Advertisement

Current Heart Failure Reports

, Volume 16, Issue 6, pp 274–284 | Cite as

Cardiac Biomarkers in Advanced Heart Failure: How Can They Impact Our Pre-transplant or Pre-LVAD Decision-making

  • Imo Ebong
  • Sula Mazimba
  • Khadijah BreathettEmail author
Biomarkers of Heart Failure (WH Tang & J Grodin, Section Editors)
Part of the following topical collections:
  1. Topical Collection on Biomarkers of Heart Failure

Abstract

Purpose of Review

Decision-making in advanced heart failure (HF) is a complex process that involves careful consideration of competing tradeoffs of risks and benefits in regard to heart transplantation (HT) or left ventricular assist device (LVAD) placement. The purpose of this review is to discuss how biomarkers may affect decision-making for HT or LVAD implantation.

Recent Findings

N-Terminal probrain natriuretic peptide, soluble suppression of tumorigenicity-2, galectin-3, copeptin, and troponin T levels are associated with HF survival and can help identify the appropriate timing for advanced HF therapies. Patients at risk of right ventricular failure after LVAD implantation can be identified with preimplant biomarkers of extracellular matrix turnover, neurohormonal activation, and inflammation.

Summary

There is limited data on the adoption of biomarker measurement for decision-making in the allocation of advanced HF therapies. Nonetheless, biomarkers can improve risk stratification and prognostication thereby optimizing patient selection for HT and LVAD implantation.

Keywords

Decision-making Heart transplant Heart failure Ventricular assist device 

Abbreviations

ADHF

Acute decompensated heart failure

ADHERE

Acute Decompensated National Heart Failure Registry

ATTEND

Acute decompensated heart failure syndromes

Bio-SHiFT

Role of Biomarkers and Echocardiography in Prediction of Prognosis of Chronic Heart Failure Patients

COACH

Coordinating Study Evaluating Outcomes of Advising and Counseling in Heart Failure

CORONA

Controlled Rosuvastatin Multinational Trial in Heart Failure

CRT-D

Cardiac resynchronization therapy-defibrillators

GALLANT

Neutrophil gelatinase-associated lipocalin evaluation along with brain natriuretic peptide in acutely decompensated heart failure

GDF-15

Growth differentiation factor 15

GISSI-HF

Gruppo Italiano per lo Studio della Sopravvivenza nella Insufficienza Cardiaca-Heart Failure

HF

Heart failure

HF-ACTION

Heart failure: a controlled trial investigating outcomes of exercise training

LVAD

Left ventricular assist device

MOLITOR

Impact of therapy optimization on the level of biomarkers in patients with acute and decompensated chronic heart failure

NGAL

Neutrophil gelatinase-associated lipocalin

NT-proBNP

N-Terminal pro brain natriuretic peptide

PRAISE-2

Prospective Randomized Amlodipine Evaluation 2

PROSE-ICD

Prospective Observational Study of Implantable Cardioverter-Defibrillators

sST2

Soluble suppression of tumorigenicity-2

Val-HeFT

Valsartan Heart Failure trial

Notes

Funding Information

Dr. Breathett received support from the National Heart, Lung, and Blood Institute K01HL142848; University of Arizona Health Sciences, Strategic Priorities Faculty Initiative Grant; and University of Arizona, Sarver Heart Center, Women of Color Heart Health Education Committee.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflicts of interest.

Human and Animal rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. 1.
    Mehra MR, Canter CE, Hannan MM, Semigran MJ, Uber PA, Baran DA, et al. The 2016 International Society for Heart Lung Transplantation listing criteria for heart transplantation: a 10-year update. J Heart Lung Transplant. 2016;35(1):1–23.  https://doi.org/10.1016/j.healun.2015.10.023.CrossRefPubMedGoogle Scholar
  2. 2.
    Feldman D, Pamboukian SV, Teuteberg JJ, Birks E, Lietz K, Moore SA, et al. The 2013 International Society for Heart and Lung Transplantation Guidelines for mechanical circulatory support: executive summary. J Heart Lung Transplant. 2013;32(2):157–87.  https://doi.org/10.1016/j.healun.2012.09.013.CrossRefGoogle Scholar
  3. 3.
    Fang JC, Ewald GA, Allen LA, Butler J, Westlake Canary CA, Colvin-Adams M, et al. Advanced (stage D) heart failure: a statement from the Heart Failure Society of America Guidelines Committee. J Card Fail. 2015;21(6):519–34.  https://doi.org/10.1016/j.cardfail.2015.04.013.CrossRefPubMedGoogle Scholar
  4. 4.
    Scrutinio D, Guida P, Ammirati E, Oliva F, Frigerio M. Long-term prognostic implications of the ADHF/NT-proBNP risk score in patients admitted with advanced heart failure. J Heart Lung Transplant. 2016;35(10):1264–7.  https://doi.org/10.1016/j.healun.2016.07.007.CrossRefPubMedGoogle Scholar
  5. 5.
    Zapka JG, Moran WP, Goodlin SJ, Knott K. Advanced heart failure: prognosis, uncertainty, and decision making. Congest Heart Fail. 2007;13(5):268–74.CrossRefGoogle Scholar
  6. 6.
    Allen LA, Stevenson LW, Grady KL, Goldstein NE, Matlock DD, Arnold RM, et al. Decision making in advanced heart failure: a scientific statement from the American Heart Association. Circulation. 2012;125(15):1928–52.  https://doi.org/10.1161/CIR.0b013e31824f2173.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DE Jr, Colvin MM, et al. 2017 ACC/AHA/HFSA Focused Update of the 2013 ACCF/AHA Guideline for the Management of Heart Failure: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Failure Society of America. Circulation. 2017;136(6):e137–e61.  https://doi.org/10.1161/cir.0000000000000509.CrossRefPubMedGoogle Scholar
  8. 8.
    Racca V, Castiglioni P, Panzarino C, Saresella M, Marventano I, Verde A, et al. Differences in biochemical markers between heart-transplanted and left ventricular assist device implanted patients, during cardiac rehabilitation. Sci Rep. 2018;8(1):10816.  https://doi.org/10.1038/s41598-018-29193-0.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Kato TS, Collado E, Khawaja T, Kawano Y, Kim M, Farr M, et al. Value of peak exercise oxygen consumption combined with B-type natriuretic peptide levels for optimal timing of cardiac transplantation. Circ Heart Fail. 2013;6(1):6–14.  https://doi.org/10.1161/CIRCHEARTFAILURE.112.968123.CrossRefPubMedGoogle Scholar
  10. 10.
    Chyu J, Fonarow GC, Tseng CH, Horwich TB. Four-variable risk model in men and women with heart failure. Circ Heart Fail. 2014;7(1):88–95.  https://doi.org/10.1161/CIRCHEARTFAILURE.113.000404.CrossRefPubMedGoogle Scholar
  11. 11.
    AbouEzzeddine OF, French B, Mirzoyev SA, Jaffe AS, Levy WC, Fang JC, et al. From statistical significance to clinical relevance: a simple algorithm to integrate brain natriuretic peptide and the Seattle Heart Failure Model for risk stratification in heart failure. J Heart Lung Transplant. 2016;35(6):714–21.  https://doi.org/10.1016/j.healun.2016.01.016.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Rothenburger M, Wichter T, Schmid C, Stypmann J, Tjan TD, Berendes E, et al. Aminoterminal pro type B natriuretic peptide as a predictive and prognostic marker in patients with chronic heart failure. J Heart Lung Transplant. 2004;23(10):1189–97.  https://doi.org/10.1016/j.healun.2004.07.006.CrossRefPubMedGoogle Scholar
  13. 13.
    Scrutinio D, Ammirati E, Guida P, Passantino A, Raimondo R, Guida V, et al. Clinical utility of N-terminal pro-B-type natriuretic peptide for risk stratification of patients with acute decompensated heart failure. Derivation and validation of the ADHF/NT-proBNP risk score. Int J Cardiol. 2013;168(3):2120–6.  https://doi.org/10.1016/j.ijcard.2013.01.005.CrossRefPubMedGoogle Scholar
  14. 14.
    • Najjar E, Faxen UL, Hage C, Donal E, Daubert JC, Linde C, et al. ST2 in heart failure with preserved and reduced ejection fraction. Scand Cardiovasc J. 2019;53(1):21–7.  https://doi.org/10.1080/14017431.2019.1583363sST2 is associated with death or hospitalization in heart failure with preserved ejection fraction, and with death, heart transplantation, or LVAD implantation in heart failure with reduced ejection fraction. CrossRefPubMedGoogle Scholar
  15. 15.
    Sharma A, Stevens SR, Lucas J, Fiuzat M, Adams KF, Whellan DJ, et al. Utility of growth differentiation factor-15, a marker of oxidative stress and inflammation, in chronic heart failure: insights from the HF-ACTION study. JACC Heart Fail. 2017;5(10):724–34.  https://doi.org/10.1016/j.jchf.2017.07.013.CrossRefPubMedGoogle Scholar
  16. 16.
    van der Velde AR, Gullestad L, Ueland T, Aukrust P, Guo Y, Adourian A, et al. Prognostic value of changes in galectin-3 levels over time in patients with heart failure: data from CORONA and COACH. Circ Heart Fail. 2013;6(2):219–26.  https://doi.org/10.1161/CIRCHEARTFAILURE.112.000129.CrossRefPubMedGoogle Scholar
  17. 17.
    • French B, Wang L, Ky B, Brandimarto J, Basuray A, Fang JC, et al. Prognostic value of galectin-3 for adverse outcomes in chronic heart failure. J Card Fail. 2016;22(4):256–62.  https://doi.org/10.1016/j.cardfail.2015.10.022Elevated galectin-3 levels were associated with increased risk of all-cause mortality, heart transplantation, or VAD placement among participants enrolled in the Penn heart failure study. CrossRefPubMedGoogle Scholar
  18. 18.
    Feola M, Testa M, Leto L, Cardone M, Sola M, Rosso GL. Role of galectin-3 and plasma B type-natriuretic peptide in predicting prognosis in discharged chronic heart failure patients. Medicine (Baltimore). 2016;95(26):e4014.  https://doi.org/10.1097/MD.0000000000004014.CrossRefGoogle Scholar
  19. 19.
    Minami Y, Kajimoto K, Sato N, Hagiwara N, Takano T, Investigators AS. C-reactive protein level on admission and time to and cause of death in patients hospitalized for acute heart failure. Eur Heart J Qual Care Clin Outcomes. 2017;3(2):148–56.  https://doi.org/10.1093/ehjqcco/qcw054.CrossRefPubMedGoogle Scholar
  20. 20.
    • Zabarovskaja S, Hage C, Gabrielsen A, Mellbin L, Lund LH. Copeptin in heart failure, post-left ventricular assist device and post-heart transplantation. Heart Lung Circ. 2017;26(2):143–9.  https://doi.org/10.1016/j.hlc.2016.05.119Copeptin independently predicted death, heart transplantation, or LVAD implantation in advanced heart failure patients. CrossRefPubMedGoogle Scholar
  21. 21.
    Maisel AS, Mueller C, Fitzgerald R, Brikhan R, Hiestand BC, Iqbal N, et al. Prognostic utility of plasma neutrophil gelatinase-associated lipocalin in patients with acute heart failure: the NGAL EvaLuation Along with B-type NaTriuretic Peptide in acutely decompensated heart failure (GALLANT) trial. Eur J Heart Fail. 2011;13(8):846–51.  https://doi.org/10.1093/eurjhf/hfr087.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Alvelos M, Lourenco P, Dias C, Amorim M, Rema J, Leite AB, et al. Prognostic value of neutrophil gelatinase-associated lipocalin in acute heart failure. Int J Cardiol. 2013;165(1):51–5.  https://doi.org/10.1016/j.ijcard.2011.07.080.CrossRefPubMedGoogle Scholar
  23. 23.
    van Deursen VM, Damman K, Voors AA, van der Wal MH, Jaarsma T, van Veldhuisen DJ, et al. Prognostic value of plasma neutrophil gelatinase-associated lipocalin for mortality in patients with heart failure. Circ Heart Fail. 2014;7(1):35–42.  https://doi.org/10.1161/circheartfailure.113.000242.CrossRefPubMedGoogle Scholar
  24. 24.
    Rafouli-Stergiou P, Parissis J, Farmakis D, Bistola V, Nikolaou M, Vasiliadis K, et al. Prognostic value of in-hospital change in cystatin C in patients with acutely decompensated heart failure and renal dysfunction. Int J Cardiol. 2015;182:74–6.  https://doi.org/10.1016/j.ijcard.2014.12.135.CrossRefPubMedGoogle Scholar
  25. 25.
    Levy WC, Mozaffarian D, Linker DT, Sutradhar SC, Anker SD, Cropp AB, et al. The Seattle Heart Failure Model: prediction of survival in heart failure. Circulation. 2006;113(11):1424–33.  https://doi.org/10.1161/CIRCULATIONAHA.105.584102.CrossRefPubMedGoogle Scholar
  26. 26.
    Mantovani A, Targher G, Temporelli PL, Lucci D, Gonzini L, Nicolosi GL, et al. Prognostic impact of elevated serum uric acid levels on long-term outcomes in patients with chronic heart failure: a post-hoc analysis of the GISSI-HF (Gruppo Italiano per lo Studio della Sopravvivenza nella Insufficienza Cardiaca-Heart Failure) trial. Metabolism. 2018;83:205–15.  https://doi.org/10.1016/j.metabol.2018.02.007.CrossRefPubMedGoogle Scholar
  27. 27.
    Lassus J, Harjola VP, Sund R, Siirila-Waris K, Melin J, Peuhkurinen K, et al. Prognostic value of cystatin C in acute heart failure in relation to other markers of renal function and NT-proBNP. Eur Heart J. 2007;28(15):1841–7.  https://doi.org/10.1093/eurheartj/ehl507.CrossRefPubMedGoogle Scholar
  28. 28.
    Fonarow GC, Peacock WF, Horwich TB, Phillips CO, Givertz MM, Lopatin M, et al. Usefulness of B-type natriuretic peptide and cardiac troponin levels to predict in-hospital mortality from ADHERE. Am J Cardiol. 2008;101(2):231–7.  https://doi.org/10.1016/j.amjcard.2007.07.066.CrossRefPubMedGoogle Scholar
  29. 29.
    Manzano-Fernandez S, Boronat-Garcia M, Albaladejo-Oton MD, Pastor P, Garrido IP, Pastor-Perez FJ, et al. Complementary prognostic value of cystatin C, N-terminal pro-B-type natriuretic Peptide and cardiac troponin T in patients with acute heart failure. Am J Cardiol. 2009;103(12):1753–9.  https://doi.org/10.1016/j.amjcard.2009.02.029.CrossRefPubMedGoogle Scholar
  30. 30.
    Ky B, French B, McCloskey K, Rame JE, McIntosh E, Shahi P, et al. High-sensitivity ST2 for prediction of adverse outcomes in chronic heart failure. Circ Heart Fail. 2011;4(2):180–7.  https://doi.org/10.1161/CIRCHEARTFAILURE.110.958223.CrossRefPubMedGoogle Scholar
  31. 31.
    Tentzeris I, Jarai R, Farhan S, Perkmann T, Schwarz MA, Jakl G, et al. Complementary role of copeptin and high-sensitivity troponin in predicting outcome in patients with stable chronic heart failure. Eur J Heart Fail. 2011;13(7):726–33.  https://doi.org/10.1093/eurjhf/hfr049.CrossRefPubMedGoogle Scholar
  32. 32.
    Nauffal V, Tanawuttiwat T, Zhang Y, Rickard J, Marine JE, Butcher B, et al. Predictors of mortality, LVAD implant, or heart transplant in primary prevention cardiac resynchronization therapy recipients: the HF-CRT score. Heart Rhythm. 2015;12(12):2387–94.  https://doi.org/10.1016/j.hrthm.2015.07.026.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Bettencourt P, Ferreira-Coimbra J, Rodrigues P, Marques P, Moreira H, Pinto MJ, et al. Towards a multi-marker prognostic strategy in acute heart failure: a role for GDF-15. ESC Heart Fail. 2018;5(6):1017–22.  https://doi.org/10.1002/ehf2.12301.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    • Doumouras BS, Lee DS, Levy WC, Alba AC. An appraisal of biomarker-based risk-scoring models in chronic heart failure: which one is best? Curr Heart Fail Rep. 2018;15(1):24–36.  https://doi.org/10.1007/s11897-018-0375-yIncreases in serial NT-proBNP levels were associated with worsening New York Heart Association class and independently predicted cardiac death, heart transplantation, LVAD implantation, or HF hospitalization in the outpatient setting. CrossRefPubMedGoogle Scholar
  35. 35.
    Gardner RS, Ozalp F, Murday AJ, Robb SD, McDonagh TA. N-terminal pro-brain natriuretic peptide: a new gold standard in predicting mortality in patients with advanced heart failure. Eur Heart J. 2003;24(19):1735–43.  https://doi.org/10.1016/j.ehj.2003.07.005.CrossRefPubMedGoogle Scholar
  36. 36.
    Patel AN, Southern WN. BNP-response to acute heart failure treatment identifies high-risk population. Heart Lung Circ. 2019.  https://doi.org/10.1016/j.hlc.2019.02.004.
  37. 37.
    Galvao M, Saeed O, Immekus J, Goldstein DJ, Maybaum S. An international survey to assess referral thresholds for destination therapy in non-inotrope-dependent patients: results of the CONSENSUS-DT study. J Card Fail. 2014;20(7):492–7.  https://doi.org/10.1016/j.cardfail.2014.05.004.CrossRefPubMedGoogle Scholar
  38. 38.
    Sartipy U, Goda A, Mancini DM, Lund LH. Assessment of a University of California, Los Angeles 4-variable risk score for advanced heart failure. J Am Heart Assoc. 2014;3(3):e000998.  https://doi.org/10.1161/JAHA.114.000998.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    O’Meara E, Prescott MF, Claggett B, Rouleau JL, Chiang LM, Solomon SD, et al. Independent prognostic value of serum soluble ST2 measurements in patients with heart failure and a reduced ejection fraction in the PARADIGM-HF Trial (Prospective Comparison of ARNI with ACEI to determine impact on global mortality and morbidity in heart failure). Circ Heart Fail. 2018;11(5):e004446.  https://doi.org/10.1161/CIRCHEARTFAILURE.117.004446.CrossRefPubMedGoogle Scholar
  40. 40.
    Weinberg EO, Shimpo M, Hurwitz S, Tominaga S, Rouleau JL, Lee RT. Identification of serum soluble ST2 receptor as a novel heart failure biomarker. Circulation. 2003;107(5):721–6.  https://doi.org/10.1161/01.cir.0000047274.66749.fe.CrossRefPubMedGoogle Scholar
  41. 41.
    Emdin M, Aimo A, Vergaro G, Bayes-Genis A, Lupon J, Latini R, et al. sST2 predicts outcome in chronic heart failure beyond NT-proBNP and high-sensitivity troponin T. J Am Coll Cardiol. 2018;72(19):2309–20.  https://doi.org/10.1016/j.jacc.2018.08.2165.CrossRefPubMedGoogle Scholar
  42. 42.
    van Vark LC, Lesman-Leegte I, Baart SJ, Postmus D, Pinto YM, Orsel JG, et al. Prognostic value of serial ST2 measurements in patients with acute heart failure. J Am Coll Cardiol. 2017;70(19):2378–88.  https://doi.org/10.1016/j.jacc.2017.09.026.CrossRefPubMedGoogle Scholar
  43. 43.
    Bayes-Genis A, Nunez J, Lupon J. Soluble ST2 for prognosis and monitoring in heart failure: the new gold standard? J Am Coll Cardiol. 2017;70(19):2389–92.  https://doi.org/10.1016/j.jacc.2017.09.031.CrossRefPubMedGoogle Scholar
  44. 44.
    Anand IS, Kempf T, Rector TS, Tapken H, Allhoff T, Jantzen F, et al. Serial measurement of growth-differentiation factor-15 in heart failure: relation to disease severity and prognosis in the Valsartan Heart Failure Trial. Circulation. 2010;122(14):1387–95.  https://doi.org/10.1161/CIRCULATIONAHA.109.928846.CrossRefPubMedGoogle Scholar
  45. 45.
    Bouabdallaoui N, Claggett B, Zile MR, McMurray JJV, O’Meara E, Packer M, et al. Growth differentiation factor-15 is not modified by sacubitril/valsartan and is an independent marker of risk in patients with heart failure and reduced ejection fraction: the PARADIGM-HF trial. Eur J Heart Fail. 2018;20(12):1701–9.  https://doi.org/10.1002/ejhf.1301.CrossRefPubMedGoogle Scholar
  46. 46.
    Izumiya Y, Hanatani S, Kimura Y, Takashio S, Yamamoto E, Kusaka H, et al. Growth differentiation factor-15 is a useful prognostic marker in patients with heart failure with preserved ejection fraction. Can J Cardiol. 2014;30(3):338–44.  https://doi.org/10.1016/j.cjca.2013.12.010.CrossRefPubMedGoogle Scholar
  47. 47.
    Diez M, Talavera ML, Conde DG, Campos R, Acosta A, Trivi MS. High-sensitivity troponin is associated with high risk clinical profile and outcome in acute heart failure. Cardiol J. 2016;23(1):78–83.  https://doi.org/10.5603/CJ.a2015.0058.CrossRefPubMedGoogle Scholar
  48. 48.
    Aimo A, Januzzi JL Jr, Vergaro G, Ripoli A, Latini R, Masson S, et al. Prognostic value of high-sensitivity troponin T in chronic heart failure: an individual patient data meta-analysis. Circulation. 2018;137(3):286–97.  https://doi.org/10.1161/CIRCULATIONAHA.117.031560.CrossRefPubMedGoogle Scholar
  49. 49.
    Aimo A, Januzzi JL Jr, Vergaro G, Ripoli A, Latini R, Masson S, et al. High-sensitivity troponin T, NT-proBNP and glomerular filtration rate: a multimarker strategy for risk stratification in chronic heart failure. Int J Cardiol. 2019;277:166–72.  https://doi.org/10.1016/j.ijcard.2018.10.079.CrossRefPubMedGoogle Scholar
  50. 50.
    Bansal N, Hailpern SM, Katz R, Hall YN, Kurella Tamura M, Kreuter W, et al. Outcomes associated with left ventricular assist devices among recipients with and without end-stage renal disease. JAMA Intern Med. 2018;178(2):204–9.  https://doi.org/10.1001/jamainternmed.2017.4831.CrossRefPubMedGoogle Scholar
  51. 51.
    Roehm B, Vest AR, Weiner DE. Left Ventricular assist devices, kidney disease, and dialysis. Am J Kidney Dis. 2018;71(2):257–66.  https://doi.org/10.1053/j.ajkd.2017.09.019.CrossRefPubMedGoogle Scholar
  52. 52.
    Nakada Y, Kawakami R, Matsui M, Ueda T, Nakano T, Takitsume A, et al. Prognostic value of urinary neutrophil gelatinase-associated lipocalin on the first day of admission for adverse events in patients with acute decompensated heart failure. J Am Heart Assoc. 2017;6(5).  https://doi.org/10.1161/JAHA.116.004582.
  53. 53.
    Pronschinske KB, Qiu S, Wu C, Kato TS, Khawaja T, Takayama H, et al. Neutrophil gelatinase-associated lipocalin and cystatin C for the prediction of clinical events in patients with advanced heart failure and after ventricular assist device placement. J Heart Lung Transplant. 2014;33(12):1215–22.  https://doi.org/10.1016/j.healun.2014.06.007.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Palazzuoli A, Ruocco G, Pellegrini M, De Gori C, Del Castillo G, Franci B, et al. comparison of neutrophil gelatinase-associated lipocalin versus B-type natriuretic peptide and cystatin C to predict early acute kidney injury and outcome in patients with acute heart failure. Am J Cardiol. 2015;116(1):104–11.  https://doi.org/10.1016/j.amjcard.2015.03.043.CrossRefPubMedGoogle Scholar
  55. 55.
    Tang WH, Dupont M, Hernandez AF, Voors AA, Hsu AP, Felker GM, et al. Comparative assessment of short-term adverse events in acute heart failure with cystatin C and other estimates of renal function: results from the ASCEND-HF trial. JACC Heart Fail. 2015;3(1):40–9.  https://doi.org/10.1016/j.jchf.2014.06.014.CrossRefPubMedGoogle Scholar
  56. 56.
    Gao C, Zhong L, Gao Y, Li X, Zhang M, Wei S. Cystatin C levels are associated with the prognosis of systolic heart failure patients. Arch Cardiovasc Dis. 2011;104(11):565–71.  https://doi.org/10.1016/j.acvd.2011.08.003.CrossRefPubMedGoogle Scholar
  57. 57.
    Manzano-Fernandez S, Flores-Blanco PJ, Perez-Calvo JI, Ruiz-Ruiz FJ, Carrasco-Sanchez FJ, Morales-Rull JL, et al. Comparison of risk prediction with the CKD-EPI and MDRD equations in acute decompensated heart failure. J Card Fail. 2013;19(8):583–91.  https://doi.org/10.1016/j.cardfail.2013.05.011.CrossRefPubMedGoogle Scholar
  58. 58.
    Dupuy AM, Curinier C, Kuster N, Huet F, Leclercq F, Davy JM, et al. Multi-marker strategy in heart failure: combination of ST2 and CRP predicts poor outcome. PLoS One. 2016;11(6):e0157159.  https://doi.org/10.1371/journal.pone.0157159.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Lourenco P, Paulo Araujo J, Paulo C, Mascarenhas J, Frioes F, Azevedo A, et al. Higher C-reactive protein predicts worse prognosis in acute heart failure only in noninfected patients. Clin Cardiol. 2010;33(11):708–14.  https://doi.org/10.1002/clc.20812.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Kozdag G, Ertas G, Kilic T, Acar E, Agir A, Sahin T, et al. Elevated level of high-sensitivity C-reactive protein is important in determining prognosis in chronic heart failure. Med Sci Monit. 2010;16(3):CR156–61.PubMedGoogle Scholar
  61. 61.
    van Boven N, Battes LC, Akkerhuis KM, Rizopoulos D, Caliskan K, Anroedh SS, et al. Toward personalized risk assessment in patients with chronic heart failure: detailed temporal patterns of NT-proBNP, troponin T, and CRP in the Bio-SHiFT study. Am Heart J. 2018;196:36–48.  https://doi.org/10.1016/j.ahj.2017.10.008.CrossRefPubMedGoogle Scholar
  62. 62.
    Alehagen U, Dahlstrom U, Rehfeld JF, Goetze JP. Association of copeptin and N-terminal proBNP concentrations with risk of cardiovascular death in older patients with symptoms of heart failure. JAMA. 2011;305(20):2088–95.  https://doi.org/10.1001/jama.2011.666.CrossRefPubMedGoogle Scholar
  63. 63.
    Neuhold S, Huelsmann M, Strunk G, Stoiser B, Struck J, Morgenthaler NG, et al. Comparison of copeptin, B-type natriuretic peptide, and amino-terminal pro-B-type natriuretic peptide in patients with chronic heart failure: prediction of death at different stages of the disease. J Am Coll Cardiol. 2008;52(4):266–72.  https://doi.org/10.1016/j.jacc.2008.03.050.CrossRefPubMedGoogle Scholar
  64. 64.
    Dungen HD, Tscholl V, Obradovic D, Radenovic S, Matic D, Musial Bright L, et al. Prognostic performance of serial in-hospital measurements of copeptin and multiple novel biomarkers among patients with worsening heart failure: results from the MOLITOR study. ESC Heart Fail. 2018;5(2):288–96.  https://doi.org/10.1002/ehf2.12231.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Maisel A, Xue Y, Shah K, Mueller C, Nowak R, Peacock WF, et al. Increased 90-day mortality in patients with acute heart failure with elevated copeptin: secondary results from the Biomarkers in Acute Heart Failure (BACH) study. Circ Heart Fail. 2011;4(5):613–20.  https://doi.org/10.1161/CIRCHEARTFAILURE.110.960096.CrossRefPubMedGoogle Scholar
  66. 66.
    Palazzuoli A, Ruocco G, Pellegrini M, Beltrami M, Giordano N, Nuti R, et al. Prognostic significance of hyperuricemia in patients with acute heart failure. Am J Cardiol. 2016;117(10):1616–21.  https://doi.org/10.1016/j.amjcard.2016.02.039.CrossRefPubMedGoogle Scholar
  67. 67.
    Anker SD, Doehner W, Rauchhaus M, Sharma R, Francis D, Knosalla C, et al. Uric acid and survival in chronic heart failure: validation and application in metabolic, functional, and hemodynamic staging. Circulation. 2003;107(15):1991–7.  https://doi.org/10.1161/01.CIR.0000065637.10517.A0.CrossRefPubMedGoogle Scholar
  68. 68.
    Holzhauser L, Kim G, Sayer G, Uriel N. The effect of left ventricular assist device therapy on cardiac biomarkers: implications for the identification of myocardial recovery. Curr Heart Fail Rep. 2018;15(4):250–9.  https://doi.org/10.1007/s11897-018-0399-3.CrossRefPubMedGoogle Scholar
  69. 69.
    Caruso R, Botta L, Verde A, Milazzo F, Vecchi I, Trivella MG, et al. Relationship between pre-implant interleukin-6 levels, inflammatory response, and early outcome in patients supported by left ventricular assist device: a prospective study. PLoS One. 2014;9(3):e90802.  https://doi.org/10.1371/journal.pone.0090802.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Hellman Y, Malik AS, Lin H, Shen C, Wang IW, Wozniak TC, et al. B-Type natriuretic peptide levels predict ventricular arrhythmia post left ventricular assist device implantation. Artif Organs. 2015;39(12):1051–5.  https://doi.org/10.1111/aor.12486.CrossRefPubMedGoogle Scholar
  71. 71.
    Coromilas E, Que-Xu EC, Moore D, Kato TS, Wu C, Ji R, et al. Dynamics and prognostic role of galectin-3 in patients with advanced heart failure, during left ventricular assist device support and following heart transplantation. BMC Cardiovasc Disord. 2016;16:138.  https://doi.org/10.1186/s12872-016-0298-z.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Soliman OII, Akin S, Muslem R, Boersma E, Manintveld OC, Krabatsch T, et al. Derivation and validation of a novel right-sided heart failure model after implantation of continuous flow left ventricular assist devices: The EUROMACS (European Registry for Patients with Mechanical Circulatory Support) Right-Sided Heart Failure Risk Score. Circulation. 2018;137(9):891–906.  https://doi.org/10.1161/CIRCULATIONAHA.117.030543.CrossRefPubMedGoogle Scholar
  73. 73.
    Meineri M, Van Rensburg AE, Vegas A. Right ventricular failure after LVAD implantation: prevention and treatment. Best Pract Res Clin Anaesthesiol. 2012;26(2):217–29.  https://doi.org/10.1016/j.bpa.2012.03.006.CrossRefPubMedGoogle Scholar
  74. 74.
    Peters AE, Smith LA, Ababio P, Breathett K, McMurry TL, Kennedy JLW, et al. Comparative Analysis of established risk scores and novel hemodynamic metrics in predicting right ventricular failure in left ventricular assist device patients. J Card Fail. 2019.  https://doi.org/10.1016/j.cardfail.2019.02.011.CrossRefGoogle Scholar
  75. 75.
    Kato TS, Chokshi A, Singh P, Khawaja T, Iwata S, Homma S, et al. Markers of extracellular matrix turnover and the development of right ventricular failure after ventricular assist device implantation in patients with advanced heart failure. J Heart Lung Transplant. 2012;31(1):37–45.  https://doi.org/10.1016/j.healun.2011.10.007.CrossRefPubMedGoogle Scholar
  76. 76.
    Hennig F, Stepanenko AV, Lehmkuhl HB, Kukucka M, Dandel M, Krabatsch T, et al. Neurohumoral and inflammatory markers for prediction of right ventricular failure after implantation of a left ventricular assist device. Gen Thorac Cardiovasc Surg. 2011;59(1):19–24.  https://doi.org/10.1007/s11748-010-0669-9.CrossRefPubMedGoogle Scholar
  77. 77.
    • Wells QS, Gupta DK, Smith JG, Collins SP, Storrow AB, Ferguson J, et al. Accelerating biomarker discovery through electronic health records, automated biobanking, and proteomics. J Am Coll Cardiol. 2019;73(17):2195–205.  https://doi.org/10.1016/j.jacc.2019.01.074Angiopoietin-2 and thrombospondin-2 provide incremental diagnostic utility to brain natriuretic peptide for acute heart failure and both are appropriately decreased after heart transplantation and LVAD implantation. CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Medicine, Division of Cardiovascular MedicineUniversity of CaliforniaDavisUSA
  2. 2.Department of Medicine, Division of Cardiovascular MedicineUniversity of VirginiaCharlottesvilleUSA
  3. 3.Department of Medicine, Division of Cardiovascular Medicine, Sarver Heart CenterUniversity of ArizonaTucsonUSA

Personalised recommendations