Current Hematologic Malignancy Reports

, Volume 2, Issue 2, pp 83–88

Second-generation tyrosine kinase inhibitors as therapy for chronic myeloid leukemia

  • Ronan Swords
  • Yesid Alvarado
  • Jorge Cortes
  • Francis J. Giles
Article

Abstract

Chronic myeloid leukemia (CML) was the first human malignancy to be associated with a single genetic abnormality, characterized by a reciprocal translocation involving chromosomes 9 and 22 (the Philadelphia chromosome). The fusion gene that results (BCR-ABL) produces a constitutively activated tyrosine kinase that exists in different isoforms depending on BCR break-points. Imatinib mesylate is a highly selective inhibitor of this kinase, producing normal blood-counts in 98% of patients in chronic phase CML and disappearance of the Philadelphia chromosome in 86%. However, 17% of patients in the chronic phase will either relapse or develop resistance resulting mainly from one or more point mutations affecting at least 30 amino acids within the Abl kinase protein. This review focuses on the relevant biology of CML, imatinib mesylate resistance mechanisms, and the current status of the next generation of Bcr-Abl inhibitors.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Recommended Reading

  1. 1.
    Rowley JD: A new consistent chromosomal abnormality in chronic myelogenous leukemia identified by quinacrine fluorescence and Giemsa staining [letter]. Nature 1973, 243:290–293.PubMedCrossRefGoogle Scholar
  2. 2.
    Konopka JB, Watanabe SM, Witte ON: An alteration of the human c-abl protein in K562 leukemia cells unmasks associated tyrosine kinase activity. Cell 1984, 37:1035–1042.PubMedCrossRefGoogle Scholar
  3. 3.
    Lugo TG, Pendergast AM, Muller AJ, Witte ON: Tyrosine kinase activity and transformation potency of bcr-abl oncogene products. Science 1990, 247:1079–1082.PubMedCrossRefGoogle Scholar
  4. 4.
    Li S, Ilaria RL Jr, Million RP, et al.: The P190, P210, and P230 forms of the BCR/ABL oncogene induce a similar chronic myeloid leukemia-like syndrome in mice but have different lymphoid leukemogenic activity. J Exp Med 1999, 189:1399–1412.PubMedCrossRefGoogle Scholar
  5. 5.
    Goga A, McLaughlin J, Afar DE, et al.: Alternative signals to RAS for hematopoietic transformation by the BCR-ABL oncogene. Cell 1995, 82:981–988.PubMedCrossRefGoogle Scholar
  6. 6.
    Pendergast AM, Quilliam LA, Cripe LD, et al.: BCR-ABL-induced oncogenesis is mediated by direct interaction with the SH2 domain of the GRB-2 adaptor protein. Cell 1993, 75:175–185.PubMedGoogle Scholar
  7. 7.
    Puil L, Liu J, Gish G, et al.: Bcr-Abl oncoproteins bind directly to activators of the Ras signalling pathway. EMBO J 1994, 13:764–773.PubMedGoogle Scholar
  8. 8.
    Skorski T, Nieborowska-Skorska M, Szczylik C, et al.: C-RAF-1 serine/threonine kinase is required in BCR/ABL-dependent and normal hematopoiesis. Cancer Res 1995, 55:2275–2278.PubMedGoogle Scholar
  9. 9.
    Sawyers CL, McLaughlin J, Witte ON: Genetic requirement for Ras in the transformation of fibroblasts and hematopoietic cells by the Bcr-Abl oncogene. J Exp Med 1995, 181:307–313.PubMedCrossRefGoogle Scholar
  10. 10.
    Raitano AB, Halpern JR, Hambuch TM, Sawyers CL: The Bcr-Abl leukemia oncogene activates Jun kinase and requires Jun for transformation. Proc Natl Acad Sci U S A 1995, 92:11746–11750.PubMedCrossRefGoogle Scholar
  11. 11.
    Carlesso N, Frank DA, Griffin JD: Tyrosyl phosphorylation and DNA binding activity of signal transducers and activators of transcription (STAT) proteins in hematopoietic cell lines transformed by Bcr/Abl. J Exp Med 1996, 183:811–820.PubMedCrossRefGoogle Scholar
  12. 12.
    Ilaria RL Jr, Van Etten RA: P210 and P190(BCR/ABL) induce the tyrosine phosphorylation and DNA binding activity of multiple specific STAT family members. J Biol Chem 1996, 271:31704–31710.PubMedCrossRefGoogle Scholar
  13. 13.
    Dubrez L, Eymin B, Sordet O, et al.: BCR-ABL delays apoptosis upstream of procaspase-3 activation. Blood 1998, 91:2415–2422.PubMedGoogle Scholar
  14. 14.
    Reuther JY, Reuther GW, Cortez D, et al.: A requirement for NF-kappaB activation in Bcr-Abl-mediated transformation. Genes Dev 1998, 12:968–981.PubMedGoogle Scholar
  15. 15.
    Cortez D, Stoica G, Pierce JH, Pendergast AM: The BCR-ABL tyrosine kinase inhibits apoptosis by activating a Ras-dependent signaling pathway. Oncogene 1996, 13:2589–2594.PubMedGoogle Scholar
  16. 16.
    Sanchez-Garcia I, Grutz G: Tumorigenic activity of the BCR-ABL oncogenes is mediated by BCL2. Proc Natl Acad Sci U S A 1995, 92:5287–5291.PubMedCrossRefGoogle Scholar
  17. 17.
    Skorski T, Kanakaraj P, Nieborowska-Skorska M, et al.: Phosphatidylinositol-3 kinase activity is regulated by BCR/ABL and is required for the growth of Philadelphia chromosome-positive cells. Blood 1995, 86:726–736.PubMedGoogle Scholar
  18. 18.
    Salomoni P, Wasik MA, Riedel RF, et al.: Expression of constitutively active Raf-1 in the mitochondria restores antiapoptotic and leukemogenic potential of a transformation-deficient BCR/ABL mutant. J Exp Med 1998, 187:1995–2007.PubMedCrossRefGoogle Scholar
  19. 19.
    Salgia R, Quackenbush E, Lin J, et al.: The BCR/ABL oncogene alters the chemotactic response to stromal-derived factor-1alpha. Blood 1999, 94:4233–4246.PubMedGoogle Scholar
  20. 20.
    Bazzoni G, Carlesso N, Griffin JD, Hemler ME: Bcr/Abl expression stimulates integrin function in hematopoietic cell lines. J Clin Invest 1996, 98:521–528.PubMedGoogle Scholar
  21. 21.
    Salgia R, Li JL, Ewaniuk DS, et al.: BCR/ABL induces multiple abnormalities of cytoskeletal function. J Clin Invest 1997, 100:46–57.PubMedCrossRefGoogle Scholar
  22. 22.
    Skorski T, Wlodarski P, Daheron L, et al.: BCR/ABL-mediated leukemogenesis requires the activity of the small GTP-binding protein Rac. Proc Natl Acad Sci U S A 1998, 95:11858–11862.PubMedCrossRefGoogle Scholar
  23. 23.
    Nichols GL, Raines MA, Vera JC, et al.: Identification of CRKL as the constitutively phosphorylated 39-kD tyrosine phosphoprotein in chronic myelogenous leukemia cells. Blood 1994, 84:2912–2918.PubMedGoogle Scholar
  24. 24.
    Sawyers CL, Callahan W, Witte ON: Dominant negative MYC blocks transformation by ABL oncogenes. Cell 1992, 70:901–910.PubMedCrossRefGoogle Scholar
  25. 25.
    Afar DE, McLaughlin J, Sherr CJ, et al.: Signaling by ABL oncogenes through cyclin D1. Proc Natl Acad Sci U S A 1995, 92:9540–9544.PubMedCrossRefGoogle Scholar
  26. 26.
    Okuda K, Weisberg E, Gilliland DG, Griffin JD: ARG tyrosine kinase activity is inhibited by STI571. Blood 2001, 97:2440–2448.PubMedCrossRefGoogle Scholar
  27. 27.
    Buchdunger E, Cioffi CL, Law N, et al.: Abl protein-tyrosine kinase inhibitor STI571 inhibits in vitro signal transduction mediated by c-kit and platelet-derived growth factor receptors. J Pharmacol Exp Ther 2000, 295:139–145.PubMedGoogle Scholar
  28. 28.
    Dewar AL, Zannettino AC, Hughes TP, Lyons AB: Inhibition of c-fms by imatinib: expanding the spectrum of treatment. Cell Cycle 2005, 4:851–853.PubMedGoogle Scholar
  29. 29.
    Heinrich MC, Griffith DJ, Druker BJ, et al.: Inhibition of c-kit receptor tyrosine kinase activity by STI 571, a selective tyrosine kinase inhibitor. Blood 2000, 96:925–932.PubMedGoogle Scholar
  30. 30.
    O’Brien SG, Guilhot F, Larson R, et al.; IRIS Investigators: Imatinib compared with interferon and low-dose cytarabine for newly diagnosed chronic-phase chronic myeloid leukemia. N Engl J Med 2003, 348:994–1004.PubMedCrossRefGoogle Scholar
  31. 31.
    Druker BJ, Guilhot F, O’Brien SG, et al.; IRIS Investigators: Five-year follow-up of patients receiving imatinib for chronic myeloid leukemia. N Engl J Med 2006, 355:2408–2417.PubMedCrossRefGoogle Scholar
  32. 32.
    Kerkela R, Grazette L, Yacobi R, et al.: Cardiotoxicity of the cancer therapeutic agent imatinib mesylate. Nat Med 2006, 12:908–916.PubMedCrossRefGoogle Scholar
  33. 33.
    Gorre ME, Mohammed M, Ellwood K, et al.: Clinical resistance to STI-571 cancer therapy caused by BCR-ABL gene mutation or amplification. Science 2001, 293:876–880.PubMedCrossRefGoogle Scholar
  34. 34.
    Donato NJ, Wu JY, Stapley J, et al.: BCR-ABL independence and LYN kinase overexpression in chronic myelogenous leukemia cells selected for resistance to STI571. Blood 2003, 101:690–698.PubMedCrossRefGoogle Scholar
  35. 35.
    Gambacorti-Passerini C, Barni R, le Coutre P, et al.: Role of alpha1 acid glycoprotein in the in vivo resistance of human BCR-ABL(+) leukemic cells to the abl inhibitor STI571. J Natl Cancer Inst 2000, 92:1641–1650.PubMedCrossRefGoogle Scholar
  36. 36.
    Illmer T, Schaich M, Platzbecker U, et al.: P-glycoprotein-mediated drug efflux is a resistance mechanism of chronic myelogenous leukemia cells to treatment with imatinib mesylate. Leukemia 2004, 18:401–408.PubMedCrossRefGoogle Scholar
  37. 37.
    Weisberg E, Manley P, Mestan J, et al.: AMN107 (nilotinib): a novel and selective inhibitor of BCR-ABL. Br J Cancer 2006, 94:1765–1769.PubMedCrossRefGoogle Scholar
  38. 38.
    von Bubnoff N, Manley PW, Mestan J, et al.: Bcr-Abl resistance screening predicts a limited spectrum of point mutations to be associated with clinical resistance to the Abl kinase inhibitor nilotinib (AMN107). Blood 2006, 108:1328–1333.CrossRefGoogle Scholar
  39. 39.
    Kantarjian H, Giles F, Wunderle L, et al.: Nilotinib in imatinib-resistant CML and Philadelphia chromosome-positive ALL. N Engl J Med 2006. 354:2542–2551.PubMedCrossRefGoogle Scholar
  40. 40.
    le Coutre P, Ottmann O, Gattermann N, et al.: A phase II study of nilotinib (AMN 107), a novel inhibitor of Bcr-Abl, administered to imatinib resistant patients and intolerant patients with chronic myeloid leukemia in accelerated phase (AP) [abstract]. J Clin Oncol 2006, 24:344s.Google Scholar
  41. 41.
    Jabbour E, Giles F, Cortes J: Preliminary activity of AMN 107, a novel potent oral selective Bcr-Abl tyrosine kinase inhibitor, in newly diagnosed Philadelphia (Ph)-positive chronic phase chronic myelogenous leukemia (CML-CP) [abstract]. J Clin Oncol 2006:358s.Google Scholar
  42. 42.
    Klejman A, Schreiner SJ, Nieborowska-Skorska M, et al.: The Src family kinase Hck couples BCR/ABL to STAT5 activation in myeloid leukemia cells. EMBO J 2002, 21:5766–5774.PubMedCrossRefGoogle Scholar
  43. 43.
    Hu Y, Liu Y, Pelletier S, et al.: Requirement of Src kinases Lyn, Hck and Fgr for BCR-ABL1-induced B-lymphoblastic leukemia but not chronic myeloid leukemia. Nat Genet 2004, 36:453–461.PubMedCrossRefGoogle Scholar
  44. 44.
    Branford S, Hughes T, Nicoll J, et al.: Molecular responses and mutation analysis in imatinib-resistant patients with Philadelphia Ph positive (Ph) leukemia with the dual Src/Abl kinase inhibitor BMS-354825 [abstract]. 10th Congress of the European Hematology Association. Stockholm, Sweden, June 2–5, 2005. Abstract 0116.Google Scholar
  45. 45.
    Shah N, Rousselot P, Pasquini R, et al.: Dasatinib vs high dose imatinib in patients with chronic phase CML resistant to imatinib. Results of the CA180007 “START-R” randomised trial [abstract 6507]. J Clin Oncol 2006, 24:338s.CrossRefGoogle Scholar
  46. 46.
    Cortes J, Kim J, Rosti P, et al.: Dasatinib in patients with CML myeloid blast crisis who are imatinib resistant or intolerant: Results of the CA180006 “START-B” study [abstract 6529]. J Clin Oncol 2006, 24:344s.CrossRefGoogle Scholar
  47. 47.
    Coutre S, Martinelli G, Dombret H, et al.: Dasatinib in patients with chronic myeloid leukemia in lymphoid blast crisis or Philadelphia chromosome positive acute lymphoblastic leukemia who are imatinib resistant or intolerant: results of the “START-L” study [abstract 6528]. J Clin Oncol 2006, 24:344s.Google Scholar
  48. 48.
    Hochhaus A, Kantarjian H, Baccarani M, et al.: Dasatinib efficacy and safety in patients with chronic phase CML resistant or intolerable to imatinib: results of the CA180013 “START C” phase II study [abstract 6508]. J Clin Oncol 2006, 24:339s.Google Scholar
  49. 49.
    Talpaz M, Apperly J, Kim D, et al.: Dasatinib phase II study in patients with accelerated phase CML who are resistant or intolerant to imatinib: results of the CA180005 “START-A” study [abstract 6526]. J Clin Oncol 2006, 24:343s.Google Scholar
  50. 50.
    Giles FJ, Cortes J, Jones D, et al.: MK-0457, a novel kinase inhibitor, is active in patients with chronic myeloid leukemia or acute lymphocytic leukemia with the T315I BCR-ABL mutation. Blood 2007, 109:500–502.PubMedCrossRefGoogle Scholar

Copyright information

© Current Medicine Group LLC 2007

Authors and Affiliations

  • Ronan Swords
  • Yesid Alvarado
  • Jorge Cortes
  • Francis J. Giles
    • 1
  1. 1.Department of LeukemiaThe University of Texas M.D. Anderson Cancer CenterHoustonUSA

Personalised recommendations