Current Hematologic Malignancy Reports

, Volume 7, Issue 1, pp 57–64

Role of TET2 Mutations in Myeloproliferative Neoplasms

Myeloproliferative Neoplasms (JJ Kiladjian, Section Editor)


Recently, 5-hydroxymethylcytosine (5-hmC), the 6th base of DNA, was discovered as the product of the hydroxylation of 5-methylcytosine (5-mC) by the ten-eleven translocation (TET) oncogene family members. One of them, TET oncogene family member 2 (TET2), is mutated in a variety of myeloid malignancies, including in 15% of myeloproliferative neoplasms (MPNs). Recent studies tried to go further into the biological and epigenetic function of TET2 protein and 5-hmC marks in the pathogenesis of myeloid malignancies. Although its precise function remains partially unknown, TET2 appears to be an important regulator of hematopoietic stem cell biology. In both mouse and human cells, its inactivation leads to a dramatic deregulation of hematopoiesis that ultimately triggers blood malignancies. Understanding this leukemogenic process will provide tools to develop new epigenetic therapies against blood cancers.


TET2 Mutations 5-hydroxymethylcytosine Myeloproliferative neoplasms Myeloid malignancies Hematopoietic stem cells Epigenetics Pathogenesis 

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Université Pierre et Marie Curie (Paris 6) Laboratoire d’Hématologie, Hôpital Saint-AntoineParisFrance
  2. 2.Institut National de la Santé et de la Recherche Médicale, UMR 1009, Institut Gustave RoussyUniversité Paris Sud (Paris 11)VillejuifFrance
  3. 3.Université Denis Diderot (Paris 7)ParisFrance

Personalised recommendations