Current Hematologic Malignancy Reports

, Volume 1, Issue 1, pp 25–33 | Cite as

New agents in myelodysplastic syndromes



Myelodysplastic syndromes (MDS) are a heterogeneous group of clonal hematopoietic disorders characterized by ineffective hematopoiesis resulting in peripheral cytopenia and by increased progression to acute myeloid leukemia (AML). Therapeutic interventions for MDS other than allogeneic stem cell transplantation have been palliative. Novel and targeted therapeutic agents such as the inhibition of farnesyltransferases and receptor tyrosine kinases, more potent thalidomide analogs, arsenic trioxide, immunomodulating agents, hypomethylating agents, and histone deacetylase inhibitors have shown encouraging results and may offer durable benefit to patients with MDS. Further development of rational therapies and improvements in the outcome of patients with MDS are likely to emerge from an increased understanding of the pathophysiology of these diseases.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Recommended Reading

  1. 1.
    Heaney ML, Golde DW: Myelodysplasia. N Engl J Med 1999, 340:1649–1660.PubMedCrossRefGoogle Scholar
  2. 2.
    Cheson BD: The myelodysplastic syndromes. Oncologist 1997, 2:28–39.PubMedGoogle Scholar
  3. 3.
    Steensma DP, Tefferi A: The myelodysplastic syndrome(s): a perspective and review highlighting current controversies. Leuk Res 2003, 27:95–120.PubMedCrossRefGoogle Scholar
  4. 4.
    Rosenfeld C, List A: A hypothesis for the pathogenesis of myelodysplastic syndromes: implications for new therapies. Leukemia 2000, 14:2–8.PubMedCrossRefGoogle Scholar
  5. 5.
    Heyman MR: Recent advances in biology and treatment of myelodysplasia. Curr Opin Oncol 1991, 3:44–53.PubMedCrossRefGoogle Scholar
  6. 6.
    Raza A, Gezer S, Mundle S, et al.: Apoptosis in bone marrow biopsy samples involving stromal and hematopoietic cells in 50 patients with myelodysplastic syndromes. Blood 1995, 86:268–276.PubMedGoogle Scholar
  7. 7.
    Shetty V, Hussaini S, Broady-Robinson L, et al.: Intramedullary apoptosis of hematopoietic cells in myelodysplastic syndrome patients can be massive: apoptotic cells recovered from high-density fraction of bone marrow aspirates. Blood 2000, 96:1388–1392.PubMedGoogle Scholar
  8. 8.
    Albitar M, Manshouri T, Shen Y, et al.: Myelodysplastic syndrome is not merely "preleukemia". Blood 2002, 100:791–798. Documents significant differences in pathophysiology between these entities.PubMedCrossRefGoogle Scholar
  9. 9.
    Gersuk GM, Beckham C, Loken MR, et al.: A role for tumour necrosis factor-α, Fas and Fas-ligand in marrow failure associated with myelodysplastic syndrome. Br J Haematol 1998, 103:176–188.PubMedCrossRefGoogle Scholar
  10. 10.
    Allampallam K, Shetty VT, Raza A: Cytokines and MDS. Cancer Treat Res 2001, 108:93–100.PubMedGoogle Scholar
  11. 11.
    Leung DW, Cachianes G, Kuang WJ, et al.: Vascular endothelial growth factor is a secreted angiogenic mitogen. Science 1989, 246:1306–1309.PubMedCrossRefGoogle Scholar
  12. 12.
    Shalaby F, Rossant J, Yamaguchi TP, et al.: Failure of bloodisland formation and vasculogenesis in Flk-1-deficient mice. Nature 1995, 376:62–66.PubMedCrossRefGoogle Scholar
  13. 13.
    Ziegler BL, Valtieri M, Porada GA, et al.: KDR: a key marker defining hematopoietic stem cells. Science 1999, 285:1553–1558.PubMedCrossRefGoogle Scholar
  14. 14.
    Black RA, Rauch CT, Kozlosky CJ, et al.: A metalloproteinase disintegrin that releases tumour-necrosis factor-α from cells. Nature 1997, 385:729–733.PubMedCrossRefGoogle Scholar
  15. 15.
    Kayagaki N, Kawasaki A, Ebata T, et al.: Metalloproteinasemediated release of human Fas ligand. J Exp Med 1995, 182:1777–1783.PubMedCrossRefGoogle Scholar
  16. 16.
    Bellamy WT, Richter L, Sirjani D, et al.: Vascular endothelial cell growth factor is an autocrine promoter of abnormal localized immature myeloid precursors and leukemia progenitor formation in myelodysplastic syndromes. Blood 2001, 97:1427–1434. Very important data providing rationale for anti-VEGF therapy in MDS.PubMedCrossRefGoogle Scholar
  17. 17.
    Pruneri G, Bertolini F, Soligo D, et al.: Angiogenesis in myelodysplastic syndromes. Br J Cancer 1999, 81:1398–1401.PubMedCrossRefGoogle Scholar
  18. 18.
    Faderl S, Kantarjian HM: Novel therapies for myelodysplastic syndromes. Cancer 2004, 10:226–241.CrossRefGoogle Scholar
  19. 19.
    Giagounidis AA, Germing U, Haase S, et al.: Clinical, morphological, cytogenetic, and prognostic features of patients with myelodysplastic syndromes and del(5q) including band q31. Leukemia 2004, 18:113–119. Important data on this possibly distinct group of patients with MDS.PubMedCrossRefGoogle Scholar
  20. 20.
    Washington LT, Jilani I, Estey E, Albitar M: Less apoptosis in patients with 5q-syndrome than in patients with refractory anemia. Leuk Res 2002, 26:899–902.PubMedCrossRefGoogle Scholar
  21. 21.
    Baxter EJ, Kulkarni S, Vizmanos JL, et al.: Novel translocations that disrupt the platelet-derived growth factor receptor β (@#@ PDGFRβ @#@) gene in Bcr/Abl-negative chronic myeloproliferative disorders. Br J Haematol 2003, 120:251–256.PubMedCrossRefGoogle Scholar
  22. 22.
    Apperley JF, Gardembas M, Melo JV, et al.: Response to imatinib mesylate in patients with chronic myeloproliferative diseases with rearrangements of the platelet-derived growth factor receptor β. N Engl J Med 2002, 347:481–487.PubMedCrossRefGoogle Scholar
  23. 23.
    Maeck L, Haase D, Schoch C, et al.: Genetic instability in myelodysplastic syndrome: detection of microsatellite instability and loss of heterozygosity in bone marrow samples with karyotype alterations. Br J Haematol 2000, 109:842–846.PubMedCrossRefGoogle Scholar
  24. 24.
    Hofmann WK, de Vos S, Komor M, et al.: Characterization of gene expression of CD34+ cells from normal and myelodysplastic bone marrow. Blood 2002, 100:3553–3560.PubMedCrossRefGoogle Scholar
  25. 25.
    Claus R, Lubbert M: Epigenetic targets in hematopoietic malignancies. Oncogene 2003, 22:6489–6496.PubMedCrossRefGoogle Scholar
  26. 26.
    Quesnel B, Guillerm G, Vereecque R, et al.: Methylation of the p15(INK4b) gene in myelodysplastic syndromes is frequent and acquired during disease progression. Blood 1998, 91:2985–2990. Important data on potential epigenetic modifications in MDS.PubMedGoogle Scholar
  27. 27.
    Barrett J, Saunthararajah Y, Molldrem J: Myelodysplastic syndrome and aplastic anemia: distinct entities or diseases linked by a common pathophysiology? Semin Hematol 2000, 37:15–29.PubMedCrossRefGoogle Scholar
  28. 28.
    Molldrem JJ, Leifer E, Bahceci E, et al.: Antithymocyte globulin for treatment of the bone marrow failure associated with myelodysplastic syndromes. Ann Intern Med 2002, 137:156–163.PubMedGoogle Scholar
  29. 29.
    Killick SB, Mufti G, Cavenagh JD, et al.: A pilot study of antithymocyte globulin (ATG) in the treatment of patients with ‘low-risk’ myelodysplasia. Br J Haematol 2003, 120:679–684.PubMedCrossRefGoogle Scholar
  30. 30.
    Bennett JM, Catovsky D, Daniel MT, et al.: Proposals for the classification of the myelodysplastic syndromes. Br J Haematol 1982, 51:189–199.PubMedGoogle Scholar
  31. 31.
    Harris NL, Jaffe ES, Diebold J, et al.: World Health Organization classification of neoplastic diseases of the hematopoietic and lymphoid tissues: report of the Clinical Advisory Committee meeting—Airlie House, Virginia, November 1997. J Clin Oncol 1999, 17:3835–3849.PubMedGoogle Scholar
  32. 32.
    Greenberg P, Cox C, LeBeau MM, et al.: International scoring system for evaluating prognosis in myelodysplastic syndromes. Blood 1997, 89:2079–2088. IPSS scoring system, which is a clinical and investigational standard.PubMedGoogle Scholar
  33. 33.
    Hellstrom-Lindberg E, Gulbrandsen N, Lindberg G, et al.: A validated decision model for treating the anaemia of myelodysplastic syndromes with erythropoietin + granulocyte colony-stimulating factor: significant effects on quality of life. Br J Haematol 2003, 120:1037–1046.PubMedCrossRefGoogle Scholar
  34. 34.
    Stasi R, Brunetti M, Terzoli E, Amadori S: Sustained response to recombinant human erythropoietin and intermittent all-trans retinoic acid in patients with myelodysplastic syndromes. Blood 2002, 99:1578–1584.PubMedCrossRefGoogle Scholar
  35. 35.
    Smith R: Applications of darbepoietin-α, a novel erythropoiesis-stimulating protein, in oncology. Curr Opin Hematol 2002, 9:228–233.PubMedCrossRefGoogle Scholar
  36. 36.
    Yoshida Y, Nakahata T, Shibata A, et al.: Effects of long-term treatment with recombinant human granulocyte-macrophage colony-stimulating factor in patients with myelodysplastic syndrome. Leuk Lymphoma 1995, 18:457–463.PubMedGoogle Scholar
  37. 37.
    Negrin RS, Haeuber DH, Nagler A, et al.: Maintenance treatment of patients with myelodysplastic syndromes using recombinant human granulocyte colony-stimulating factor. Blood 1990, 76:36–43.PubMedGoogle Scholar
  38. 38.
    Kurzrock R, Cortes J, Thomas DA, et al.: Pilot study of low-dose interleukin-11 in patients with bone marrow failure. J Clin Oncol 2001, 19:4165–4172.PubMedGoogle Scholar
  39. 39.
    Broliden PA, Dahl IM, Hast R, et al.: ATG and cyclosporine A as a combination therapy in myelodysplastic syndromes RA and RAEB [abstract]. Blood 2002, 100:98.Google Scholar
  40. 40.
    Yazji S, Giles F, Kantarjian H, et al.: Antithymocyte globulin (ATG)-based therapy in patients with myelodysplastic syndromes (MDS) [abstract]. Blood 2002, 100:794.Google Scholar
  41. 41.
    Saunthararajah Y, Nakamura R, Wesley R, et al.: A simple method to predict response to immunosuppressive therapy in patients with myelodysplastic syndrome. Blood 2003, 102:3025–3027.PubMedCrossRefGoogle Scholar
  42. 42.
    Saunthararajah Y, Nakamura R, Nam JM, et al.: HLA-DR15 (DR2) is overrepresented in myelodysplastic syndrome and aplastic anemia and predicts a response to immunosuppression in myelodysplastic syndrome. Blood 2002, 100:1570–1574.PubMedGoogle Scholar
  43. 43.
    Wang H, Chuhjo T, Yasue S, et al.: Clinical significance of a minor population of paroxysmal nocturnal hemoglobinuria-type cells in bone marrow failure syndrome. Blood 2002, 100:3897–3902.PubMedCrossRefGoogle Scholar
  44. 44.
    de Witte T, Suciu S, Peetermans M, et al.: Intensive chemotherapy for poor prognosis myelodysplasia (MDS) and secondary acute myeloid leukemia (sAML) following MDS of more than 6 months duration. A pilot study by the Leukemia Cooperative Group of the European Organisation for Research and Treatment in Cancer (EORTC-LCG). Leukemia 1995, 9:1805–1811.PubMedGoogle Scholar
  45. 45.
    Estey EH: Treatment of acute myelogenous leukemia and myelodysplastic syndromes. Semin Hematol 1995, 32:132–151.PubMedGoogle Scholar
  46. 46.
    Beran M, Estey E, O’Brien S, et al.: Topotecan and cytarabine is an active combination regimen in myelodysplastic syndromes and chronic myelomonocytic leukemia. J Clin Oncol 1999, 17:2819–2830. Article shows that topotecan has activity in MDS.PubMedGoogle Scholar
  47. 47.
    Guilhot F, Bouabdallah R, Desablens B, et al.: Topotecan, cytosine arabinoside and G-CSF (TAG) versus idarubicin, cytosine arabinoside and G-CSF (IDAG) in patients with myelodysplastic syndrome (MDS) or MDS in transformation: a randomised phase III study [abstract]. Blood 2002, 100:98 (Abstract 360).Google Scholar
  48. 48.
    Anderson JE, Appelbaum FR, Fisher LD, et al.: Allogeneic bone marrow transplantation for 93 patients with myelodysplastic syndrome. Blood 1993, 82:677–681.PubMedGoogle Scholar
  49. 49.
    De Witte T, Zwaan F, Hermans J, et al.: Allogeneic bone marrow transplantation for secondary leukaemia and myelodysplastic syndrome: a survey by the Leukaemia Working Party of the European Bone Marrow Transplantation Group (EBMTG). Br J Haematol 1990, 74:151–155.PubMedGoogle Scholar
  50. 50.
    Sutton L, Chastang C, Ribaud P, et al.: Factors influencing outcome in de novo myelodysplastic syndromes treated by allogeneic bone marrow transplantation: a long-term study of 71 patients. Blood 1996, 88:358–365.PubMedGoogle Scholar
  51. 51.
    Nevill TJ, Shepherd JD, Reece DE, et al.: Treatment of myelodysplastic syndrome with busulfan-cyclophosphamide conditioning followed by allogeneic BMT. Bone Marrow Transplant 1992, 10:445–450.PubMedGoogle Scholar
  52. 52.
    Longmore G, Guinan EC, Weinstein HJ, et al.: Bone marrow transplantation for myelodysplasia and secondary acute nonlymphoblastic leukemia. J Clin Oncol 1990, 8:1707–1714.PubMedGoogle Scholar
  53. 53.
    de Witte T, Hermans J, Vossen J, et al.: Haematopoietic stem cell transplantation for patients with myelodysplastic syndromes and secondary acute myeloid leukaemias: a report on behalf of the Chronic Leukaemia Working Party of the European Group for Blood and Marrow Transplantation (EBMT). Br J Haematol 2000, 110:620–630.PubMedCrossRefGoogle Scholar
  54. 54.
    Deeg HJ, Storer B, Slattery JT, et al.: Conditioning with targeted busulfan and cyclophosphamide for hemopoietic stem cell transplantation from related and unrelated donors in patients with myelodysplastic syndrome. Blood 2002, 100:1201–1207. Recent update on stem cell transplantation results in MDS.PubMedCrossRefGoogle Scholar
  55. 55.
    Guardiola P, Runde V, Bacigalupo A, et al.: Retrospective comparison of bone marrow and granulocyte colonystimulating factor-mobilized peripheral blood progenitor cells for allogeneic stem cell transplantation using HLA identical sibling donors in myelodysplastic syndromes. Blood 2002, 99:4370–4378.PubMedCrossRefGoogle Scholar
  56. 56.
    Santini V, Kantarjian HM, Issa JP: Changes in DNA methylation in neoplasia: pathophysiology and therapeutic implications. Ann Intern Med 2001, 134:573–586.PubMedGoogle Scholar
  57. 57.
    Silverman LR, Demakos EP, Peterson BL, et al.: Randomized controlled trial of azacytidine in patients with the myelodysplastic syndrome: a study of the cancer and leukemia group B. J Clin Oncol 2002, 20:2429–2440. Pivotal study of azacytidine leading to its approval in the United States for treatment of MDS.PubMedCrossRefGoogle Scholar
  58. 58.
    Leone G, Voso MT, Teofili L, Lubbert M: Inhibitors of DNA methylation in the treatment of hematological malignancies and MDS. Clin Immunol 2003, 109:89–102.PubMedCrossRefGoogle Scholar
  59. 59.
    Saba H, Rosenfeld C, Issa JP, et al.: First report of the phase III North American trial of decitabine in advanced myelodysplastic syndrome (MDS) [abstract]. Blood 2004, 104:23.Google Scholar
  60. 60.
    Issa JP, Garcia-Manero G, Giles FJ, et al.: Phase I study of low-dose prolonged exposure schedules of the hypomethylating agent 5-aza-2’-deoxycytidine (decitabine) in hematopoietic malignancies. Blood 2004, 103:1635–1640.PubMedCrossRefGoogle Scholar
  61. 61.
    Jones PA, Taylor SM: Cellular differentiation, cytidine analogs, and DNA methylation. Cell 1980, 20:85–93.PubMedCrossRefGoogle Scholar
  62. 62.
    Garcia-Manero G, Kantarjian H, Sanchez-Gonzalez B, et al.: Results of a phase I/II study of the combination of 5-aza-2’-deoxycytidine (DAC) and valproic acid (VA) in patients with leukemia. Blood 2004, 104:78.Google Scholar
  63. 63.
    List A, Beran M, DiPersio J, et al.: Opportunities for Trisenox (arsenic trioxide) in the treatment of myelodysplastic syndromes. Leukemia 2003, 17:1499–1507.PubMedCrossRefGoogle Scholar
  64. 64.
    List AF, Schiller GJ, Mason J, et al.: Trisenox (arsenic trioxide) in patients with myelodysplastic syndromes (MDS): preliminary findings in a Phase 2 clinical study [abstract]. Blood 2003, 102:423.Google Scholar
  65. 65.
    Vey N, Dreyfus F, Guerci A, et al.: Trisenox (arsenic trioxide) in patients with myelodysplastic syndromes (MDS): preliminary results of a phase I/II study. Blood 2004, 104:401.Google Scholar
  66. 66.
    Raza A, Meyer P, Dutt D, et al.: Thalidomide produces transfusion independence in long-standing refractory anemias of patients with myelodysplastic syndromes. Blood 2001, 98:958–965.PubMedCrossRefGoogle Scholar
  67. 67.
    Mareno-Aspitia A, Geyer S, Li C, et al.: Multicenter phase II trial of thalidomide (thal) in adult patients with myelodysplastic syndromes (MDS). Blood 2002, 100:96.CrossRefGoogle Scholar
  68. 68.
    List AF, Tate W, Glinsmann-Gibson BJ, Baker A: The immunomodulatory thalidomide analog, CC5013, inhibits trophic response to VEGF in AML by abolishing cytokine-induced PI3-kinase/Akt activation [abstract]. Blood 2002, 100:139 (Abstract 521). Article shows that CC5013 has activity in MDS, particularly in the 5q-syndrome.Google Scholar
  69. 69.
    List AF, Vardiman J, Issa JP, Dewitte TM: Myelodysplastic syndromes. Hematology (Am Soc Hematol Educ Program) 2004, 297–317.Google Scholar
  70. 70.
    Giles FJ, Stopeck AT, Silverman LR, et al.: SU5416, a small molecule tyrosine kinase receptor inhibitor, has biologic activity in patients with refractory acute myeloid leukemia or myelodysplastic syndromes. Blood 2003, 102:795–801.PubMedCrossRefGoogle Scholar
  71. 71.
    Foran J, Paquette R, Copper M, et al.: A phase I study of repeated oral dosing with SU11248 for the treatment of patients with acute myeloid leukemia who have failed or are not eligible for conventional chemotherapy [abstract]. Blood 2002, 100:558.Google Scholar
  72. 72.
    Roboz GJ, List AF, Giles F, et al.: Phase I trial of PTK787/ ZK222584, an inhibitor of vascular endothelial growth factor receptor tyrosine kinases, in acute myeloid leukemia and myelodysplastic syndrome [abstract]. Blood 2003, 102:361.Google Scholar
  73. 73.
    Gotlib J, Jamieson CHM, List AF, et al.: Phase II study of bevacizumab (anti-VEGF humanized monoclonal antibody) in patients with myelodysplastic syndrome (MDS) [abstract]. Blood 2003, 102:425.Google Scholar
  74. 74.
    Beaupre DM, Kurzrock R: RAS and leukemia: from basic mechanisms to gene-directed therapy. J Clin Oncol 1999, 17:1071–1079.PubMedGoogle Scholar
  75. 75.
    Kurzrock R, Kantarjian HM, Cortes JE, et al.: Farnesyltransferase inhibitor R115777 in myelodysplastic syndrome: clinical and biologic activities in the phase I setting. Blood 2003, 102:4527–4534. Article shows that FTIs are active in MDS.PubMedCrossRefGoogle Scholar
  76. 76.
    Kurzrock R, Albitar M, Cortes JE, et al.: Phase II study of R115777, a farnesyl transferase inhibitor, in myelodysplastic syndrome. J Clin Oncol 2004, 22:1287–1292.PubMedCrossRefGoogle Scholar
  77. 77.
    Feldman EJ, Cortes J, Holyoake TL, et al.: Continuous oral lonafarnib (Sarasar) for the treatment of patients with myelodysplastic syndrome [abstract]. Blood 2003, 102:421.CrossRefGoogle Scholar
  78. 78.
    Cortes J, Giles F, O’Brien S, et al.: Results of imatinib mesylate therapy in patients with refractory or recurrent acute myeloid leukemia, high-risk myelodysplastic syndrome, and myeloproliferative disorders. Cancer 2003, 97:2760–2766.PubMedCrossRefGoogle Scholar
  79. 79.
    Apperley JF, Gardembas M, Melo JV, et al.: Response to imatinib mesylate in patients with chronic myeloproliferative diseases with rearrangements of the platelet-derived growth factor receptor beta. N Engl J Med 2002, 347:481–487.PubMedCrossRefGoogle Scholar
  80. 80.
    Magnusson MK, Meade KE, Nakamura R, et al.: Activity of STI571 in chronic myelomonocytic leukemia with a platelet-derived growth factor β receptor fusion oncogene. Blood 2002, 100:1088–1091.PubMedCrossRefGoogle Scholar
  81. 81.
    Pitine V, Arrigo C, Teti D, et al.: Response to STI571 in chronic myelomonocytic leukemia with platelet derived growth factor β receptor involvement: a new case report. Hematologica 2003, 88:ECR18.Google Scholar
  82. 82.
    Feldman EJ, Seiter KP, Ahmed T, et al.: Homoharringtonine in patients with myelodysplastic syndrome (MDS) and MDS evolving to acute myeloid leukemia. Leukemia 1996, 10:40–42.PubMedGoogle Scholar
  83. 83.
    Heinrich MC, Druker BJ, Curtin PT, et al.: A "first in man" study of the safety and PK/PD of an oral FLT3 inhibitor (MLN518) in patients with AML or high risk myelodysplasia [abstract]. Blood 2002, 100:560a.CrossRefGoogle Scholar
  84. 84.
    Cortes JE, Estey E, Giles F, et al.: Phase I study of bortezomib (PS-341), a proteasome inhibitor, in patients with refractory or relapsed acute leukemias and myelodysplastic syndromes [abstract]. Blood 2002, 100:560.CrossRefGoogle Scholar
  85. 85.
    Estey E, Fisher T, Giles F, et al.: A randomized phase II trial of the tyrosine kinase inhibitor PKC412 in patients (pts) with acute myeloid leukemia (AML)/high-risk myelodysplastic syndromes (MDS) characterized by wild-type (wt) or mutated FLT3 [abstract]. Blood 2003, 102:614.Google Scholar
  86. 86.
    Raza A, Lisak LA, Tahir S, et al.: Hematologic improvement in response to antitumor necrosis factor (TNF) therapy with Remicade in patients with myelodysplastic syndrome (MDS) [abstract]. Blood 2003, 100:795a.Google Scholar
  87. 87.
    Stasi R, Amadori S: Infliximab chimaeric antitumour necrosis factor α monoclonal antibody treatment for patients with myelodysplastic syndromes. Br J Haematol 2002, 116:334–337.PubMedGoogle Scholar
  88. 88.
    Kauvar LM, Morgan AS, Sanderson PE, Henner WD: Glutathione based approaches to improving cancer treatment. Chem Biol Interact 1998, 24:111–112, 225–238.Google Scholar
  89. 89.
    Faderl S, Kantarjian H, Estey E, et al.: Hematologic improvement following treatment with TLK199 (a novel glutathione inhibitor of [glutathione S-transferase] GST PI-1) in myelodysplastic syndrome (MDS): interim results of a phase I-IIa study [abstract]. Blood 2003, 102:426a.CrossRefGoogle Scholar

Copyright information

© Current Science Inc 2006

Authors and Affiliations

  1. 1.Department of LeukemiaUnit 428, MD Anderson Cancer CenterHoustonUSA

Personalised recommendations