Advertisement

Right Ventricular Strain to Assess Early Right Heart Failure in the Left Ventricular Assist Device Candidate

  • Fatih Gumus
  • Cahit Sarıcaoglu
  • Mustafa Bahadir Inan
  • Ahmet Ruchan AkarEmail author
Nonpharmacologic Therapy: Surgery, Ventricular Assist Devices, Biventricular Pacing, and Exercise (A Hasan, Section Editor)
  • 44 Downloads
Part of the following topical collections:
  1. Topical Collection on Nonpharmacologic Therapy: Surgery, Ventricular Assist Devices, Biventricular Pacing, and Exercise

Abstract

Purpose of Review

Right heart failure (RHF) following left ventricular assist device implantation (LVAD) remains the primary cause of postoperative mortality and morbidity, and prediction of RHF is the main interest of the transplantation community. In this review, we outline the role and impact of right ventricular strain in the evaluation of the right ventricle function before LVAD implantation.

Recent Findings

Accumulating data suggest that measurement of right ventricular longitudinal strain (RVLS) has a critical role in predicting RHF preoperatively and may improve morbidity and mortality following LVAD implantation. However, the significant intraobserver, interobserver variability, the lack of multicenter, prospective studies, and the need for a learning curve remain the most critical limitations in the clinical practice at present.

Summary

This review highlighted the importance of right ventricular strain in the diagnosis of RHF preoperatively and revealed that RVLS might have a crucial clinical measurement for the selection and management of LVAD patients in the future with the more extensive multicenter studies.

Keywords

Left ventricular assist device Right ventricular failure Right ventricular longitudinal strain Speckle tracking echocardiography Strain 

Abbreviations

CI

Cardiac index

CMR

Cardiac magnetic resonance

Cr

Creatinine

CVP

Central venous pressure

ECMO

Extracorporeal membrane oxygenation

EF

Ejection fraction

FAC

Fractional area change

INTERMACS

Interagency Registry for Mechanically Assisted Circulatory Support

IVC

Inferior vena cava

LVAD

Left ventricular assist device

SvO2

Mixed venous oxygen saturation

RHC

Right heart catheterization

RHF

Right heart failure

RV

Right ventricle

RVFWLS

Right ventricular free wall longitudinal strain

RVGWLS

Right ventricular global wall longitudinal strain

RVLS

Right ventricular longitudinal strain

RVSWI

Right ventricle stroke work index

STE

Speckle-tracking strain echocardiography

TAPSE

Tricuspid annulus peak systolic excursion

TEE

Transesophageal echocardiography

TTE

Transthoracic echocardiography

Notes

Funding

This project was internally funded.

Compliance with ethical standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Kadakia S, Moore R, Ambur V, Toyoda Y. Current status of the implantable LVAD. Gen Thorac Cardiovasc Surg. 2016;64:501–8.PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Frazier OH, Rose EA, Oz MC, Dembitsky W, McCarthy P, Radovancevic B, et al. Multicenter clinical evaluation of the HeartMate vented electric left ventricular assist system in patients awaiting heart transplantation. J Thorac Cardiovasc Surg. 2001;122:1186–95.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Ochiai Y, McCarthy PM, Smedira NG, Banbury MK, Navia JL, Feng J, et al. Predictors of severe right ventricular failure after implantable left ventricular assist device insertion: analysis of 245 patients. Circulation. 2002;106:I198–202.PubMedPubMedCentralGoogle Scholar
  4. 4.
    Aaronson KD, Patel H, Pagani FD. Patient selection for left ventricular assist device therapy. Ann Thorac Surg. 2003;75:S29–35.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Dang NC, Topkara VK, Mercando M, Kay J, Kruger KH, Aboodi MS, et al. Right heart failure after left ventricular assist device implantation in patients with chronic congestive heart failure. J Heart Lung Transplant. 2006;25:1–6.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Matthews JC, Koelling TM, Pagani FD, Aaronson KD. The right ventricular failure risk score a pre-operative tool for assessing the risk of right ventricular failure in left ventricular assist device candidates. J Am Coll Cardiol. 2008;51:2163–72.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Drakos SG, Janicki L, Horne BD, Kfoury AG, Reid BB, Clayson S, et al. Risk factors predictive of right ventricular failure after left ventricular assist device implantation. Am J Cardiol. 2010;105:1030–5.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Kukucka M, Stepanenko A, Potapov E, Krabatsch T, Redlin M, Mladenow A, et al. Right-to-left ventricular end-diastolic diameter ratio and prediction of right ventricular failure with continuous-flow left ventricular assist devices. J Heart Lung Transplant. 2011;30:64–9.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Fitzpatrick JR 3rd, Frederick JR, Hsu VM, Kozin ED, O’Hara ML, Howell E, et al. Risk score derived from pre-operative data analysis predicts the need for biventricular mechanical circulatory support. J Heart Lung Transplant. 2008;27:1286–92.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Hayek S, Sims DB, Markham DW, Butler J, Kalogeropoulos AP. Assessment of right ventricular function in left ventricular assist device candidates. Circ Cardiovasc Imaging. 2014;7:379–89.PubMedPubMedCentralCrossRefGoogle Scholar
  11. [11•.
    ] Loghmanpour NA, Kormos RL, Kanwar MK, Teuteberg JJ, Murali S, Antaki JF. A Bayesian model to predict right ventricular failure following left ventricular assist device therapy. JACC Heart Fail. 2016;4:711–21 This study is one of the most critical multicenter studies, including 10,909 patients from the INTERMACS registry. The study demonstrates the insufficiency of existing scoring models and risk factors for predicting RHF perioperatively and presented many risk factors on the different stages of RHF analyzed by a Bayesian model. PubMedPubMedCentralCrossRefGoogle Scholar
  12. [12]
    Kormos RL, Teuteberg JJ, Pagani FD, Russell SD, John R, Miller LW, et al. Right ventricular failure in patients with the HeartMate II continuous-flow left ventricular assist device: incidence, risk factors, and effect on outcomes. J Thorac Cardiovasc Surg. 2010;139:1316–24.CrossRefGoogle Scholar
  13. [13]
    Potapov EV, Loforte A, Weng Y, Jurmann M, Pasic M, Drews T, et al. Experience with over 1000 implanted ventricular assist devices. J Card Surg. 2008;23:185–94.PubMedCrossRefPubMedCentralGoogle Scholar
  14. [14]
    Potapov EV, Stepanenko A, Dandel M, Kukucka M, Lehmkuhl HB, Weng Y, et al. Tricuspid incompetence and geometry of the right ventricle as predictors of right ventricular function after implantation of a left ventricular assist device. J Heart Lung Transplant. 2008;27:1275–81.PubMedCrossRefPubMedCentralGoogle Scholar
  15. [15]
    Patel ND, Weiss ES, Schaffer J, Ullrich SL, Rivard DC, Shah AS, et al. Right heart dysfunction after left ventricular assist device implantation: a comparison of the pulsatile HeartMate I and axial-flow HeartMate II devices. Ann Thorac Surg. 2008;86:832–40 discussion 32-40.CrossRefGoogle Scholar
  16. [16]
    Holman WL. Interagency Registry for Mechanically Assisted Circulatory Support (INTERMACS): what have we learned and what will we learn? Circulation. 2012;126:1401–6.PubMedCrossRefPubMedCentralGoogle Scholar
  17. [17]
    Argiriou M, Kolokotron SM, Sakellaridis T, Argiriou O, Charitos C, Zarogoulidis P, et al. Right heart failure post left ventricular assist device implantation. J Thorac Dis. 2014;6(Suppl 1):S52–9.PubMedPubMedCentralGoogle Scholar
  18. [18]
    Aissaoui N, Salem JE, Paluszkiewicz L, Morshuis M, Guerot E, Gorria GM, et al. Assessment of right ventricular dysfunction predictors before the implantation of a left ventricular assist device in end-stage heart failure patients using echocardiographic measures (ARVADE): combination of left and right ventricular echocardiographic variables. Arch Cardiovasc Dis. 2015;108:300–9.PubMedCrossRefGoogle Scholar
  19. [19]
    Wang Y, Simon M, Bonde P, Harris BU, Teuteberg JJ, Kormos RL, et al. Prognosis of right ventricular failure in patients with left ventricular assist device based on decision tree with SMOTE. IEEE Trans Inf Technol Biomed. 2012;16:383–90.PubMedCrossRefPubMedCentralGoogle Scholar
  20. [20]
    Wang Y, Simon MA, Bonde P, Harris BU, Teuteberg JJ, Kormos RL, et al. Decision tree for adjuvant right ventricular support in patients receiving a left ventricular assist device. J Heart Lung Transplant. 2012;31:140–9.PubMedCrossRefPubMedCentralGoogle Scholar
  21. [21•.
    ] Gumus F, Durdu MS, Cakici M, TST K, Inan MB, Dincer I, et al. Right ventricular free wall longitudinal strain and stroke work index for predicting right heart failure after left ventricular assist device therapy. Interact Cardiovasc Thorac Surg. 2018; This study organized by our team defined the RVFWLS as a risk factor in a population including 57 patients undergoing LVAD implantation, and RVFWLS predicted RHF preoperatively with the highest power compared to the other studies despite a high number of the patients with INTERMACS I or II profiles. Google Scholar
  22. [22]
    Cameli M, Lisi M, Righini FM, Focardi M, Lunghetti S, Bernazzali S, et al. Speckle tracking echocardiography as a new technique to evaluate right ventricular function in patients with left ventricular assist device therapy. J Heart Lung Transplant. 2013;32:424–30.PubMedCrossRefPubMedCentralGoogle Scholar
  23. [23]
    Rasalingam R, Johnson SN, Bilhorn KR, Huang PH, Makan M, Moazami N, et al. Transthoracic echocardiographic assessment of continuous-flow left ventricular assist devices. J Am Soc Echocardiogr. 2011;24:135–48.PubMedCrossRefPubMedCentralGoogle Scholar
  24. [24]
    Bansal M, Kasliwal RR. How do I do it? Speckle-tracking echocardiography. Indian Heart J. 2013;65:117–23.PubMedPubMedCentralCrossRefGoogle Scholar
  25. [25]
    Alber SM, Gregory SH. Finally, a spotlight on the right ventricle: intraoperative evaluation of the right ventricle using left ventricular strain software. J Cardiothorac Vasc Anesth. 2019;33:1516–7.PubMedCrossRefPubMedCentralGoogle Scholar
  26. [26]
    Silverton NA, Lee JP, Morrissey CK, Tanner C, Zimmerman J. A comparison of left- and right-sided strain software for the assessment of intraoperative right ventricular function. J Cardiothorac Vasc Anesth. 2019;33:1507–15.PubMedCrossRefPubMedCentralGoogle Scholar
  27. [27]
    Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Ernande L, et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging. 2015;16:233–70.PubMedCrossRefPubMedCentralGoogle Scholar
  28. [28]
    Markin NW, Chamsi-Pasha M, Luo J, Thomas WR, Brakke TR, Porter TR, et al. Transesophageal speckle-tracking echocardiography improves right ventricular systolic function assessment in the perioperative setting. J Am Soc Echocardiogr. 2017;30:180–8.PubMedCrossRefPubMedCentralGoogle Scholar
  29. [29]
    Rudski LG, Lai WW, Afilalo J, Hua L, Handschumacher MD, Chandrasekaran K, et al. Guidelines for the echocardiographic assessment of the right heart in adults: a report from the American Society of Echocardiography endorsed by the European Association of Echocardiography, a registered branch of the European Society of Cardiology, and the Canadian Society of Echocardiography. J Am Soc Echocardiogr. 2010;23:685–713 quiz 86-8.PubMedPubMedCentralCrossRefGoogle Scholar
  30. [30]
    Silverton NA, Patel R, Zimmerman J, Ma J, Stoddard G, Selzman CH, et al. Intraoperative transesophageal echocardiography and right ventricular failure after left ventricular assist device implantation. J Cardiothorac Vasc Anesth. 2018;32:2096–103.PubMedCrossRefPubMedCentralGoogle Scholar
  31. [31]
    Khoche S, Ramsingh D, Maus T. The Year in Perioperative Echocardiography: Selected Highlights From 2016. J Cardiothorac Vasc Anesth. 2017;31:1554–61.PubMedCrossRefPubMedCentralGoogle Scholar
  32. [32]
    Cameli M, Lisi M, Righini FM, Tsioulpas C, Bernazzali S, Maccherini M, et al. Right ventricular longitudinal strain correlates well with right ventricular stroke work index in patients with advanced heart failure referred for heart transplantation. J Card Fail. 2012;18:208–15.PubMedCrossRefPubMedCentralGoogle Scholar
  33. [33]
    Cameli M, Bernazzali S, Lisi M, Tsioulpas C, Croccia MG, Lisi G, et al. Right ventricular longitudinal strain and right ventricular stroke work index in patients with severe heart failure: left ventricular assist device suitability for transplant candidates. Transplant Proc. 2012;44:2013–5.PubMedCrossRefPubMedCentralGoogle Scholar
  34. [34]
    Sengupta PP, Krishnamoorthy VK, Korinek J, Narula J, Vannan MA, Lester SJ, et al. Left ventricular form and function revisited: applied translational science to cardiovascular ultrasound imaging. J Am Soc Echocardiogr. 2007;20:539–51.PubMedPubMedCentralCrossRefGoogle Scholar
  35. [35]
    Mor-Avi V, Lang RM, Badano LP, Belohlavek M, Cardim NM, Derumeaux G, et al. Current and evolving echocardiographic techniques for the quantitative evaluation of cardiac mechanics: ASE/EAE consensus statement on methodology and indications endorsed by the Japanese Society of Echocardiography. J Am Soc Echocardiogr. 2011;24:277–313.PubMedCrossRefPubMedCentralGoogle Scholar
  36. [36]
    Suffoletto MS, Dohi K, Cannesson M, Saba S, Gorcsan J 3rd. Novel speckle-tracking radial strain from routine black-and-white echocardiographic images to quantify dyssynchrony and predict response to cardiac resynchronization therapy. Circulation. 2006;113:960–8.PubMedCrossRefGoogle Scholar
  37. [37]
    Tanaka H, Nesser HJ, Buck T, Oyenuga O, Janosi RA, Winter S, et al. Dyssynchrony by speckle-tracking echocardiography and response to cardiac resynchronization therapy: results of the Speckle Tracking and Resynchronization (STAR) study. Eur Heart J. 2010;31:1690–700.PubMedPubMedCentralCrossRefGoogle Scholar
  38. [38]
    Delgado V, Tops LF, van Bommel RJ, van der Kley F, Marsan NA, Klautz RJ, et al. Strain analysis in patients with severe aortic stenosis and preserved left ventricular ejection fraction undergoing surgical valve replacement. Eur Heart J. 2009;30:3037–47.PubMedCrossRefGoogle Scholar
  39. [39]
    Fukuda Y, Tanaka H, Sugiyama D, Ryo K, Onishi T, Fukuya H, et al. Utility of right ventricular free wall speckle-tracking strain for evaluation of right ventricular performance in patients with pulmonary hypertension. J Am Soc Echocardiogr. 2011;24:1101–8.PubMedCrossRefGoogle Scholar
  40. [40]
    Cameli M, Righini FM, Lisi M, Bennati E, Navarri R, Lunghetti S, et al. Comparison of right versus left ventricular strain analysis as a predictor of outcome in patients with systolic heart failure referred for heart transplantation. Am J Cardiol. 2013;112:1778–84.PubMedCrossRefPubMedCentralGoogle Scholar
  41. [41]
    Vizzardi E, D'Aloia A, Caretta G, Bordonali T, Bonadei I, Rovetta R, et al. Long-term prognostic value of longitudinal strain of right ventricle in patients with moderate heart failure. Hell J Cardiol. 2014;55:150–5.Google Scholar
  42. [42]
    Garcia-Martin A, Moya-Mur JL, Carbonell-San Roman SA, Garcia-Lledo A, Navas-Tejedor P, Muriel A, et al. Four chamber right ventricular longitudinal strain versus right free wall longitudinal strain. Prognostic value in patients with left heart disease. Cardiol J. 2016;23:189–94.PubMedCrossRefPubMedCentralGoogle Scholar
  43. [43]
    Hasselberg NE, Haugaa KH, Sarvari SI, Gullestad L, Andreassen AK, Smiseth OA, et al. Left ventricular global longitudinal strain is associated with exercise capacity in failing hearts with preserved and reduced ejection fraction. Eur Heart J Cardiovasc Imaging. 2015;16:217–24.PubMedCrossRefPubMedCentralGoogle Scholar
  44. [44•.
    ] Seo J, Jung IH, Park JH, Kim GS, Lee HY, Byun YS, et al. The prognostic value of 2D strain in assessment of the right ventricle in patients with dilated cardiomyopathy. Eur Heart J Cardiovasc Imaging. 2019; This is the first study defining the clinical and prognostic role of right ventricular strain in patients with dilated cardiomyopathy with sinus rhythm, and the study demonstrated that RVFWLS independently predicted the primary outcome. Google Scholar
  45. [45]
    Iacoviello M, Citarelli G, Antoncecchi V, Romito R, Monitillo F, Leone M, et al. Right ventricular longitudinal strain measures independently predict chronic heart failure mortality. Echocardiography. 2016;33:992–1000.PubMedCrossRefPubMedCentralGoogle Scholar
  46. [46]
    Lisi M, Cameli M, Righini FM, Malandrino A, Tacchini D, Focardi M, et al. RV Longitudinal deformation correlates with myocardial fibrosis in patients with end-stage heart failure. JACC Cardiovasc Imaging. 2015;8:514–22.PubMedCrossRefPubMedCentralGoogle Scholar
  47. [47]
    Fukamachi K, McCarthy PM, Smedira NG, Vargo RL, Starling RC, Young JB. Preoperative risk factors for right ventricular failure after implantable left ventricular assist device insertion. Ann Thorac Surg. 1999;68:2181–4.PubMedCrossRefPubMedCentralGoogle Scholar
  48. [48]
    Grant AD, Smedira NG, Starling RC, Marwick TH. Independent and incremental role of quantitative right ventricular evaluation for the prediction of right ventricular failure after left ventricular assist device implantation. J Am Coll Cardiol. 2012;60:521–8.PubMedCrossRefPubMedCentralGoogle Scholar
  49. [49]
    Kato TS, Jiang J, Schulze PC, Jorde U, Uriel N, Kitada S, et al. Serial echocardiography using tissue Doppler and speckle tracking imaging to monitor right ventricular failure before and after left ventricular assist device surgery. JACC Heart Fail. 2013;1:216–22.PubMedPubMedCentralCrossRefGoogle Scholar
  50. [50]
    Herod JW, Ambardekar AV. Right ventricular systolic and diastolic function as assessed by speckle-tracking echocardiography improve with prolonged isolated left ventricular assist device support. J Card Fail. 2014;20:498–505.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Fatih Gumus
    • 1
  • Cahit Sarıcaoglu
    • 1
  • Mustafa Bahadir Inan
    • 1
  • Ahmet Ruchan Akar
    • 1
    Email author
  1. 1.Department of Cardiovascular Surgery, Heart Center, Cebeci HospitalsAnkara University School of MedicineAnkaraTurkey

Personalised recommendations