Current Hematologic Malignancy Reports

, Volume 4, Issue 4, pp 202–210

Prognostic factors in low-grade non-Hodgkin lymphomas

  • Massimo Federico
  • Stefano Molica
  • Monica Bellei
  • Stefano Luminari


Low-grade non-Hodgkin lymphomas were once considered as a heterogenous group of lymphomas characterized by an indolent clinical course. Today, low-grade non-Hodgkin lymphomas are classified as a group of 10 distinct entities, each characterized by unique clinico biologic features. Follicular lymphoma, chronic lymphocytic leukemia/small lymphocytic lymphoma, lymphoplasmacytic lymphoma, and marginal zone lymphoma are the most-investigated subtypes. Several studies have been performed to identify prognostic factors specific for each subtype in an effort to help clinicians in treatment decisions. The field of biologically specific associated parameters holds great potential but requires more research and work to produce translational results.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Recommended Reading

  1. 1.
    Swerdlow SH, Campo E, Harris NL, et al.: WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues, edn 4. Lyon, France: International Agency for Research on Cancer; 2008.Google Scholar
  2. 2.
    Hiddemann W, Buske C, Dreyling M, et al.: Treatment strategies in follicular lymphomas: current status and future perspectives. J Clin Oncol 2005, 23:6394–6399.PubMedCrossRefGoogle Scholar
  3. 3.
    Hiddemann W, Kneba M, Dreyling M, et al.: Front-line therapy with rituximab added to the combination of cyclophosphamide, doxorubicin, vincristine and prednisone (CHOP) significantly improves the outcome of patients with advanced stage follicular lymphomas as compared to CHOP alone—results of a prospective randomized study of the German Low-Grade Lymphoma Study Group. Blood 2005, 106:3725–3732.PubMedCrossRefGoogle Scholar
  4. 4.
    Marcus R, Imrie K, Belch A, et al.: CVP chemotherapy plus rituximab compared with CVP as first-line treatment for advanced follicular lymphoma. Blood 2005, 105:1417–1423.PubMedCrossRefGoogle Scholar
  5. 5.
    van Oers MH, Klasa R, Marcus RE, et al.: Rituximab maintenance improves clinical outcome of relapsed/resistant follicular non-Hodgkin lymphoma in patients both with and without rituximab during induction: results of a prospective randomized phase 3 intergroup trial. Blood 2006, 108:3295–3301.PubMedCrossRefGoogle Scholar
  6. 6.
    Sacchi S, Pozzi S, Marcheselli L, et al.: Introduction of rituximab in front-line and salvage therapies has improved outcome of advanced-stage follicular lymphoma patients. Cancer 2007, 109:2077–2082.PubMedCrossRefGoogle Scholar
  7. 7.
    Cheson BD, Pfistner B, Juweid ME, et al.: Revised response criteria for malignant lymphoma. J Clin Oncol 2007, 25:579–586.PubMedCrossRefGoogle Scholar
  8. 8.
    The Non-Hodgkin’s Lymphoma Classification Project: A clinical evaluation of the International Lymphoma Study Group classification of non-Hodgkin’s lymphoma. Blood 1997, 89:3909–3918.Google Scholar
  9. 9.
    Luminari S, Cesaretti M, Rashid I, et al.: Incidence, clinical characteristics and survival of malignant lymphomas: a population-based study from a cancer registry in northern Italy. Hematol Oncol 2007, 25:189–197.PubMedCrossRefGoogle Scholar
  10. 10.
    Bosga-Bouwer AG, van Imhoff GW, Boonstra R, et al.: Follicular lymphoma grade 3B includes 3 cytogenetically defined subgroups with primary t(14;18), 3q27, or other translocations: t(14;18) and 3q27 are mutually exclusive. Blood 2003, 101:1149–1154.PubMedCrossRefGoogle Scholar
  11. 11.
    Koster A, Tromp HA, Raemaekers JM, et al.: The prognostic significance of the intra-follicular tumor cell proliferative rate in follicular lymphoma. Haematologica 2007, 92:184–190.PubMedCrossRefGoogle Scholar
  12. 12.
    Ezdinli EZ, Costello WG, Kucuk O, Berard CW: Effect of the degree of nodularity on the survival of patients with nodular lymphomas. J Clin Oncol 1987, 5:413–418.PubMedGoogle Scholar
  13. 13.
    Hicks EB, Rappaport H, Winter WJ: Follicular lymphoma; a re-evaluation of its position in the scheme of malignant lymphoma, based on a survey of 253 cases. Cancer 1956, 9:792–821.PubMedCrossRefGoogle Scholar
  14. 14.
    Hallek M, Cheson BD, Catovsky D, et al.: Guidelines for the diagnosis and treatment of chronic lymphocytic leukemia: a report from the International Workshop on Chronic Lymphocytic Leukemia updating the National Cancer Institute-Working Group 1996 guidelines. Blood 2008, 111:5446–5456.PubMedCrossRefGoogle Scholar
  15. 15.
    Klapper W, Hoster E, Rolver L, et al.: Tumor sclerosis but not cell proliferation or malignancy grade is a prognostic marker in advanced-stage follicular lymphoma: the German Low Grade Lymphoma Study Group. J Clin Oncol 2007, 25:3330–3336.PubMedCrossRefGoogle Scholar
  16. 16.
    Horsman DE, Okamoto I, Ludkovski O, et al.: Follicular lymphoma lacking the t(14;18)(q32;q21): identification of two disease subtypes. Br J Haematol 2003, 120:424–433.PubMedCrossRefGoogle Scholar
  17. 17.
    Lopez-Guillermo A, Cabanillas F, McLaughlin P, et al.: Molecular response assessed by PCR is the most important factor predicting failure-free survival in indolent follicular lymphoma: update of the MDACC series. Ann Oncol 2000, 11(Suppl 1):137–140.PubMedCrossRefGoogle Scholar
  18. 18.
    Ladetto M, De Marco F, Benedetti F, et al.: Prospective, multicenter randomized GITMO/IIL trial comparing intensive (R-HDS) versus conventional (CHOP-R) chemoimmunotherapy in high-risk follicular lymphoma at diagnosis: the superior disease control of R-HDS does not translate into an overall survival advantage. Blood 2008, 111:4004–4013.PubMedCrossRefGoogle Scholar
  19. 19.
    Tilly H, Rossi A, Stamatoullas A, et al.: Prognostic value of chromosomal abnormalities in follicular lymphoma. Blood 1994, 84:1043–1049.PubMedGoogle Scholar
  20. 20.
    O’shea D, O’Riain C, Taylor C, et al.: The presence of TP53 mutation at diagnosis of follicular lymphoma identifies a high-risk group of patients with shortened time to disease progression and poorer overall survival. Blood 2008, 112:3126–3129.PubMedCrossRefGoogle Scholar
  21. 21.
    O’shea D, O’Riain C, Gupta M, et al.: Regions of acquired uniparental disomy at diagnosis of follicular lymphoma are associated with both overall survival and risk of transformation. Blood 2009, 113:2298–2301.PubMedCrossRefGoogle Scholar
  22. 22.
    Glas AM, Kersten MJ, Delahaye LJ, et al.: Gene expression profiling in follicular lymphoma to assess clinical aggressiveness and to guide the choice of treatment. Blood 2005, 105:301–307.PubMedCrossRefGoogle Scholar
  23. 23.
    Dave SS, Wright G, Tan B, et al.: Prediction of survival in follicular lymphoma based on molecular features of tumor-infiltrating immune cells. N Engl J Med 2004, 351:2159–2169.PubMedCrossRefGoogle Scholar
  24. 24.
    Farinha P, Masoudi H, Skinnider BF, et al.: Analysis of multiple biomarkers shows that lymphoma-associated macrophage (LAM) content is an independent predictor of survival in follicular lymphoma (FL). Blood 2005, 106:2169–2174.PubMedCrossRefGoogle Scholar
  25. 25.
    Alvaro T, Lejeune M, Camacho FI, et al.: The presence of STAT1-positive tumor-associated macrophages and their relation to outcome in patients with follicular lymphoma. Haematologica 2006, 91:1605–1612.PubMedGoogle Scholar
  26. 26.
    Canioni D, Salles G, Mounier N, et al.: High numbers of tumor-associated macrophages have an adverse prognostic value that can be circumvented by rituximab in patients with follicular lymphoma enrolled onto the GELA-GOELAMS FL-2000 trial. J Clin Oncol 2008, 26:440–446.PubMedCrossRefGoogle Scholar
  27. 27.
    Taskinen M, Karjalainen-Lindsberg ML, Nyman H, et al.: A high tumor-associated macrophage content predicts favorable outcome in follicular lymphoma patients treated with rituximab and cyclophosphamide-doxorubicin-vincristine-prednisone. Clin Cancer Res 2007, 13:5784–5789.PubMedCrossRefGoogle Scholar
  28. 28.
    Alvaro T, Lejeune M, Salvado MT, et al.: Immunohistochemical patterns of reactive microenvironment are associated with clinicobiologic behavior in follicular lymphoma patients. J Clin Oncol 2006, 24:5350–5357.PubMedCrossRefGoogle Scholar
  29. 29.
    Taskinen M, Karjalainen-Lindsberg ML, Leppa S: Prognostic influence of tumor-infiltrating mast cells in patients with follicular lymphoma treated with rituximab and CHOP. Blood 2008, 111:4664–4667.PubMedCrossRefGoogle Scholar
  30. 30.
    Hilchey SP, Hyrien O, Mosmann TR, et al.: Rituximab immunotherapy results in the induction of a lymphoma idiotype-specific T-cell response in patients with follicular lymphoma: support for a “vaccinal effect” of rituximab. Blood 2009, 113:3809–3812.PubMedCrossRefGoogle Scholar
  31. 31.
    Federico M, Vitolo U, Zinzani PL, et al.: Prognosis of follicular lymphoma: a predictive model based on a retrospective analysis of 987 cases. Intergruppo Italiano Linfomi. Blood 2000, 95:783–789.PubMedGoogle Scholar
  32. 32.
    Solal-Celigny P, Roy P, Colombat P, et al.: Follicular lymphoma international prognostic index. Blood 2004, 104:1258–1265.PubMedCrossRefGoogle Scholar
  33. 33.
    Buske C, Hoster E, Dreyling M, et al.: The Follicular Lymphoma International Prognostic Index (FLIPI) separates high-risk from intermediate- or low-risk patients with advanced-stage follicular lymphoma treated front-line with rituximab and the combination of cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP) with respect to treatment outcome. Blood 2006, 108:1504–1508.PubMedCrossRefGoogle Scholar
  34. 34.
    Federico M, Bellei M, Marcheselli L, et al.: Follicular Lymphoma International Prognostic Index 2: a new prognostic index for follicular lymphoma developed by the International Follicular Lymphoma Prognostic Factor Project. J Clin Oncol 2009 Aug 3 (Epub ahead of print).Google Scholar
  35. 35.
    Landgren O, Tilly H: Epidemiology, pathology and treatment of non-follicular indolent lymphomas. Leuk Lymphoma 2008, 49(Suppl 1):35–42.PubMedCrossRefGoogle Scholar
  36. 36.
    Morrison WH, Hoppe RT, Weiss LM, et al.: Small lymphocytic lymphoma. J Clin Oncol 1989, 7:598–606.PubMedGoogle Scholar
  37. 37.
    Molica S: Prognostic factors in chronic lymphocytic leukemia. In Chronic Lymphoid Leukemias, edn 2. Edited by Cheson BD. New York: Marcel Dekker; 2001:231–260.Google Scholar
  38. 38.
    Wierda WG, O’Brien S, Wang X, et al.: Prognostic nomogram and index for overall survival in previously untreated patients with chronic lymphocytic leukemia. Blood 2007, 109:4679–4685.PubMedCrossRefGoogle Scholar
  39. 39.
    Hamblin TJ, Davis Z, Gardiner A, et al.: Unmutated Ig V(H) genes are associated with a more aggressive form of chronic lymphocytic leukemia. Blood 1999, 94:1848–1854.PubMedGoogle Scholar
  40. 40.
    Damle RN, Wasil T, Fais F, et al.: Ig V gene mutation status and CD38 expression as novel prognostic indicators in chronic lymphocytic leukemia. Blood 1999, 94:1840–1847.PubMedGoogle Scholar
  41. 41.
    Hamblin TJ, Orchard JA, Ibbotson RE, et al.: CD38 expression and immunoglobulin variable region mutations are independent prognostic variables in chronic lymphocytic leukemia, but CD38 expression may vary during the course of the disease. Blood 2002, 99:1023–1029.PubMedCrossRefGoogle Scholar
  42. 42.
    Moreno C, Montserrat E: New prognostic markers in chronic lymphocytic leukemia. Blood Rev 2008, 22:211–219.PubMedCrossRefGoogle Scholar
  43. 43.
    Crespo M, Bosch F, Villamor N, et al.: ZAP-70 expression as a surrogate for immunoglobulin-variable-region mutations in chronic lymphocytic leukemia. N Engl J Med 2003, 348:1764–1775.PubMedCrossRefGoogle Scholar
  44. 44.
    Rassenti LZ, Jain S, Keating MJ, et al.: Relative value of ZAP-70, CD38, and immunoglobulin mutation status in predicting aggressive disease in chronic lymphocytic leukemia. Blood 2008, 112:1923–1930.PubMedCrossRefGoogle Scholar
  45. 45.
    Dohner H, Stilgenbauer S, Benner A, et al.: Genomic aberrations and survival in chronic lymphocytic leukemia. N Engl J Med 2000, 343:1910–1916.PubMedCrossRefGoogle Scholar
  46. 46.
    Catovsky D, Richards S, Matutes E, et al.: Assessment of fludarabine plus cyclophosphamide for patients with chronic lymphocytic leukaemia (the LRF CLL4 Trial): a randomised controlled trial. Lancet 2007, 370:230–239.PubMedCrossRefGoogle Scholar
  47. 47.
    Tsimberidou AM, Wen S, O’Brien S, et al.: Assessment of chronic lymphocytic leukemia and small lymphocytic lymphoma by absolute lymphocyte counts in 2,126 patients: 20 years of experience at the University of Texas M.D. Anderson Cancer Center. J Clin Oncol 2007, 25:4648–4656.PubMedCrossRefGoogle Scholar
  48. 48.
    Rai KR, Sawitsky A, Cronkite EP, et al.: Clinical staging of chronic lymphocytic leukemia. Blood 1975, 46:219–234.PubMedGoogle Scholar
  49. 49.
    Binet JL, Auquier A, Dighiero G, et al.: A new prognostic classification of chronic lymphocytic leukemia derived from a multivariate survival analysis. Cancer 1981, 48:198–206.PubMedCrossRefGoogle Scholar
  50. 50.
    Byrd JC, Gribben JG, Peterson BL, et al.: Select high-risk genetic features predict earlier progression following chemoimmunotherapy with fludarabine and rituximab in chronic lymphocytic leukemia: justification for risk-adapted therapy. J Clin Oncol 2006, 24:437–443.PubMedCrossRefGoogle Scholar
  51. 51.
    Molica S: Progression and survival studies in early chronic lymphocytic leukemia. Blood 1991, 78:895–899.PubMedGoogle Scholar
  52. 52.
    Morel P, Monconduit M, Jacomy D, et al.: Prognostic factors in Waldenström macroglobulinemia: a report on 232 patients with the description of a new scoring system and its validation on 253 other patients. Blood 2000, 96:852–858.PubMedGoogle Scholar
  53. 53.
    Morel P, Duhamel A, Gobbi P, et al.: International prognostic scoring system for Waldenström macroglobulinemia. Blood 2009, 113:4163–4170.PubMedCrossRefGoogle Scholar
  54. 54.
    Boveri E, Arcaini L, Merli M, et al.: Bone marrow histology in marginal zone B-cell lymphomas: correlation with clinical parameters and flow cytometry in 120 patients. Ann Oncol 2009, 20:129–136.PubMedCrossRefGoogle Scholar
  55. 55.
    Levy M, Copie-Bergman C, Traulle C, et al.: Conservative treatment of primary gastric low-grade B-cell lymphoma of mucosa-associated lymphoid tissue: predictive factors of response and outcome. Am J Gastroenterol 2002, 97:292–297.PubMedCrossRefGoogle Scholar
  56. 56.
    Wündisch T, Thiede C, Morgner A, et al.: Long-term follow-up of gastric MALT lymphoma after Helicobacter pylori eradication. J Clin Oncol 2005, 23:8018–8024.PubMedCrossRefGoogle Scholar
  57. 57.
    Zucca E, Conconi A, Pedrinis E, et al.: Nongastric marginal zone B-cell lymphoma of mucosa-associated lymphoid tissue. Blood 2003, 101:2489–2495.PubMedCrossRefGoogle Scholar
  58. 58.
    Thieblemont C, Coiffier B: Management of marginal zone lymphomas. Curr Treat Options Oncol 2006, 7:213–222.PubMedCrossRefGoogle Scholar
  59. 59.
    Nathwani BN, Anderson JR, Armitage JO, et al.: Marginal zone B-cell lymphoma: a clinical comparison of nodal and mucosa-associated lymphoid tissue types. Non-Hodgkin’s Lymphoma Classification Project. J Clin Oncol 1999, 17:2486–2492.PubMedGoogle Scholar
  60. 60.
    Berger F, Felman P, Thieblemont C, et al.: Non-MALT marginal zone B-cell lymphomas: a description of clinical presentation and outcome in 124 patients. Blood 2000, 95:1950–1956.PubMedGoogle Scholar
  61. 61.
    Arcaini L, Lazzarino M, Colombo N, et al.: Splenic marginal zone lymphoma: a prognostic model for clinical use. Blood 2006, 107:4643–4649.PubMedCrossRefGoogle Scholar

Copyright information

© Current Medicine Group, LLC 2009

Authors and Affiliations

  • Massimo Federico
    • 1
  • Stefano Molica
  • Monica Bellei
  • Stefano Luminari
  1. 1.Dipartimento di Oncologia ed EmatologiaUniversità di Modena e Reggio Emilia, Centro Oncologico ModeneseModenaItaly

Personalised recommendations