3110–18.Google Scholar
  30. 30.
    Al-Kali A, Cortes J, Faderl S, et al. Patterns of Molecular Response to and Relapse After Combination of Sorafenib, Idarubicin, and Cytarabine in Patients With FLT3 Mutant Acute Myeloid Leukemia. Clinical Lymphoma Myeloma Leuk. 2011;11(4):361–6.CrossRefGoogle Scholar
  31. 31.
    Rollig C, Muller-Tidow C, Huttmann A, et al. Sorafenib Versus Placebo in Addition to Standard Therapy in Adult Patients >=60 Years with Newly Diagnosed Acute Myeloid Leukemia: Results From the Randomized-Controlled Soraml Trial. ASH Annu Meet Abstr. 2012;120(21):144.Google Scholar
  32. 32.
    Yi CYA, Cortes J, Faderl S, et al. Final Report of Combination of Sorafenib, Idarubicin, and Cytarabine for Initial Therapy in Younger Patients with Acute Myeloid Leukemia. ASH Annu Meet Abstr. 2012;120(21):1516.Google Scholar
  33. 33.
    Levis M, Pham R, Smith BD, Small D. In vitro studies of a FLT3 inhibitor combined with chemotherapy: sequence of administration is important to achieve synergistic cytotoxic effects. Blood. 2004;104(4):1145–50.PubMedCrossRefGoogle Scholar
  34. 34.
    Stone RM, DeAngelo DJ, Klimek V, et al. Patients with acute myeloid leukemia and an activating mutation in FLT3 respond to a small-molecule FLT3 tyrosine kinase inhibitor, PKC412. Blood. 2005;105(1):54–60.PubMedCrossRefGoogle Scholar
  35. 35.
    Fischer T, Stone RM, DeAngelo DJ, et al. Phase IIB Trial of Oral Midostaurin (PKC412), the FMS-Like Tyrosine Kinase 3 Receptor (FLT3) and Multi-Targeted Kinase Inhibitor, in Patients With Acute Myeloid Leukemia and High-Risk Myelodysplastic Syndrome With Either Wild-Type or Mutated FLT3. J Clin Oncol. 2010;28(28):4339–45.PubMedCrossRefGoogle Scholar
  36. 36.
    Williams CB, Kambhampati S, Fiskus W, et al. Preclinical and Phase I Results of Decitabine in Combination with Midostaurin (PKC412) for Newly Diagnosed Elderly or Relapsed/Refractory Adult Patients with Acute Myeloid Leukemia. Pharmacother: J Hum Pharmacol Drug Ther. 2013;33(12)1341–52. Google Scholar
  37. 37.
    Nazha A, Kantarjian HM, Borthakur G, et al. A Phase I/II Trial of Combination of Midostaurin (PKC412) and 5-Azacytidine (5-AZA) for the Treatment of Patients with Refractory or Relapsed (R/R) Acute Myeloid Leukemia (AML) and Myelodysplastic Syndrome (MDS). ASH Annu Meet Abstr. 2012;120(21):3587.Google Scholar
  38. 38.
    Stone RM, Fischer T, Paquette R, et al. Phase IB study of the FLT3 kinase inhibitor midostaurin with chemotherapy in younger newly diagnosed adult patients with acute myeloid leukemia. Leukemia. 2012;26(9):2061–8.PubMedCrossRefGoogle Scholar
  39. 39.
    Zarrinkar PP, Gunawardane RN, Cramer MD, et al. AC220 is a uniquely potent and selective inhibitor of FLT3 for the treatment of acute myeloid leukemia (AML). Blood. 2009;114(14):2984–92.PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    • Levis MJ, Perl AE, Dombret H, et al. Final Results of a Phase 2 Open-Label, Monotherapy Efficacy and Safety Study of Quizartinib (AC220) in Patients with FLT3-ITD Positive or Negative Relapsed/Refractory Acute Myeloid Leukemia After Second-Line Chemotherapy or Hematopoietic Stem Cell Transplantation. ASH Annu Meet Abstr. 2012;120(21):673. This study showed good responses with Quizartinib which is the most potent FLT3 inhibitor Google Scholar
  41. 41.
    Martinelli G, Perl AE, Dombret H, et al. Effect of quizartinib (AC220) on response rates and long-term survival in elderly patients with FLT3-ITD positive or negative relapsed/refractory acute myeloid leukemia. ASCO Meet Abstr. 2013;31(15_suppl):7021.Google Scholar
  42. 42.
    Perl AE, Dohner H, Rousselot PH, et al. Efficacy and safety of quizartinib (AC220) in patients age >= 70 years with FLT3-ITD positive or negative relapsed/refractory acute myeloid leukemia (AML). ASCO Meet Abstr. 2013;31(15_suppl):7023.Google Scholar
  43. 43.
    Schöffski P, Awada A, Dumez H, et al. A phase I, dose-escalation study of the novel Polo-like kinase inhibitor volasertib (BI 6727) in patients with advanced solid tumours. Eur J Cancer. 2012;48(2):179–86.PubMedCrossRefGoogle Scholar
  44. 44.
    Bug G, Muller-Tidow C, Schlenk RF, et al. Phase I/II Study of Volasertib (BI 6727), An Intravenous Polo-Like Kinase (Plk) Inhibitor, in Patients with Acute Myeloid Leukemia (AML): Updated Results of the Dose Finding Phase I Part for Volasertib in Combination with Low-Dose Cytarabine (LD-Ara-C) and As Monotherapy in Relapsed/Refractory AML. ASH Annu Meet Abstr. 2011;118(21):1549.Google Scholar
  45. 45.
    Maertens J, Lubbert M, Fiedler W, et al. Phase I/II Study of Volasertib (BI 6727), an Intravenous Polo-Like Kinase (Plk) Inhibitor, in Patients with Acute Myeloid Leukemia (AML): Results From the Randomized Phase II Part for Volasertib in Combination with Low-Dose Cytarabine (LDAC) Versus LDAC Monotherapy in Patients with Previously Untreated AML Ineligible for Intensive Treatment. ASH Annu Meet Abstr. 2012;120(21):411.Google Scholar
  46. 46.
    Karp JE, Smith BD, Levis MJ, et al. Sequential Flavopiridol, Cytosine Arabinoside, and Mitoxantrone: A Phase II Trial in Adults with Poor-Risk Acute Myelogenous Leukemia. Clin Cancer Res. 2007;13(15):4467–73.PubMedCrossRefGoogle Scholar
  47. 47.
    Karp JE, Passaniti A, Gojo I, et al. Phase I and phar-macokinetic study of flavopiridol followed by 1-beta-D-arabinofuranosylcytosine and mitoxantrone in relapsed and refractory adult acute leukemias. Clin Cancer Res. 2005;11(23):8403–12.Google Scholar
  48. 48.
    • Karp JE, Blackford A, Smith BD, et al. Clinical activity of sequential flavopiridol, cytosine arabinoside, and mitoxantrone for adults with newly diagnosed, poor-risk acute myelogenous leukemia. Leuk Res. 2010;34(7):877–82. This study showed good responses in FLT3 mutated patients with FLAM Google Scholar
  49. 49.
    Zeidner JF, Gerber JM, Blackford A, et al. Randomized Phase II Trial of Timed-Sequential Therapy (TST) with Flavopiridol (Alvocidib), Ara-C and Mitoxantrone (FLAM) Versus "7+3" for Adults Ages 70 Years and Under with Newly Diagnosed Acute Myeloid Leukemia (AML). ASH Annu Meet Abstr. 2012;120(21):47.Google Scholar
  50. 50.
    Lancet JE, Ravandi F, Ricklis RM, et al. A phase Ib study of vosaroxin, an anticancer quinolone derivative, in patients with relapsed or refractory acute leukemia. Leukemia. 2011;25(12):1808–14.PubMedCrossRefGoogle Scholar
  51. 51.
    Hawtin RE, Stockett DE, Byl JA, et al. Voreloxin is an anticancer quinolone derivative that intercalates DNA and poisons topoisomerase II. PLoS One. 2010;5(4):e10186.PubMedCentralPubMedCrossRefGoogle Scholar
  52. 52.
    Scatena CD, Kumer JL, Arbitrario JP, et al. Voreloxin, a first-in-class anticancer quinolone derivative, acts synergistically with cytarabine in vitro and induces bone marrow aplasia in vivo. Cancer Chemother Pharmacol. 2010;66(5):881–8.PubMedCentralPubMedCrossRefGoogle Scholar
  53. 53.
    Roboz GJ, Lancet JE, Cripe LD, et al. Final results of a phase II pharmacokinetic/pharmacodynamic (PK/PD) study of combination voreloxin and cytarabine in patients with relapsed or refractory acute myeloid leukemia. ASCO Meet Abstr. 2010;28(15_suppl):6526.Google Scholar
  54. 54.
    Stuart RK, Ravandi Kashani F, Cripe LD, et al. Voreloxin single-agent treatment of older patients (60 years or older) with previously untreated acute myeloid leukemia: Final results from a phase II study with three schedules. ASCO Meet Abstr. 2010;28(15_suppl):6525.Google Scholar
  55. 55.
    Lancet JE, Roboz GJ, Cripe LD, et al. Phase 1b/2 Pharmacokinetic/Pharmacodynamic (PK/PD) Study of Combination Voreloxin and Cytarabine in Relapsed or Refractory Acute Myeloid Leukemia Patients. ASH Annu Meet Abstr. 2009;114(22):635.Google Scholar
  56. 56.
    Freeman C, Keane N, Swords R, Giles F. Vosaroxin: a new valuable tool with the potential to replace anthracyclines in the treatment of AML? Expert Opin Pharmacother. 2013;14(10):1417–27.PubMedCrossRefGoogle Scholar
  57. 57.
    Giles FJ, Vey N, Rizzieri D, et al. Phase I and pharmacokinetic study of elacytarabine, a novel 5'-elaidic acid derivative of cytarabine, in adults with refractory hematological malignancies. Leukemia. 2012;26(7):1686–9.PubMedCrossRefGoogle Scholar
  58. 58.
    Giles F, Rizzieri D, Ravandi F, Swords R, Jacobsen TF, O'Brien S. Elacytarabine, a novel 5'-elaidic acid derivative of cytarabine, and idarubicin combination is active in refractory acute myeloid leukemia. Leuk Res. 2012;36(4):e71–3.PubMedCrossRefGoogle Scholar
  59. 59.
    O'Brien S, Rizzieri DA, Vey N, et al. Elacytarabine has single-agent activity in patients with advanced acute myeloid leukaemia. Br J Haematol. 2012;158(5):581–8.PubMedCrossRefGoogle Scholar
  60. 60.
    Dinardo CD, O'Brien S, Gandhi VV, Ravandi F. Elacytarabine (CP-4055) in the treatment of acute myeloid leukemia. Future Oncol. 2013;9(8):1073–82.PubMedCrossRefGoogle Scholar
  61. 61.
    Adams DJ, Sandvold ML, Myhren F, Jacobsen TF, Giles F, Rizzieri DA. Anti proliferative activity of ELACY (CP-4055) in combination with cloretazine (VNP40101M), idarubicin, gemcitabine, irinotecan and topotecan in human leukemia and lymphoma cells. Leuk Lymphoma. 2008;49(4):786–97.PubMedCentralPubMedCrossRefGoogle Scholar
  62. 62.
    Bergman AM, Kuiper CM, Voorn DA, et al. Antiproliferative activity and mechanism of action of fatty acid derivatives of arabinofuranosylcytosine in leukemia and solid tumor cell lines. Biochem Pharmacol. 2004;67(3):503–11.PubMedCrossRefGoogle Scholar
  63. 63.
    Rizzieri DA, Vey N, Thomas X, et al. A Phase II Study of Elacytarabine/Idarubicin As Second Course Remission-Induction in Patients with Acute Myeloid Leukemia Who Failed Cytarabine/Anthracycline. ASH Annu Meet Abstr. 2012;120(21):46.Google Scholar
  64. 64.
    Russell NH. Improving outcomes for elderly patients with AML. Lancet Oncol. 2012;13(11):1065–6.PubMedCrossRefGoogle Scholar
  65. 65.
    •• Kantarjian H, Faderl S, Garcia-Manero G, et al. Oral sapacitabine for the treatment of acute myeloid leukaemia in elderly patients: a randomised phase 2 study. Lancet Oncol. 2012;13(11):1096–104. This study showed good ORR and tolerability in elderly patients with AML Google Scholar
  66. 66.
    Kantarjian H, Garcia-Manero G, O'Brien S, et al. Phase I Clinical and Pharmacokinetic Study of Oral Sapacitabine in Patients With Acute Leukemia and Myelodysplastic Syndrome. J Clin Oncol. 2010;28(2):285–91.PubMedCentralPubMedCrossRefGoogle Scholar
  67. 67.
    Ravandi F, Faderl S, Cortes JE, et al. Phase I/II study of sapacitabine and decitabine administered sequentially in elderly patients with newly diagnosed acute myeloid leukemia. ASCO Meet Abstr. 2011;29(15_suppl):6587.Google Scholar
  68. 68.
    Tardi P, Johnstone S, Harasym N, et al. In vivo maintenance of synergistic cytarabine:daunorubicin ratios greatly enhances therapeutic efficacy. Leuk Res. 2009;33(1):129–39.PubMedCrossRefGoogle Scholar
  69. 69.
    Feldman EJ, Lancet JE, Kolitz JE, et al. First-In-Man Study of CPX-351: A Liposomal Carrier Containing Cytarabine and Daunorubicin in a Fixed 5:1 Molar Ratio for the Treatment of Relapsed and Refractory Acute Myeloid Leukemia. J Clin Oncol. 2011;29(8):979–85.PubMedCrossRefGoogle Scholar
  70. 70.
    Feldman EJ, Kolitz JE, Trang JM, et al. Pharmacokinetics of CPX-351; a nano-scale liposomal fixed molar ratio formulation of cytarabine:daunorubicin, in patients with advanced leukemia. Leuk Res. 2012;36(10):1283–9.PubMedCrossRefGoogle Scholar
  71. 71.
    Cortes JE, Feldman EJ, Goldberg SL, et al. CPX-351: A Randomized Phase 2b Study of CPX-351 v. Intensive Salvage Therapy in '65 Yo First Relapse AML Patients: Initial Efficacy and Safety Report. ASH Annu Meet Abstr. 2011;118(21):254.Google Scholar
  72. 72.
    • Lancet JE, Cortes JE, Kovacsovics T, et al. CPX-351 Is Effective in Newly Diagnosed Older Patients with AML and with Multiple Risk Factors. ASH Annu Meet Abstr. 2012;120(21):3626. This study showed good ORR in patients with secondary AML Google Scholar
  73. 73.
    Rowe JM, Löwenberg B. Gemtuzumab ozogamicin in acute myeloid leukemia: a remarkable saga about an active drug. Blood. 2013;121(24):4838–41.PubMedCrossRefGoogle Scholar
  74. 74.
    Petersdorf SH, Kopecky KJ, Slovak M, et al. A phase 3 study of gemtuzumab ozogamicin during induction and postconsolidation therapy in younger patients with acute myeloid leukemia. Blood. 2013;121(24):4854–60.PubMedCrossRefGoogle Scholar
  75. 75.
    Larson RA, Sievers EL, Stadtmauer EA, et al. Final report of the efficacy and safety of gemtuzumab ozogamicin (Mylotarg) in patients with CD33-positive acute myeloid leukemia in first recurrence. Cancer. 2005;104(7):1442–52.PubMedCrossRefGoogle Scholar
  76. 76.
    Burnett AK, Russell NH, Hills RK, et al. Addition of Gemtuzumab Ozogamicin to Induction Chemotherapy Improves Survival in Older Patients With Acute Myeloid Leukemia. J Clin Oncol. 2012;30(32):3924–31.PubMedCrossRefGoogle Scholar
  77. 77.
    Castaigne S, Pautas C, Terre C, et al. Fractionated Doses of Gemtuzumab Ozogamicin (GO) Combined to Standard Chemotherapy (CT) Improve Event-Free and Overall Survival in Newly-Diagnosed De Novo AML Patients Aged 50-70 Years Old: A Prospective Randomized Phase 3 Trial From the Acute Leukemia French Association (ALFA). ASH Annu Meet Abstr. 2011;118(21):6.Google Scholar
  78. 78.
    Hills RK, Petersdorf S, Estey EH, et al. The Addition Of Gemtuzumab Ozogamicin (GO) To Induction Chemotherapy Reduces Relapse and Improves Survival In Patients Without Adverse Risk Karyotype: Results Of An Individual Patient Meta-Analysis Of The Five Randomised Trials. Blood. 2013;122(21):356.Google Scholar
  79. 79.
    Sekeres MA, Lancet JE, Wood BL, et al. Randomized, phase IIb study of low-dose cytarabine and lintuzumab versus low-dose cytarabine and placebo in older adults with untreated acute myeloid leukemia. Haematologica. 2013;98(1):119–28.PubMedCentralPubMedCrossRefGoogle Scholar
  80. 80.
    Kung Sutherland MS, Walter RB, Jeffrey SC, et al. SGN-CD33A: a novel CD33-targeting antibody–drug conjugate using a pyrrolobenzodiazepine dimer is active in models of drug-resistant AML. Blood. 2013;122(8):1455–63.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.TampaUSA

Personalised recommendations