Advertisement

Current Heart Failure Reports

, Volume 15, Issue 6, pp 340–349 | Cite as

Gene Therapy for Heart Failure: New Perspectives

  • Khatia Gabisonia
  • Fabio A. RecchiaEmail author
Pathophysiology: Neuroendocrine, Vascular, and Metabolic Factors (S. Katz, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Pathophysiology: Neuroendocrine, Vascular, and Metabolic Factors

Abstract

Purpose of Review

The current knowledge of pathophysiological and molecular mechanisms responsible for the genesis and development of heart failure (HF) is absolutely vast. Nonetheless, the hiatus between experimental findings and therapeutic options remains too deep, while the available pharmacological treatments are mostly seasoned and display limited efficacy. The necessity to identify new, non-pharmacological strategies to target molecular alterations led investigators, already many years ago, to propose gene therapy for HF. Here, we will review some of the strategies proposed over the past years to target major pathogenic mechanisms/factors responsible for severe cardiac injury developing into HF and will provide arguments in favor of the necessity to keep alive research on this topic.

Recent Findings

After decades of preclinical research and phases of enthusiasm and disappointment, clinical trials were finally launched in recent years. The first one to reach phase II and testing gene delivery of sarcoendoplasmic reticulum calcium ATPase did not yield encouraging results; however, other trials are ongoing, more efficient viral vectors are being developed, and promising new potential targets have been identified. For instance, recent research is focused on gene repair, in vivo, to treat heritable forms of HF, while strong experimental evidence indicates that specific microRNAs can be delivered to post-ischemic hearts to induce regeneration, a result that was previously thought possible only by using stem cell therapy.

Summary

Gene therapy for HF is aging, but exciting perspectives are still very open.

Keywords

Heart failure Gene therapy Duchenne cardiomyopathy Hippo pathway AAV miRNA 

Notes

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

  1. 1.
    Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DE Jr, Colvin MM, et al. 2017 ACC/AHA/HFSA focused update of the 2013 ACCF/AHA guideline for the management of heart failure: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Failure Society of Amer. J Card Fail. 2017;23(8):628–51.  https://doi.org/10.1016/j.cardfail.2017.04.014.CrossRefPubMedGoogle Scholar
  2. 2.
    Nguyen E, Weeda ER, White CM. A review of new pharmacologic treatments for patients with chronic heart failure with reduced ejection fraction. J Clin Pharmacol. 2016;56(8):936–47.  https://doi.org/10.1002/jcph.677.CrossRefPubMedGoogle Scholar
  3. 3.
    Anderson WF. Human gene therapy. Science. 1992;256(5058):808–13.  https://doi.org/10.1126/science.256.5058.808.CrossRefPubMedGoogle Scholar
  4. 4.
    Lin H, Parmacek MS, Morle G, Bolling S, Leiden JM. Expression of recombinant genes in myocardium in vivo after direct injection of DNA. Circulation. 1990;82(6):2217–21.  https://doi.org/10.1161/01.CIR.82.6.2217.CrossRefPubMedGoogle Scholar
  5. 5.
    Zacchigna S, Giacca M. Extra- and intracellular factors regulating cardiomyocyte proliferation in postnatal life. Cardiovasc Res. 2014;102(2):312–20.  https://doi.org/10.1093/cvr/cvu057.CrossRefPubMedGoogle Scholar
  6. 6.
    Greenberg B. Gene therapy for heart failure. J Cardiol. 2015;66(3):195–200.  https://doi.org/10.1016/j.jjcc.2015.02.006.CrossRefPubMedGoogle Scholar
  7. 7.
    Hulot J-S, Ishikawa K, Hajjar RJ. Gene therapy for the treatment of heart failure: promise postponed. Eur Heart J. 2016;37(21):1651–8.  https://doi.org/10.1093/eurheartj/ehw019.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Rincon MY, VandenDriessche T, Chuah MK. Gene therapy for cardiovascular disease: advances in vector development, targeting, and delivery for clinical translation. Cardiovasc Res. 2015;108(1):4–20.  https://doi.org/10.1093/cvr/cvv205.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Stammers AN, Susser SE, Hamm NC, Hlynsky MW, Kimber DE, Kehler DS, et al. The regulation of sarco(endo)plasmic reticulum calcium-ATPases (SERCA). Can J Physiol Pharmacol. 2015;93(10):843–54.  https://doi.org/10.1139/cjpp-2014-0463.CrossRefPubMedGoogle Scholar
  10. 10.
    Braz JC, Gregory K, Pathak A, Zhao W, Sahin B, Klevitsky R, et al. PKC-alpha regulates cardiac contractility and propensity toward heart failure. Nat Med. 2004;10(3):248–54.  https://doi.org/10.1038/nm1000.CrossRefPubMedGoogle Scholar
  11. 11.
    Kawase Y, Hajjar RJ. The cardiac sarcoplasmic/endoplasmic reticulum calcium ATPase: a potent target for cardiovascular diseases. Nat Clin Pract Cardiovasc Med. 2008;5(9):554–65.  https://doi.org/10.1038/ncpcardio1301.CrossRefPubMedGoogle Scholar
  12. 12.
    Pathak A, del Monte F, Zhao W, Schultz JE, Lorenz JN, Bodi I, et al. Enhancement of cardiac function and suppression of heart failure progression by inhibition of protein phosphatase 1. Circ Res. 2005;96(7):756–66.  https://doi.org/10.1161/01.RES.0000161256.85833.fa.CrossRefPubMedGoogle Scholar
  13. 13.
    Watanabe S, Ishikawa K, Fish K, Oh JG, Motloch LJ, Kohlbrenner E, et al. Protein phosphatase Inhibitor-1 gene therapy in a swine model of nonischemic heart failure. J Am Coll Cardiol. 2017;70(14):1744–56.  https://doi.org/10.1016/j.jacc.2017.08.013.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Miyamoto MI, del Monte F, Schmidt U, DiSalvo TS, Kang ZB, Matsui T, et al. Adenoviral gene transfer of SERCA2a improves left-ventricular function in aortic-banded rats in transition to heart failure. Proc Natl Acad Sci U S A. 2000;97(2):793–8.CrossRefGoogle Scholar
  15. 15.
    del Monte F, Harding SE, Schmidt U, et al. Restoration of contractile function in isolated cardiomyocytes from failing human hearts by gene transfer of SERCA2a. Circulation. 1999;100(23):2308–11.CrossRefGoogle Scholar
  16. 16.
    Lyon AR, Bannister ML, Collins T, Pearce E, Sepehripour AH, Dubb SS, et al. SERCA2a gene transfer decreases sarcoplasmic reticulum calcium leak and reduces ventricular arrhythmias in a model of chronic heart failure. Circ Arrhythm Electrophysiol. 2011;4(3):362–72.  https://doi.org/10.1161/CIRCEP.110.961615.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Kawase Y, Ly HQ, Prunier F, Lebeche D, Shi Y, Jin H, et al. Reversal of cardiac dysfunction after long-term expression of SERCA2a by gene transfer in a pre-clinical model of heart failure. J Am Coll Cardiol. 2008;51(11):1112–9.  https://doi.org/10.1016/j.jacc.2007.12.014.CrossRefPubMedGoogle Scholar
  18. 18.
    Jessup M, Greenberg B, Mancini D, Cappola T, Pauly DF, Jaski B, et al. Calcium Upregulation by Percutaneous Administration of Gene Therapy in Cardiac Disease (CUPID): a phase 2 trial of intracoronary gene therapy of sarcoplasmic reticulum Ca2+-ATPase in patients with advanced heart failure. Circulation. 2011;124(3):304–13.  https://doi.org/10.1161/CIRCULATIONAHA.111.022889.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Greenberg B, Yaroshinsky A, Zsebo KM, et al. Design of a phase 2b trial of intracoronary administration of AAV1/SERCA2a in patients with advanced heart failure: the CUPID 2 trial (calcium up-regulation by percutaneous administration of gene therapy in cardiac disease phase 2b). JACC Heart Fail. 2014;2(1):84–92.  https://doi.org/10.1016/j.jchf.2013.09.008.CrossRefPubMedGoogle Scholar
  20. 20.
    Greenberg B, Butler J, Felker GM, Ponikowski P, Voors AA, Desai AS, et al. Calcium upregulation by percutaneous administration of gene therapy in patients with cardiac disease (CUPID 2): a randomised, multinational, double-blind, placebo-controlled, phase 2b trial. Lancet. 2016;387(10024):1178–86.  https://doi.org/10.1016/S0140-6736(16)00082-9.CrossRefPubMedGoogle Scholar
  21. 21.
    Yang L, Jiang J, Drouin LM, Agbandje-Mckenna M, Chen C, Qiao C, et al. A myocardium tropic adeno-associated virus (AAV) evolved by DNA shuffling and in vivo selection. Proc Natl Acad Sci U S A. 2009;106(10):3946–51.  https://doi.org/10.1073/pnas.0813207106.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Asokan A, Conway JC, Phillips JL, Li C, Hegge J, Sinnott R, et al. Reengineering a receptor footprint of adeno-associated virus enables selective and systemic gene transfer to muscle. Nat Biotechnol. 2010;28(1):79–82.  https://doi.org/10.1038/nbt.1599.CrossRefPubMedGoogle Scholar
  23. 23.
    Nowak KJ, Davies KE. Duchenne muscular dystrophy and dystrophin: pathogenesis and opportunities for treatment. EMBO Rep. 2004;5(9):872–6.  https://doi.org/10.1038/sj.embor.7400221.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Yiu EM, Kornberg AJ. Duchenne muscular dystrophy. J Paediatr Child Health. 2015;51(8):759–64.  https://doi.org/10.1111/jpc.12868.CrossRefPubMedGoogle Scholar
  25. 25.
    Manning J, O’Malley D. What has the mdx mouse model of Duchenne muscular dystrophy contributed to our understanding of this disease? J Muscle Res Cell Motil. 2015;36(2):155–67.  https://doi.org/10.1007/s10974-015-9406-4.CrossRefPubMedGoogle Scholar
  26. 26.
    Bushby K, Finkel R, Birnkrant DJ, Case LE, Clemens PR, Cripe L, et al. Diagnosis and management of Duchenne muscular dystrophy, part 2: implementation of multidisciplinary care. Lancet Neurol. 2010;9(2):177–89.  https://doi.org/10.1016/S1474-4422(09)70272-8.CrossRefPubMedGoogle Scholar
  27. 27.
    Yue Y, Binalsheikh IM, Leach SB, Domeier TL, Duan D. Prospect of gene therapy for cardiomyopathy in hereditary muscular dystrophy. Expert Opin Orphan Drugs. 2016;4(2):169–83.  https://doi.org/10.1517/21678707.2016.1124039.CrossRefPubMedGoogle Scholar
  28. 28.
    Blankinship MJ, Gregorevic P, Chamberlain JS. Gene therapy strategies for Duchenne muscular dystrophy utilizing recombinant adeno-associated virus vectors. Mol Ther. 2006;13(2):241–9.  https://doi.org/10.1016/j.ymthe.2005.11.001.CrossRefPubMedGoogle Scholar
  29. 29.
    Abdul-Razak H, Malerba A, Dickson G. Advances in gene therapy for muscular dystrophies. F1000Res. 2016;5.  https://doi.org/10.12688/f1000research.8735.1.CrossRefGoogle Scholar
  30. 30.
    Foster H, Popplewell L, Dickson G. Genetic therapeutic approaches for Duchenne muscular dystrophy. Hum Gene Ther. 2012;23(7):676–87.  https://doi.org/10.1089/hum.2012.099.CrossRefPubMedGoogle Scholar
  31. 31.
    Duan D. Duchenne muscular dystrophy gene therapy: lost in translation? Res Rep Biol. 2011;2011(2):31–42.  https://doi.org/10.2147/RRB.S13463.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Forbes SC, Bish LT, Ye F, Spinazzola J, Baligand C, Plant D, et al. Gene transfer of arginine kinase to skeletal muscle using adeno-associated virus. Gene Ther. 2014;21(4):387–92.  https://doi.org/10.1038/gt.2014.9.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Bowles DE, McPhee SW, Li C, et al. Phase 1 gene therapy for Duchenne muscular dystrophy using a translational optimized AAV vector. Mol Ther. 2012;20(2):443–55.  https://doi.org/10.1038/mt.2011.237.CrossRefPubMedGoogle Scholar
  34. 34.
    Chamberlain JR, Chamberlain JS. Progress toward gene therapy for Duchenne muscular dystrophy. Mol Ther. 2017;25(5):1125–31.  https://doi.org/10.1016/j.ymthe.2017.02.019.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Toromanoff A, Adjali O, Larcher T, Hill M, Guigand L, Chenuaud P, et al. Lack of immunotoxicity after regional intravenous (RI) delivery of rAAV to nonhuman primate skeletal muscle. Mol Ther. 2010;18(1):151–60.  https://doi.org/10.1038/mt.2009.251.CrossRefPubMedGoogle Scholar
  36. 36.
    Rodino-Klapac LR, Montgomery CL, Bremer WG, Shontz KM, Malik V, Davis N, et al. Persistent expression of FLAG-tagged micro dystrophin in nonhuman primates following intramuscular and vascular delivery. Mol Ther. 2010;18(1):109–17.  https://doi.org/10.1038/mt.2009.254.CrossRefPubMedGoogle Scholar
  37. 37.
    Kodippili K, Hakim CH, Pan X, Yang HT, Yue Y, Zhang Y, et al. Dual AAV gene therapy for Duchenne muscular dystrophy with a 7-kb mini-dystrophin gene in the canine model. Hum Gene Ther. 2018;29(3):299–311.  https://doi.org/10.1089/hum.2017.095.CrossRefPubMedGoogle Scholar
  38. 38.
    Duan D. Duchenne muscular dystrophy gene therapy in the canine model. Hum Gene Ther Clin Dev. 2015;26(1):57–69.  https://doi.org/10.1089/humc.2015.006.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Wang Z, Storb R, Halbert CL, Banks GB, Butts TM, Finn EE, et al. Successful regional delivery and long-term expression of a dystrophin gene in canine muscular dystrophy: a preclinical model for human therapies. Mol Ther. 2012;20(8):1501–7.  https://doi.org/10.1038/mt.2012.111.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Systemic gene delivery clinical trial for Duchenne muscular dystrophy https://clinicaltrials.gov/ct2/show/NCT03375164?cond=%22Muscular+Dystrophy%2C+Duchenne%22&lupd_s=11%2F13%2F2015&lupd_d=1000.Google Scholar
  41. 41.
    A study to evaluate the safety and tolerability of PF-06939926 gene therapy in Duchenne muscular dystrophy https://clinicaltrials.gov/ct2/show/NCT03362502?cond=%22Muscular+Dystrophy%2C+Duchenne%22&lupd_s=11%2F13%2F2015&lupd_d=1000.Google Scholar
  42. 42.
    Gene transfer clinical trial to deliver rAAVrh74.MCK.GALGT2 for Duchenne muscular dystrophy https://clinicaltrials.gov/ct2/show/NCT03333590?cond=%22Muscular+Dystrophy%2C+Duchenne%22&lupd_s=11%2F13%2F2015&lupd_d=1000.Google Scholar
  43. 43.
    Nance ME, Duan D. Perspective on adeno-associated virus capsid modification for Duchenne muscular dystrophy gene therapy. Hum Gene Ther. 2015;26(12):786–800.  https://doi.org/10.1089/hum.2015.107.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Ghosh A, Duan D. Expanding adeno-associated viral vector capacity: a tale of two vectors. Biotechnol Genet Eng Rev. 2007;24:165–77.CrossRefGoogle Scholar
  45. 45.
    Lai Y, Yue Y, Liu M, Ghosh A, Engelhardt JF, Chamberlain JS, et al. Efficient in vivo gene expression by trans-splicing adeno-associated viral vectors. Nat Biotechnol. 2005;23(11):1435–9.  https://doi.org/10.1038/nbt1153.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Koo T, Popplewell L, Athanasopoulos T, Dickson G. Triple trans-splicing adeno-associated virus vectors capable of transferring the coding sequence for full-length dystrophin protein into dystrophic mice. Hum Gene Ther. 2014;25(2):98–108.  https://doi.org/10.1089/hum.2013.164.CrossRefPubMedGoogle Scholar
  47. 47.
    Chapdelaine P, Pichavant C, Rousseau J, Paques F, Tremblay JP. Meganucleases can restore the reading frame of a mutated dystrophin. Gene Ther. 2010;17(7):846–58.  https://doi.org/10.1038/gt.2010.26.CrossRefPubMedGoogle Scholar
  48. 48.
    Ousterout DG, Perez-Pinera P, Thakore PI, Kabadi AM, Brown MT, Qin X, et al. Reading frame correction by targeted genome editing restores dystrophin expression in cells from Duchenne muscular dystrophy patients. Mol Ther. 2013;21(9):1718–26.  https://doi.org/10.1038/mt.2013.111.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Ousterout DG, Kabadi AM, Thakore PI, Perez-Pinera P, Brown MT, Majoros WH, et al. Correction of dystrophin expression in cells from Duchenne muscular dystrophy patients through genomic excision of exon 51 by zinc finger nucleases. Mol Ther. 2015;23(3):523–32.  https://doi.org/10.1038/mt.2014.234.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Popplewell L, Koo T, Leclerc X, Duclert A, Mamchaoui K, Gouble A, et al. Gene correction of a duchenne muscular dystrophy mutation by meganuclease-enhanced exon knock-in. Hum Gene Ther. 2013;24(7):692–701.  https://doi.org/10.1089/hum.2013.081.CrossRefPubMedGoogle Scholar
  51. 51.
    Cordova G, Negroni E, Cabello-Verrugio C, Mouly V, Trollet C. Combined therapies for Duchenne muscular dystrophy to optimize treatment efficacy. Front Genet. 2018;9:114.  https://doi.org/10.3389/fgene.2018.00114.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Nelson CE, Hakim CH, Ousterout DG, Thakore PI, Moreb EA, Rivera RMC, et al. In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy. Science. 2016;351(6271):403–7.  https://doi.org/10.1126/science.aad5143.CrossRefPubMedGoogle Scholar
  53. 53.
    Wang J-Z, Wu P, Shi Z-M, Xu Y-L, Liu Z-J. The AAV-mediated and RNA-guided CRISPR/Cas9 system for gene therapy of DMD and BMD. Brain and Development. 2017;39(7):547–56.  https://doi.org/10.1016/j.braindev.2017.03.024.CrossRefPubMedGoogle Scholar
  54. 54.
    Zhu P, Wu F, Mosenson J, Zhang H, He T-C, Wu W-S. CRISPR/Cas9-mediated genome editing corrects dystrophin mutation in skeletal muscle stem cells in a mouse model of muscle dystrophy. Mol Ther Nucleic Acids. 2017;7:31–41.  https://doi.org/10.1016/j.omtn.2017.02.007.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Mendell JR, Rodino-Klapac LR, Sahenk Z, et al. Eteplirsen for the treatment of Duchenne muscular dystrophy. Ann Neurol. 2013;74(5):637–47.  https://doi.org/10.1002/ana.23982.CrossRefPubMedGoogle Scholar
  56. 56.
    Nakamura A. Moving towards successful exon-skipping therapy for Duchenne muscular dystrophy. J Hum Genet. 2017;62(10):871–6.  https://doi.org/10.1038/jhg.2017.57.CrossRefPubMedGoogle Scholar
  57. 57.
    Kendall GC, Mokhonova EI, Moran M, Sejbuk NE, Wang DW, Silva O, et al. Dantrolene enhances antisense-mediated exon skipping in human and mouse models of Duchenne muscular dystrophy. Sci Transl Med. 2012;4(164):164ra160.  https://doi.org/10.1126/scitranslmed.3005054.CrossRefPubMedGoogle Scholar
  58. 58.
    McElhanon KE, Bhattacharya S. Altered membrane integrity in the progression of muscle diseases. Life Sci. 2018;192:166–72.  https://doi.org/10.1016/j.lfs.2017.11.035.CrossRefPubMedGoogle Scholar
  59. 59.
    Le Hir M, Goyenvalle A, Peccate C, et al. AAV genome loss from dystrophic mouse muscles during AAV-U7 snRNA-mediated exon-skipping therapy. Mol Ther. 2013;21(8):1551–8.  https://doi.org/10.1038/mt.2013.121.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Stedman HH, Byrne BJ. Signs of progress in gene therapy for muscular dystrophy also warrant caution. Mol Ther. 2012;20(2):249–51.  https://doi.org/10.1038/mt.2011.307.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Kornegay JN, Li J, Bogan JR, Bogan DJ, Chen C, Zheng H, et al. Widespread muscle expression of an AAV9 human mini-dystrophin vector after intravenous injection in neonatal dystrophin-deficient dogs. Mol Ther. 2010;18(8):1501–8.  https://doi.org/10.1038/mt.2010.94.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Zaccolo M. cAMP signal transduction in the heart: understanding spatial control for the development of novel therapeutic strategies. Br J Pharmacol. 2009;158(1):50–60.  https://doi.org/10.1111/j.1476-5381.2009.00185.x.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Lai NC, Roth DM, Gao MH, Tang T, Dalton N, Lai YY, et al. Intracoronary adenovirus encoding adenylyl cyclase VI increases left ventricular function in heart failure. Circulation. 2004;110(3):330–6.  https://doi.org/10.1161/01.CIR.0000136033.21777.4D.CrossRefPubMedGoogle Scholar
  64. 64.
    Roth DM, Bayat H, Drumm JD, Gao MH, Swaney JS, Ander A, et al. Adenylyl cyclase increases survival in cardiomyopathy. Circulation. 2002;105(16):1989–94.CrossRefGoogle Scholar
  65. 65.
    Timofeyev V, He Y, Tuteja D, Zhang Q, Roth DM, Hammond HK, et al. Cardiac-directed expression of adenylyl cyclase reverses electrical remodeling in cardiomyopathy. J Mol Cell Cardiol. 2006;41(1):170–81.  https://doi.org/10.1016/j.yjmcc.2006.04.008.CrossRefPubMedGoogle Scholar
  66. 66.
    Hammond HK, Penny WF, Traverse JH, Henry TD, Watkins MW, Yancy CW, et al. Intracoronary gene transfer of adenylyl cyclase 6 in patients with heart failure: a randomized clinical trial. JAMA Cardiol. 2016;1(2):163–71.  https://doi.org/10.1001/jamacardio.2016.0008.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Most P, Seifert H, Gao E, Funakoshi H, Völkers M, Heierhorst J, et al. Cardiac S100A1 protein levels determine contractile performance and propensity toward heart failure after myocardial infarction. Circulation. 2006;114(12):1258–68.  https://doi.org/10.1161/CIRCULATIONAHA.106.622415.CrossRefPubMedGoogle Scholar
  68. 68.
    Boerries M, Most P, Gledhill JR, Walker JE, Katus HA, Koch WJ, et al. Ca2+ -dependent interaction of S100A1 with F1-ATPase leads to an increased ATP content in cardiomyocytes. Mol Cell Biol. 2007;27(12):4365–73.  https://doi.org/10.1128/MCB.02045-06.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Pleger ST, Shan C, Ksienzyk J, Bekeredjian R, Boekstegers P, Hinkel R, et al. Cardiac AAV9-S100A1 gene therapy rescues post-ischemic heart failure in a preclinical large animal model. Sci Transl Med. 2011;3(92):92ra64.  https://doi.org/10.1126/scitranslmed.3002097.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Weber C, Neacsu I, Krautz B, Schlegel P, Sauer S, Raake P, et al. Therapeutic safety of high myocardial expression levels of the molecular inotrope S100A1 in a preclinical heart failure model. Gene Ther. 2014;21(2):131–8.  https://doi.org/10.1038/gt.2013.63.CrossRefPubMedGoogle Scholar
  71. 71.
    uniQure N.V. Annual report 2017. http://www.uniqure.com/uniQure%20Annual%20Accounts%202017.pdf.Google Scholar
  72. 72.
    Sen A, Ren S, Lerchenmuller C, et al. MicroRNA-138 regulates hypoxia-induced endothelial cell dysfunction by targeting S100A1. PLoS One. 2013;8(11):e78684.  https://doi.org/10.1371/journal.pone.0078684.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Bry M, Kivelä R, Leppänen VM, Alitalo K. Vascular endothelial growth factor-B in physiology and disease. Physiol Rev. 2014;94:779–94.CrossRefGoogle Scholar
  74. 74.
    Li Y, Zhang F, Nagai N, Tang Z, Zhang S, Scotney P, et al. VEGF-B inhibits apoptosis via VEGFR-1-mediated suppression of the expression of BH3-only protein genes in mice and rats. J Clin Invest. 2008;118:913–23.CrossRefGoogle Scholar
  75. 75.
    Narula J, Haider N, Virmani R, DiSalvo TG, Kolodgie FD, Hajjar RJ, et al. Apoptosis in myocytes in end-stage heart failure. N Engl J Med. 1996;335:1182–9.CrossRefGoogle Scholar
  76. 76.
    Olivetti G, Abbi R, Quaini F, Kajstura J, Cheng W, Nitahara JA, et al. Apoptosis in the failing human heart. N Engl J Med. 1997;336:1131–41.CrossRefGoogle Scholar
  77. 77.
    Saraste A, Pulkki K, Kallajoki M, et al. Cardiomyocyte apoptosis and progression of heart failure to transplantation. Eur J Clin Investig. 1999;29:380–6.CrossRefGoogle Scholar
  78. 78.
    Khatiwala JR, Everly MJ. An update on cardiac transplantation in the United States based on an analysis of the UNOS registry. Clin Transpl. 2015;31:27–34.PubMedGoogle Scholar
  79. 79.
    Zentilin L, Puligadda U, Lionetti V, Zacchigna S, Collesi C, Pattarini L, et al. Cardiomyocyte VEGFR-1 activation by VEGF-B induces compensatory hypertrophy and preserves cardiac function after myocardial infarction. FASEB J. 2010;24:1467–78.CrossRefGoogle Scholar
  80. 80.
    Pepe M, Mamdani M, Zentilin L, Csiszar A, Qanud K, Zacchigna S, et al. Intramyocardial VEGF-B167 gene delivery delays the progression towards congestive failure in dogs with pacing-induced dilated cardiomyopathy. Circ Res. 2010;106:1893–903.CrossRefGoogle Scholar
  81. 81.
    Woitek F, Zentilin L, Hoffman NE, Powers JC, Ottiger I, Parikh S, et al. Intracoronary cytoprotective gene therapy: a study of VEGF-B167 in a pre-clinical animal model of dilated cardiomyopathy. J Am Coll Cardiol. 2015;66:139–53.CrossRefGoogle Scholar
  82. 82.
    Askari AT, Unzek S, Popovic ZB, Goldman CK, Forudi F, Kiedrowski M, et al. Effect of stromal-cell-derived factor 1 on stem-cell homing and tissue regeneration in ischaemic cardiomyopathy. Lancet. 2003;362(9385):697–703.  https://doi.org/10.1016/S0140-6736(03)14232-8.CrossRefPubMedGoogle Scholar
  83. 83.
    Penn MS, Pastore J, Miller T, Aras R. SDF-1 in myocardial repair. Gene Ther. 2012;19(6):583–7.  https://doi.org/10.1038/gt.2012.32.CrossRefPubMedGoogle Scholar
  84. 84.
    Penn MS, Mendelsohn FO, Schaer GL, Sherman W, Farr M, Pastore J, et al. An open-label dose escalation study to evaluate the safety of administration of nonviral stromal cell-derived factor-1 plasmid to treat symptomatic ischemic heart failure. Circ Res. 2013;112(5):816–25.  https://doi.org/10.1161/CIRCRESAHA.111.300440.CrossRefPubMedGoogle Scholar
  85. 85.
    Chung ES, Miller L, Patel AN, Anderson RD, Mendelsohn FO, Traverse J, et al. Changes in ventricular remodelling and clinical status during the year following a single administration of stromal cell-derived factor-1 non-viral gene therapy in chronic ischaemic heart failure patients: the STOP-HF randomized phase II trial. Eur Heart J. 2015;36(33):2228–38.  https://doi.org/10.1093/eurheartj/ehv254.CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Durrani S, Konoplyannikov M, Ashraf M, Haider KH. Skeletal myoblasts for cardiac repair. Regen Med. 2010;5(6):919–32.  https://doi.org/10.2217/rme.10.65.CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Psaltis PJ, Schwarz N, Toledo-Flores D, Nicholls SJ. Cellular therapy for heart failure. Curr Cardiol Rev. 2016;12(3):195–215.  https://doi.org/10.2174/1573403X12666160606121858.CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Ptaszek LM, Mansour M, Ruskin JN, Chien KR. Towards regenerative therapy for cardiac disease. Lancet. 2012;379(9819):933–42.  https://doi.org/10.1016/S0140-6736(12)60075-0.CrossRefPubMedGoogle Scholar
  89. 89.
    Zhang Y, Mignone J, MacLellan WR. Cardiac regeneration and stem cells. Physiol Rev. 2015;95(4):1189–204.  https://doi.org/10.1152/physrev.00021.2014.CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Steinhoff G, Nesteruk J, Wolfien M, Große J, Ruch U, Vasudevan P, et al. Stem cells and heart disease—brake or accelerator? Adv Drug Deliv Rev. 2017;120:2–24.  https://doi.org/10.1016/j.addr.2017.10.007.CrossRefPubMedGoogle Scholar
  91. 91.
    Bergmann O, Bhardwaj RD, Bernard S, Zdunek S, Barnabé-Heider F, Walsh S, et al. Evidence for cardiomyocyte renewal in humans. Science. 2009;324(5923):98–102.  https://doi.org/10.1126/science.1164680.CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Chaudhry HW, Dashoush NH, Tang H, Zhang L, Wang X, Wu EX, et al. Cyclin A2 mediates cardiomyocyte mitosis in the postmitotic myocardium. J Biol Chem. 2004;279(34):35858–66.  https://doi.org/10.1074/jbc.M404975200.CrossRefPubMedGoogle Scholar
  93. 93.
    Woo YJ, Panlilio CM, Cheng RK, et al. Therapeutic delivery of cyclin A2 induces myocardial regeneration and enhances cardiac function in ischemic heart failure. Circulation. 2006;114(1 Suppl):I206–13.  https://doi.org/10.1161/CIRCULATIONAHA.105.000455.CrossRefPubMedGoogle Scholar
  94. 94.
    Liao HS, Kang PM, Nagashima H, Yamasaki N, Usheva A, Ding B, et al. Cardiac-specific overexpression of cyclin-dependent kinase 2 increases smaller mononuclear cardiomyocytes. Circ Res. 2001;88(4):443–50.CrossRefGoogle Scholar
  95. 95.
    Pasumarthi KBS, Nakajima H, Nakajima HO, Soonpaa MH, Field LJ. Targeted expression of cyclin D2 results in cardiomyocyte DNA synthesis and infarct regression in transgenic mice. Circ Res. 2005;96(1):110–8.  https://doi.org/10.1161/01.RES.0000152326.91223.4F.CrossRefPubMedGoogle Scholar
  96. 96.
    Hassink RJ, Pasumarthi KB, Nakajima H, Rubart M, Soonpaa MH, de la Riviere AB, et al. Cardiomyocyte cell cycle activation improves cardiac function after myocardial infarction. Cardiovasc Res. 2008;78(1):18–25.  https://doi.org/10.1093/cvr/cvm101.CrossRefPubMedGoogle Scholar
  97. 97.
    Mahmoud AI, Kocabas F, Muralidhar SA, Kimura W, Koura AS, Thet S, et al. Meis1 regulates postnatal cardiomyocyte cell cycle arrest. Nature. 2013;497(7448):249–53.  https://doi.org/10.1038/nature12054.CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Xiang F-L, Guo M, Yutzey KE. Overexpression of Tbx20 in adult cardiomyocytes promotes proliferation and improves cardiac function after myocardial infarction. Circulation. 2016;133(11):1081–92.  https://doi.org/10.1161/CIRCULATIONAHA.115.019357.CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Eulalio A, Mano M, Dal Ferro M, et al. Functional screening identifies miRNAs inducing cardiac regeneration. Nature. 2012;492(7429):376–81.  https://doi.org/10.1038/nature11739.CrossRefPubMedGoogle Scholar
  100. 100.
    Tian Y, Liu Y, Wang T, Zhou N, Kong J, Chen L, et al. A microRNA-Hippo pathway that promotes cardiomyocyte proliferation and cardiac regeneration in mice. Sci Transl Med. 2015;7(279):279ra38.  https://doi.org/10.1126/scitranslmed.3010841.CrossRefPubMedGoogle Scholar
  101. 101.
    Meng Z, Moroishi T, Guan K-L. Mechanisms of Hippo pathway regulation. Genes Dev. 2016;30(1):1–17.  https://doi.org/10.1101/gad.274027.115.CrossRefPubMedPubMedCentralGoogle Scholar
  102. 102.
    Halder G, Johnson RL. Hippo signaling: growth control and beyond. Development. 2011;138(1):9–22.  https://doi.org/10.1242/dev.045500.CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    Leach JP, Heallen T, Zhang M, Rahmani M, Morikawa Y, Hill MC, et al. Hippo pathway deficiency reverses systolic heart failure after infarction. Nature. 2017;550(7675):260–4.  https://doi.org/10.1038/nature24045.CrossRefPubMedPubMedCentralGoogle Scholar
  104. 104.
    Morikawa Y, Zhang M, Heallen T, Leach J, Tao G, Xiao Y, et al. Actin cytoskeletal remodeling with protrusion formation is essential for heart regeneration in Hippo-deficient mice. Sci Signal. 2015;8(375):ra41.  https://doi.org/10.1126/scisignal.2005781.CrossRefPubMedPubMedCentralGoogle Scholar
  105. 105.
    Tao G, Kahr PC, Morikawa Y, Zhang M, Rahmani M, Heallen TR, et al. Pitx2 promotes heart repair by activating the antioxidant response after cardiac injury. Nature. 2016;534(7605):119–23.  https://doi.org/10.1038/nature17959.CrossRefPubMedPubMedCentralGoogle Scholar
  106. 106.
    Heallen T, Morikawa Y, Leach J, Tao G, Willerson JT, Johnson RL, et al. Hippo signaling impedes adult heart regeneration. Development. 2013;140(23):4683–90.  https://doi.org/10.1242/dev.102798.CrossRefPubMedPubMedCentralGoogle Scholar
  107. 107.
    Chen J, Huang Z-P, Seok HY, Ding J, Kataoka M, Zhang Z, et al. mir-17-92 cluster is required for and sufficient to induce cardiomyocyte proliferation in postnatal and adult hearts. Circ Res. 2013;112(12):1557–66.  https://doi.org/10.1161/CIRCRESAHA.112.300658.CrossRefPubMedPubMedCentralGoogle Scholar
  108. 108.
    Zhang Y, Matsushita N, Eigler T, Marban E. Targeted microRNA interference promotes postnatal cardiac cell cycle re-entry. J Regen Med. 2013;2:2.  https://doi.org/10.4172/2325-9620.1000108.CrossRefPubMedPubMedCentralGoogle Scholar
  109. 109.
    Porrello ER, Johnson BA, Aurora AB, Simpson E, Nam YJ, Matkovich SJ, et al. MiR-15 family regulates postnatal mitotic arrest of cardiomyocytes. Circ Res. 2011;109(6):670–9.  https://doi.org/10.1161/CIRCRESAHA.111.248880.CrossRefPubMedPubMedCentralGoogle Scholar
  110. 110.
    Castellan RFP, Meloni M. Mechanisms and therapeutic targets of cardiac regeneration: closing the age gap. Front Cardiovasc Med. 2018;5:7.  https://doi.org/10.3389/fcvm.2018.00007.CrossRefPubMedPubMedCentralGoogle Scholar
  111. 111.
    Lin Z, Pu WT. Releasing YAP from an α-catenin trap increases cardiomyocyte proliferation. Circ Res. 2015;116(1):9–11.  https://doi.org/10.1161/CIRCRESAHA.114.305496.CrossRefPubMedPubMedCentralGoogle Scholar
  112. 112.
    Huynh K. Basic research: inhibition of Hippo pathway signalling reverses systolic heart failure. Nat Rev Cardiol. 2017;14(12):697.  https://doi.org/10.1038/nrcardio.2017.166.CrossRefPubMedGoogle Scholar
  113. 113.
    Cahill TJ, Choudhury RP, Riley PR. Heart regeneration and repair after myocardial infarction: translational opportunities for novel therapeutics. Nat Rev Drug Discov. 2017;16(10):699–717.  https://doi.org/10.1038/nrd.2017.106.CrossRefPubMedGoogle Scholar
  114. 114.
    Hill MC, Martin JF. Heart muscle regeneration: the wonder of a cardio-cocktail. Cell Res. 2018;28(5):503–4.  https://doi.org/10.1038/s41422-018-0035-5.CrossRefPubMedGoogle Scholar
  115. 115.
    Gabisonia K, Prosdocimo G, Aquaro GD, et al. Intramyocardial delivery of miR-199a reduces scar size and preserves contractile function in infarcted pig hearts. 2016 AHA late-breaking basic science abstracts. Circ Res. 2016;119:e160–71.  https://doi.org/10.1161/RES.0000000000000126.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Life Sciences, Fondazione Toscana Gabriele MonasterioScuola Superiore Sant’AnnaPisaItaly
  2. 2.Cardiovascular Research Center, Lewis Katz School of MedicineTemple UniversityPhiladelphiaUSA

Personalised recommendations