Advertisement

Synthesizing Markers of Kidney Injury in Acute Decompensated Heart Failure: Should We Even Keep Looking?

  • Alexander S. MangubaJr
  • Xavier Vela Parada
  • Steven G. Coca
  • Anuradha LalaEmail author
Biomarkers of Heart Failure (WH Tang & J Grodin, Section Editors)
Part of the following topical collections:
  1. Topical Collection on Biomarkers of Heart Failure

Abstract

Purpose of Review

This review discusses evidence that has accumulated over the years on the diagnostic and prognostic utility of biomarkers of kidney injury in the setting of acute decompensated heart failure.

Recent Findings

Despite numerous studies evaluating several different biomarkers both in the serum and urine, the current body of evidence does not support routine use of any of these biomarkers for the purposes of diagnosis of acute kidney injury or for prognosis after hospitalization for acute decompensated heart failure. All studies are observational in nature and, as such, are likely limited by numerous confounders, the most important of which is modification of decongestive therapy in response to worsening renal function. More recent evidence suggests that worsening renal function or kidney injury does not always portend poor outcomes after hospitalization for heart failure.

Summary

There is currently no conclusive evidence to recommend the routine use of biomarkers of kidney injury in acute decompensated heart failure.

Keywords

Acute decompensated heart failure Acute kidney injury Biomarkers Cardiorenal syndrome Worsening renal function 

Notes

Compliance with Ethical Standards

Conflict of Interest

Dr. Coca reports personal fees and other from RenalytixAI, personal fees from CHF Solutions, personal fees from Quark, personal fees from Takeda, personal fees from Janssen, personal fees and other from pulseData, personal fees from Goldfinch, personal fees from Relypsa, outside the submitted work.

Dr. Manguba has nothing to disclose.

Dr. Lala has nothing to disclose.

Dr. Parada has nothing to disclose.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Heidenreich PA, Trogdon JG, Khavjou OA, Butler J, Dracup K, Ezekowitz MD, et al. Forecasting the future of cardiovascular disease in the United States: a policy statement from the American Heart Association. Circulation. 2011;123(8):933–44.  https://doi.org/10.1161/CIR.0b013e31820a55f5.CrossRefPubMedGoogle Scholar
  2. 2.
    Damman K, Valente MA, Voors AA, O'Connor CM, van Veldhuisen DJ, Hillege HL. Renal impairment, worsening renal function, and outcome in patients with heart failure: an updated meta-analysis. Eur Heart J. 2014;35(7):455–69.  https://doi.org/10.1093/eurheartj/eht386.CrossRefPubMedGoogle Scholar
  3. 3.
    Section 2: AKI Definition. Kidney Int Suppl (2011). 2012;2(1):19–36.  https://doi.org/10.1038/kisup.2011.32.
  4. 4.
    Rangaswami J, Bhalla V, Blair JEA, Chang TI, Costa S, Lentine KL, et al. Cardiorenal syndrome: classification, pathophysiology, diagnosis, and treatment strategies: a scientific statement from the American Heart Association. Circulation. 2019;139(16):e840–e78.  https://doi.org/10.1161/CIR.0000000000000664.CrossRefPubMedGoogle Scholar
  5. 5.
    Damman K, Tang WH, Testani JM, McMurray JJ. Terminology and definition of changes renal function in heart failure. Eur Heart J. 2014;35(48):3413–6.  https://doi.org/10.1093/eurheartj/ehu320.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Palazzuoli A, Ruocco G, Pellegrini M, De Gori C, Del Castillo G, Franci B, et al. Comparison of neutrophil gelatinase-associated lipocalin versus B-type natriuretic peptide and cystatin C to predict early acute kidney injury and outcome in patients with acute heart failure. Am J Cardiol. 2015;116(1):104–11.  https://doi.org/10.1016/j.amjcard.2015.03.043.CrossRefPubMedGoogle Scholar
  7. 7.
    Breidthardt T, Sabti Z, Ziller R, Rassouli F, Twerenbold R, Kozhuharov N, et al. Diagnostic and prognostic value of cystatin C in acute heart failure. Clin Biochem. 2017;50(18):1007–13.  https://doi.org/10.1016/j.clinbiochem.2017.07.016.CrossRefPubMedGoogle Scholar
  8. 8.
    Arimoto T, Takeishi Y, Niizeki T, Takabatake N, Okuyama H, Fukui A, et al. Cystatin C, a novel measure of renal function, is an independent predictor of cardiac events in patients with heart failure. J Card Fail. 2005;11(8):595–601.  https://doi.org/10.1016/j.cardfail.2005.06.001.CrossRefPubMedGoogle Scholar
  9. 9.
    Lassus J, Harjola VP, Sund R, Siirila-Waris K, Melin J, Peuhkurinen K, et al. Prognostic value of cystatin C in acute heart failure in relation to other markers of renal function and NT-proBNP. Eur Heart J. 2007;28(15):1841–7.  https://doi.org/10.1093/eurheartj/ehl507.CrossRefPubMedGoogle Scholar
  10. 10.
    Manzano-Fernandez S, Boronat-Garcia M, Albaladejo-Oton MD, Pastor P, Garrido IP, Pastor-Perez FJ, et al. Complementary prognostic value of cystatin C, N-terminal pro-B-type natriuretic Peptide and cardiac troponin T in patients with acute heart failure. Am J Cardiol. 2009;103(12):1753–9.  https://doi.org/10.1016/j.amjcard.2009.02.029.CrossRefPubMedGoogle Scholar
  11. 11.
    Naruse H, Ishii J, Kawai T, Hattori K, Ishikawa M, Okumura M, et al. Cystatin C in acute heart failure without advanced renal impairment. Am J Med. 2009;122(6):566–73.  https://doi.org/10.1016/j.amjmed.2008.10.042.CrossRefPubMedGoogle Scholar
  12. 12.
    Kim TH, Kim H, Kim IC. The potential of cystatin-C to evaluate the prognosis of acute heart failure: A comparative study. Acute Card Care. 2015;17(4):72–6.  https://doi.org/10.1080/17482941.2016.1203440.CrossRefPubMedGoogle Scholar
  13. 13.
    Rafouli-Stergiou P, Parissis J, Farmakis D, Bistola V, Nikolaou M, Vasiliadis K, et al. Prognostic value of in-hospital change in cystatin C in patients with acutely decompensated heart failure and renal dysfunction. Int J Cardiol. 2015;182:74–6.  https://doi.org/10.1016/j.ijcard.2014.12.135.CrossRefPubMedGoogle Scholar
  14. 14.
    Tang WH, Dupont M, Hernandez AF, Voors AA, Hsu AP, Felker GM, et al. Comparative assessment of short-term adverse events in acute heart failure with cystatin C and other estimates of renal function: results from the ASCEND-HF trial. JACC Heart Fail. 2015;3(1):40–9.  https://doi.org/10.1016/j.jchf.2014.06.014.CrossRefPubMedGoogle Scholar
  15. 15.
    Demissei BG, Cotter G, Prescott MF, Felker GM, Filippatos G, Greenberg BH, et al. A multimarker multi-time point-based risk stratification strategy in acute heart failure: results from the RELAX-AHF trial. Eur J Heart Fail. 2017;19(8):1001–10.  https://doi.org/10.1002/ejhf.749.CrossRefPubMedGoogle Scholar
  16. 16.
    Jackson CE, Haig C, Welsh P, Dalzell JR, Tsorlalis IK, McConnachie A, et al. The incremental prognostic and clinical value of multiple novel biomarkers in heart failure. Eur J Heart Fail. 2016;18(12):1491–8.  https://doi.org/10.1002/ejhf.543.CrossRefPubMedGoogle Scholar
  17. 17.
    Kiernan MS, Stevens SR, Tang WHW, Butler J, Anstrom KJ, Birati EY, et al. Determinants of diuretic responsiveness and associated outcomes during acute heart failure hospitalization: an analysis from the NHLBI Heart Failure Network Clinical Trials. J Card Fail. 2018;24(7):428–38.  https://doi.org/10.1016/j.cardfail.2018.02.002.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Legrand M, De Berardinis B, Gaggin HK, Magrini L, Belcher A, Zancla B, et al. Evidence of uncoupling between renal dysfunction and injury in cardiorenal syndrome: insights from the BIONICS study. PLoS One. 2014;9(11):e112313.  https://doi.org/10.1371/journal.pone.0112313.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Sokolski M, Zymlinski R, Biegus J, Siwolowski P, Nawrocka-Millward S, Todd J, et al. Urinary levels of novel kidney biomarkers and risk of true worsening renal function and mortality in patients with acute heart failure. Eur J Heart Fail. 2017;19(6):760–7.  https://doi.org/10.1002/ejhf.746.CrossRefPubMedGoogle Scholar
  20. 20.
    Bonventre JV, Yang L. Kidney injury molecule-1. Curr Opin Crit Care. 2010;16(6):556–61.  https://doi.org/10.1097/MCC.0b013e32834008d3.CrossRefPubMedGoogle Scholar
  21. 21.
    Sabbisetti VS, Waikar SS, Antoine DJ, Smiles A, Wang C, Ravisankar A, et al. Blood kidney injury molecule-1 is a biomarker of acute and chronic kidney injury and predicts progression to ESRD in type I diabetes. J Am Soc Nephrol. 2014;25(10):2177–86.  https://doi.org/10.1681/ASN.2013070758.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Verbrugge FH, Dupont M, Shao Z, Shrestha K, Singh D, Finucan M, et al. Novel urinary biomarkers in detecting acute kidney injury, persistent renal impairment, and all-cause mortality following decongestive therapy in acute decompensated heart failure. J Card Fail. 2013;19(9):621–8.  https://doi.org/10.1016/j.cardfail.2013.07.004.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    •• Ahmad T, Jackson K, Rao VS, WHW T, Brisco-Bacik MA, Chen HH, et al. Worsening renal function in patients with acute heart failure undergoing aggressive diuresis is not associated with tubular injury. Circulation. 2018;137(19):2016–28.  https://doi.org/10.1161/CIRCULATIONAHA.117.030112This study provides evidence that that worsening renal function in the setting of decongestive therapy for heart failure is not always associated with tubular injury, and that patients with an increase in tubular injury markers have paradoxically improved outcomes. CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Grodin JL, Perez AL, Wu Y, Hernandez AF, Butler J, Metra M, et al. Circulating kidney injury molecule-1 levels in acute heart failure: insights from the ASCEND-HF Trial (Acute study of clinical effectiveness of nesiritide in decompensated heart failure). JACC Heart Fail. 2015;3(10):777–85.  https://doi.org/10.1016/j.jchf.2015.06.006.CrossRefPubMedGoogle Scholar
  25. 25.
    Emmens JE, Ter Maaten JM, Matsue Y, Metra M, O'Connor CM, Ponikowski P, et al. Plasma kidney injury molecule-1 in heart failure: renal mechanisms and clinical outcome. Eur J Heart Fail. 2016;18(6):641–9.  https://doi.org/10.1002/ejhf.426.CrossRefPubMedGoogle Scholar
  26. 26.
    Mishra J, Mori K, Ma Q, Kelly C, Yang J, Mitsnefes M, et al. Amelioration of ischemic acute renal injury by neutrophil gelatinase-associated lipocalin. J Am Soc Nephrol. 2004;15(12):3073–82.  https://doi.org/10.1097/01.ASN.0000145013.44578.45.CrossRefPubMedGoogle Scholar
  27. 27.
    Schmidt-Ott KM. Neutrophil gelatinase-associated lipocalin as a biomarker of acute kidney injury--where do we stand today? Nephrol Dial Transplant. 2011;26(3):762–4.  https://doi.org/10.1093/ndt/gfr006.CrossRefPubMedGoogle Scholar
  28. 28.
    Dupont M, Shrestha K, Singh D, Awad A, Kovach C, Scarcipino M, et al. Lack of significant renal tubular injury despite acute kidney injury in acute decompensated heart failure. Eur J Heart Fail. 2012;14(6):597–604.  https://doi.org/10.1093/eurjhf/hfs039.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Murray PT, Wettersten N, van Veldhuisen DJ, Mueller C, Filippatos G, Nowak R, et al. Utility of urine neutrophil gelatinase-associated lipocalin for worsening renal function during hospitalization for acute heart failure: primary findings for urine N-gal Acute Kidney Injury N-gal Evaluation of Symptomatic heart faIlure Study (AKINESIS). J Card Fail. 2019.  https://doi.org/10.1016/j.cardfail.2019.05.009.CrossRefGoogle Scholar
  30. 30.
    Nakada Y, Kawakami R, Matsui M, Ueda T, Nakano T, Takitsume A, et al. Prognostic value of urinary neutrophil gelatinase-associated lipocalin on the first day of admission for adverse events in patients with acute decompensated heart failure. J Am Heart Assoc. 2017;6(5).  https://doi.org/10.1161/JAHA.116.004582.
  31. 31.
    Shirakabe A, Hata N, Kobayashi N, Okazaki H, Shinada T, Tomita K, et al. Serum heart-type fatty acid-binding protein level can be used to detect acute kidney injury on admission and predict an adverse outcome in patients with acute heart failure. Circ J. 2015;79(1):119–28.  https://doi.org/10.1253/circj.CJ-14-0653.CrossRefPubMedGoogle Scholar
  32. 32.
    Shrestha K, Shao Z, Singh D, Dupont M, Tang WH. Relation of systemic and urinary neutrophil gelatinase-associated lipocalin levels to different aspects of impaired renal function in patients with acute decompensated heart failure. Am J Cardiol. 2012;110(9):1329–35.  https://doi.org/10.1016/j.amjcard.2012.06.035.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Soyler C, Tanriover MD, Ascioglu S, Aksu NM, Arici M. Urine neutrophil gelatinase-associated lipocalin levels predict acute kidney injury in acute decompensated heart failure patients. Ren Fail. 2015;37(5):772–6.  https://doi.org/10.3109/0886022X.2015.1033324.CrossRefPubMedGoogle Scholar
  34. 34.
    Yang X, Chen C, Tian J, Zha Y, Xiong Y, Sun Z, et al. Urinary angiotensinogen level predicts AKI in acute decompensated heart failure: a prospective, two-stage study. J Am Soc Nephrol. 2015;26(8):2032–41.  https://doi.org/10.1681/ASN.2014040408.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Aghel A, Shrestha K, Mullens W, Borowski A, Tang WH. Serum neutrophil gelatinase-associated lipocalin (NGAL) in predicting worsening renal function in acute decompensated heart failure. J Card Fail. 2010;16(1):49–54.  https://doi.org/10.1016/j.cardfail.2009.07.003.CrossRefPubMedGoogle Scholar
  36. 36.
    Alvelos M, Pimentel R, Pinho E, Gomes A, Lourenco P, Teles MJ, et al. Neutrophil gelatinase-associated lipocalin in the diagnosis of type 1 cardio-renal syndrome in the general ward. Clin J Am Soc Nephrol. 2011;6(3):476–81.  https://doi.org/10.2215/CJN.06140710.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Macdonald S, Arendts G, Nagree Y, Xu XF. Neutrophil gelatinase-associated lipocalin (NGAL) predicts renal injury in acute decompensated cardiac failure: a prospective observational study. BMC Cardiovasc Disord. 2012;12:8.  https://doi.org/10.1186/1471-2261-12-8.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Maisel AS, Wettersten N, van Veldhuisen DJ, Mueller C, Filippatos G, Nowak R, et al. Neutrophil gelatinase-associated lipocalin for acute kidney injury during acute heart failure hospitalizations: the AKINESIS Study. J Am Coll Cardiol. 2016;68(13):1420–31.  https://doi.org/10.1016/j.jacc.2016.06.055.CrossRefPubMedGoogle Scholar
  39. 39.
    Damman K, Valente MAE, van Veldhuisen DJ, Cleland JGF, O’Connor CM, Metra M, et al. Plasma neutrophil gelatinase-associated lipocalin and predicting clinically relevant worsening renal function in acute heart failure. Int J Mol Sci. 2017;18(7).  https://doi.org/10.3390/ijms18071470.CrossRefGoogle Scholar
  40. 40.
    Maisel AS, Mueller C, Fitzgerald R, Brikhan R, Hiestand BC, Iqbal N, et al. Prognostic utility of plasma neutrophil gelatinase-associated lipocalin in patients with acute heart failure: the NGAL EvaLuation Along with B-type NaTriuretic Peptide in acutely decompensated heart failure (GALLANT) trial. Eur J Heart Fail. 2011;13(8):846–51.  https://doi.org/10.1093/eurjhf/hfr087.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Alvelos M, Lourenco P, Dias C, Amorim M, Rema J, Leite AB, et al. Prognostic value of neutrophil gelatinase-associated lipocalin in acute heart failure. Int J Cardiol. 2013;165(1):51–5.  https://doi.org/10.1016/j.ijcard.2011.07.080.CrossRefPubMedGoogle Scholar
  42. 42.
    van Deursen VM, Damman K, Voors AA, van der Wal MH, Jaarsma T, van Veldhuisen DJ, et al. Prognostic value of plasma neutrophil gelatinase-associated lipocalin for mortality in patients with heart failure. Circ Heart Fail. 2014;7(1):35–42.  https://doi.org/10.1161/CIRCHEARTFAILURE.113.000242.CrossRefPubMedGoogle Scholar
  43. 43.
    Shirakabe A, Hata N, Kobayashi N, Okazaki H, Matsushita M, Shibata Y, et al. Worsening renal failure in patients with acute heart failure: the importance of cardiac biomarkers. ESC Heart Fail. 2019;6(2):416–27.  https://doi.org/10.1002/ehf2.12414.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Kobori H, Nangaku M, Navar LG, Nishiyama A. The intrarenal renin-angiotensin system: from physiology to the pathobiology of hypertension and kidney disease. Pharmacol Rev. 2007;59(3):251–87.  https://doi.org/10.1124/pr.59.3.3.CrossRefPubMedGoogle Scholar
  45. 45.
    Kobori H, Harrison-Bernard LM, Navar LG. Urinary excretion of angiotensinogen reflects intrarenal angiotensinogen production. Kidney Int. 2002;61(2):579–85.  https://doi.org/10.1046/j.1523-1755.2002.00155.x.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Ba Aqeel SH, Sanchez A, Batlle D. Angiotensinogen as a biomarker of acute kidney injury. Clin Kidney J. 2017;10(6):759–68.  https://doi.org/10.1093/ckj/sfx087.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Maatman RG, Van Kuppevelt TH, Veerkamp JH. Two types of fatty acid-binding protein in human kidney. Isolation, characterization and localization. Biochem J. 1991;273(Pt 3):759–66.  https://doi.org/10.1042/bj2730759.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Shirakabe A, Hata N, Kobayashi N, Okazaki H, Matsushita M, Shibata Y, et al. Clinical usefulness of urinary liver fatty acid-binding protein excretion for predicting acute kidney injury during the first 7 days and the short-term prognosis in acute heart failure patients with non-chronic kidney disease. Cardiorenal Med. 2017;7(4):301–15.  https://doi.org/10.1159/000477825.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Hishikari K, Hikita H, Nakamura S, Nakagama S, Mizusawa M, Yamamoto T, et al. Urinary liver-type fatty acid-binding protein level as a predictive biomarker of acute kidney injury in patients with acute decompensated heart failure. Cardiorenal Med. 2017;7(4):267–75.  https://doi.org/10.1159/000476002.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Okubo Y, Sairaku A, Morishima N, Ogi H, Matsumoto T, Kinoshita H, et al. Increased urinary liver-type fatty acid-binding protein level predicts worsening renal function in patients with acute heart failure. J Card Fail. 2018;24(8):520–4.  https://doi.org/10.1016/j.cardfail.2018.07.003.CrossRefPubMedGoogle Scholar
  51. 51.
    Parikh CR, Jani A, Melnikov VY, Faubel S, Edelstein CL. Urinary interleukin-18 is a marker of human acute tubular necrosis. Am J Kidney Dis. 2004;43(3):405–14.CrossRefGoogle Scholar
  52. 52.
    Parikh CR, Abraham E, Ancukiewicz M, Edelstein CL. Urine IL-18 is an early diagnostic marker for acute kidney injury and predicts mortality in the intensive care unit. J Am Soc Nephrol. 2005;16(10):3046–52.  https://doi.org/10.1681/ASN.2005030236.CrossRefPubMedGoogle Scholar
  53. 53.
    Neves FM, Meneses GC, Sousa NE, Menezes RR, Parahyba MC, Martins AM, et al. Syndecan-1 in acute decompensated heart failure--association with renal function and mortality. Circ J. 2015;79(7):1511–9.  https://doi.org/10.1253/circj.CJ-14-1195.CrossRefPubMedGoogle Scholar
  54. 54.
    Kashani K, Al-Khafaji A, Ardiles T, Artigas A, Bagshaw SM, Bell M, et al. Discovery and validation of cell cycle arrest biomarkers in human acute kidney injury. Crit Care. 2013;17(1):R25.  https://doi.org/10.1186/cc12503.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Meersch M, Schmidt C, Van Aken H, Martens S, Rossaint J, Singbartl K, et al. Urinary TIMP-2 and IGFBP7 as early biomarkers of acute kidney injury and renal recovery following cardiac surgery. PLoS One. 2014;9(3):e93460.  https://doi.org/10.1371/journal.pone.0093460.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Schanz M, Shi J, Wasser C, Alscher MD, Kimmel M. Urinary [TIMP-2] x [IGFBP7] for risk prediction of acute kidney injury in decompensated heart failure. Clin Cardiol. 2017;40(7):485–91.  https://doi.org/10.1002/clc.22683.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Donadio C, Lucchesi A, Ardini M, Giordani R. Cystatin C, beta 2-microglobulin, and retinol-binding protein as indicators of glomerular filtration rate: comparison with plasma creatinine. J Pharm Biomed Anal. 2001;24(5-6):835–42.  https://doi.org/10.1016/s0731-7085(00)00550-1.CrossRefPubMedGoogle Scholar
  58. 58.
    Fiseha T, Tamir Z. Urinary markers of tubular injury in early diabetic nephropathy. Int J Nephrol. 2016;2016:4647685.  https://doi.org/10.1155/2016/4647685.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Kawai K, Kawashima S, Miyazaki T, Tajiri E, Mori M, Kitazaki K, et al. Serum beta2-microglobulin concentration as a novel marker to distinguish levels of risk in acute heart failure patients. J Cardiol. 2010;55(1):99–107.  https://doi.org/10.1016/j.jjcc.2009.10.003.CrossRefPubMedGoogle Scholar
  60. 60.
    Filler G, Kusserow C, Lopes L, Kobrzynski M. Beta-trace protein as a marker of GFR--history, indications, and future research. Clin Biochem. 2014;47(13-14):1188–94.  https://doi.org/10.1016/j.clinbiochem.2014.04.027.CrossRefPubMedGoogle Scholar
  61. 61.
    Manzano-Fernández S, Januzzi JL, Boronat-Garcia M, Bonaque-González JC, Truong QA, Pastor-Pérez FJ, et al. β-Trace protein and cystatin C as predictors of long-term outcomes in patients with acute heart failure. J Am Coll Cardiol. 2011;57(7):849–58.  https://doi.org/10.1016/j.jacc.2010.08.644.CrossRefPubMedGoogle Scholar
  62. 62.
    Hoffmann D, Bijol V, Krishnamoorthy A, Gonzalez VR, Frendl G, Zhang Q, et al. Fibrinogen excretion in the urine and immunoreactivity in the kidney serves as a translational biomarker for acute kidney injury. Am J Pathol. 2012;181(3):818–28.  https://doi.org/10.1016/j.ajpath.2012.06.004.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Koyama S, Sato Y, Tanada Y, Fujiwara H, Takatsu Y. Early evolution and correlates of urine albumin excretion in patients presenting with acutely decompensated heart failure. Circ Heart Fail. 2013;6(2):227–32.  https://doi.org/10.1161/CIRCHEARTFAILURE.112.000152.CrossRefPubMedGoogle Scholar
  64. 64.
    Campbell CY, Clarke W, Park H, Haq N, Barone BB, Brotman DJ. Usefulness of cystatin C and prognosis following admission for acute heart failure. Am J Cardiol. 2009;104(3):389–92.  https://doi.org/10.1016/j.amjcard.2009.03.059.CrossRefPubMedGoogle Scholar
  65. 65.
    Carrasco-Sanchez FJ, Galisteo-Almeda L, Paez-Rubio I, Martinez-Marcos FJ, Camacho-Vazquez C, Ruiz-Frutos C, et al. Prognostic value of cystatin C on admission in heart failure with preserved ejection fraction. J Card Fail. 2011;17(1):31–8.  https://doi.org/10.1016/j.cardfail.2010.07.248.CrossRefPubMedGoogle Scholar
  66. 66.
    Carrasco-Sanchez FJ, Perez-Calvo JI, Morales-Rull JL, Galisteo-Almeda L, Paez-Rubio I, Baron-Franco B, et al. Heart failure mortality according to acute variations in N-terminal pro B-type natriuretic peptide and cystatin C levels. J Cardiovasc Med (Hagerstown). 2014;15(2):115–21.  https://doi.org/10.2459/JCM.0b013e3283654bab.CrossRefGoogle Scholar
  67. 67.
    Flores-Blanco PJ, Manzano-Fernandez S, Perez-Calvo JI, Pastor-Perez FJ, Ruiz-Ruiz FJ, Carrasco-Sanchez FJ, et al. Cystatin C-based CKD-EPI equations and N-terminal pro-B-type natriuretic peptide for predicting outcomes in acutely decompensated heart failure. Clin Cardiol. 2015;38(2):106–13.  https://doi.org/10.1002/clc.22362.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Inazumi H, Koyama S, Tanada Y, Fujiwara H, Takatsu Y, Sato Y. Prognostic significance of changes in cystatin C during treatment of acute cardiac decompensation. J Cardiol. 2016;67(1):98–103.  https://doi.org/10.1016/j.jjcc.2015.04.014.CrossRefPubMedGoogle Scholar
  69. 69.
    Lassus JP, Nieminen MS, Peuhkurinen K, Pulkki K, Siirila-Waris K, Sund R, et al. Markers of renal function and acute kidney injury in acute heart failure: definitions and impact on outcomes of the cardiorenal syndrome. Eur Heart J. 2010;31(22):2791–8.  https://doi.org/10.1093/eurheartj/ehq293.CrossRefPubMedGoogle Scholar
  70. 70.
    Pérez-Calvo JI, Ruiz-Ruiz FJ, Carrasco-Sánchez FJ, Morales-Rull JL, Manzano-Fernández S, Galisteo-Almeda L, et al. Prognostic value of serum cystatin C and N-terminal pro b-type natriuretic peptide in patients with acute heart failure. Eur J Intern Med. 2012;23(7):599–603.  https://doi.org/10.1016/j.ejim.2012.06.002.CrossRefPubMedGoogle Scholar
  71. 71.
    Ruan ZB, Zhu L, Yin YG, Chen GC. Cystatin C, N-terminal probrain natriuretic peptides and outcomes in acute heart failure with acute kidney injury in a 12-month follow-up: insights into the cardiorenal syndrome. J Res Med Sci. 2014;19(5):404–9.PubMedPubMedCentralGoogle Scholar
  72. 72.
    Selcuk H, Selcuk MT, Maden O, Balci KG, Balci MM, Tekeli S, et al. The impact of admission cystatin C levels on in-hospital and three-year mortality rates in acute decompensated heart failure. Cardiovasc J Afr. 2018;29(5):305–9.  https://doi.org/10.5830/CVJA-2018-035.CrossRefPubMedGoogle Scholar
  73. 73.
    Breidthardt T, Socrates T, Drexler B, Noveanu M, Heinisch C, Arenja N, et al. Plasma neutrophil gelatinase-associated lipocalin for the prediction of acute kidney injury in acute heart failure. Crit Care. 2012;16(1):R2.  https://doi.org/10.1186/cc10600.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Chen C, Yang X, Lei Y, Zha Y, Liu H, Ma C, et al. Urinary biomarkers at the time of AKI diagnosis as predictors of progression of AKI among patients with acute cardiorenal syndrome. Clin J Am Soc Nephrol. 2016;11(9):1536–44.  https://doi.org/10.2215/CJN.00910116.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Mortara A, Bonadies M, Mazzetti S, Fracchioni I, Delfino P, Chioffi M, et al. Neutrophil gelatinase-associated lipocalin predicts worsening of renal function in acute heart failure: methodological and clinical issues. J Cardiovasc Med (Hagerstown). 2013;14(9):629–34.  https://doi.org/10.2459/JCM.0b013e3283629ca6.CrossRefGoogle Scholar
  76. 76.
    Waikar SS, Betensky RA, Emerson SC, Bonventre JV. Imperfect gold standards for kidney injury biomarker evaluation. J Am Soc Nephrol. 2012;23(1):13–21.  https://doi.org/10.1681/ASN.2010111124.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Metra M, Davison B, Bettari L, Sun H, Edwards C, Lazzarini V, et al. Is worsening renal function an ominous prognostic sign in patients with acute heart failure? The role of congestion and its interaction with renal function. Circ Heart Fail. 2012;5(1):54–62.  https://doi.org/10.1161/CIRCHEARTFAILURE.111.963413.CrossRefPubMedGoogle Scholar
  78. 78.
    Salah K, Kok WE, Eurlings LW, Bettencourt P, Pimenta JM, Metra M, et al. Competing risk of cardiac status and renal function during hospitalization for acute decompensated heart failure. JACC Heart Fail. 2015;3(10):751–61.  https://doi.org/10.1016/j.jchf.2015.05.009.CrossRefPubMedGoogle Scholar
  79. 79.
    Lala A, McNulty SE, Mentz RJ, Dunlay SM, Vader JM, OF AE, et al. Relief and recurrence of congestion during and after hospitalization for acute heart failure: insights from diuretic optimization strategy evaluation in Acute Decompensated Heart Failure (DOSE-AHF) and Cardiorenal Rescue Study in Acute Decompensated Heart Failure (CARESS-HF). Circ Heart Fail. 2015;8(4):741–8.  https://doi.org/10.1161/CIRCHEARTFAILURE.114.001957.CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.••
    Brisco MA, Zile MR, Hanberg JS, Wilson FP, Parikh CR, Coca SG, et al. Relevance of changes in serum creatinine during a heart failure trial of decongestive strategies: insights from the DOSE Trial. J Card Fail. 2016;22(10):753–60.  https://doi.org/10.1016/j.cardfail.2016.06.423This analysis of data from the Heart Failure Network DOSE trial found that an increase in creatinine was paradoxically associated with improved outcomes. CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Stolfo D, Stenner E, Merlo M, Porto AG, Moras C, Barbati G, et al. Prognostic impact of BNP variations in patients admitted for acute decompensated heart failure with in-hospital worsening renal function. Heart Lung Circ. 2017;26(3):226–34.  https://doi.org/10.1016/j.hlc.2016.06.1205.CrossRefPubMedGoogle Scholar
  82. 82.
    Davila C, Reyentovich A, Katz SD. Clinical correlates of hemoconcentration during hospitalization for acute decompensated heart failure. J Card Fail. 2011;17(12):1018–22.  https://doi.org/10.1016/j.cardfail.2011.08.004.CrossRefPubMedGoogle Scholar
  83. 83.
    Testani JM, Brisco MA, Chen J, McCauley BD, Parikh CR, Tang WH. Timing of hemoconcentration during treatment of acute decompensated heart failure and subsequent survival: importance of sustained decongestion. J Am Coll Cardiol. 2013;62(6):516–24.  https://doi.org/10.1016/j.jacc.2013.05.027.CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Testani JM, Chen J, McCauley BD, Kimmel SE, Shannon RP. Potential effects of aggressive decongestion during the treatment of decompensated heart failure on renal function and survival. Circulation. 2010;122(3):265–72.  https://doi.org/10.1161/CIRCULATIONAHA.109.933275.CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    van der Meer P, Postmus D, Ponikowski P, Cleland JG, O'Connor CM, Cotter G, et al. The predictive value of short-term changes in hemoglobin concentration in patients presenting with acute decompensated heart failure. J Am Coll Cardiol. 2013;61(19):1973–81.  https://doi.org/10.1016/j.jacc.2012.12.050.CrossRefPubMedGoogle Scholar
  86. 86.••
    Rao VS, Ahmad T, Brisco-Bacik MA, Bonventre JV, Wilson FP, Siew ED, et al. Renal effects of intensive volume removal in heart failure patients with preexisting worsening renal function. Circ Heart Fail. 2019;12(6):e005552.  https://doi.org/10.1161/CIRCHEARTFAILURE.118.005552This study showed that aggressive diuresis in patients with preexisting worsening renal function does not always lead to further worsening of renal function, and that those who had increase in biomarkers of tubular injury tended to have better improvement in renal function. CrossRefPubMedGoogle Scholar
  87. 87.
    Chen HH, Anstrom KJ, Givertz MM, Stevenson LW, Semigran MJ, Goldsmith SR, et al. Low-dose dopamine or low-dose nesiritide in acute heart failure with renal dysfunction: the ROSE acute heart failure randomized trial. JAMA. 2013;310(23):2533–43.  https://doi.org/10.1001/jama.2013.282190.CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Cuffe MS, Califf RM, Adams KF Jr, Benza R, Bourge R, Colucci WS, et al. Short-term intravenous milrinone for acute exacerbation of chronic heart failure: a randomized controlled trial. JAMA. 2002;287(12):1541–7.  https://doi.org/10.1001/jama.287.12.1541.CrossRefPubMedGoogle Scholar
  89. 89.
    O’Connor CM, Starling RC, Hernandez AF, Armstrong PW, Dickstein K, Hasselblad V, et al. Effect of nesiritide in patients with acute decompensated heart failure. N Engl J Med. 2011;365(1):32–43.  https://doi.org/10.1056/NEJMoa1100171.CrossRefPubMedGoogle Scholar
  90. 90.
    Voors AA, Dittrich HC, Massie BM, DeLucca P, Mansoor GA, Metra M, et al. Effects of the adenosine A1 receptor antagonist rolofylline on renal function in patients with acute heart failure and renal dysfunction: results from PROTECT (Placebo-Controlled Randomized Study of the Selective Adenosine A1 Receptor Antagonist Rolofylline for Patients Hospitalized with Acute Decompensated Heart Failure and Volume Overload to Assess Treatment Effect on Congestion and Renal Function). J Am Coll Cardiol. 2011;57(19):1899–907.  https://doi.org/10.1016/j.jacc.2010.11.057.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Alexander S. MangubaJr
    • 1
  • Xavier Vela Parada
    • 1
  • Steven G. Coca
    • 2
  • Anuradha Lala
    • 3
    Email author
  1. 1.Department of MedicineIcahn School of Medicine at Mount Sinai/St. Luke’s-Roosevelt Hospital CenterNew YorkUSA
  2. 2.Division of NephrologyIcahn School of Medicine at Mount SinaiNew YorkUSA
  3. 3.The Zena and Michael A. Wiener Cardiovascular InstituteIcahn School of Medicine at Mount SinaiNew YorkUSA

Personalised recommendations