Advertisement

Current Heart Failure Reports

, Volume 15, Issue 2, pp 44–52 | Cite as

Multiple Avenues of Modulating the Nitric Oxide Pathway in Heart Failure Clinical Trials

  • Prabhjot Singh
  • Shilpa Vijayakumar
  • Andreas Kalogeroupoulos
  • Javed ButlerEmail author
Clinical Trials (J. Butler, Section Editor)
  • 314 Downloads
Part of the following topical collections:
  1. Topical Collection on Clinical Trials

Abstract

Purpose of review

This review discusses the integral role of the nitric oxide (NO) pathway in the pathophysiology of heart failure (HF). We emphasize potential therapeutic targets in the NO pathway and review contemporary clinical trials evaluating these novel therapeutic options.

Recent findings

Nitrates, neprilysin inhibitors, and phosphodiesterase (PDE) inhibitors have all proven to be efficacious in HF patients with systolic dysfunction, with the former two classes of medications producing a net mortality benefit. However, neither PDE inhibitors nor nitrates have demonstrated significant clinical benefit in patients with HF with preserved ejection fraction (HFpEF), and neprilysin inhibitors have yet to be evaluated in this population. Soluble guanylate cyclase (sGC) stimulators have shown significant promise in all HF patients, leading to improvements in both quality of life scores and exercise capacity. Conversely, sGC activators have limited clinical utility in HF, owing largely to safety concerns of hypotension. Inorganic nitrates and nitrites, meanwhile, may be emerging as potential therapies for the HFpEF population.

Summary

The advent of novel therapies targeting the NO pathway is beginning to create a paradigm shift in the treatment of the HF patient. These therapies offer a promising outlook for the future, with hopes of reducing HF-associated morbidity and mortality.

Keywords

Nitric oxide Endothelial nitric oxide synthase Soluble guanylate cyclase Nitrates Heart failure 

Notes

Compliance with Ethical Standards

Conflict of Interest

Prabhjot Singh, Shilpa Vijaykumar, Andreas Kalogeroupoulos declare no conflicts of interest.

Javed Butler is a consultant for Amgen, Astra-Zeneca, Bayer, Boehringer Ingelheim, Bristol-Myers Squibb, CVRx, Janssen, Luitpold, Medtronic, Novartis, Relypsa, Roche, Vifor, and ZS Pharma outside the submitted work.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. 1.
    Mozaffarian D, Benjamin EJ, Go AS, et al. Heart disease and stroke statistics—2016 update: a report from the American Heart Association. Circulation. 2016;133(4):e38–e360.  https://doi.org/10.1161/CIR.0000000000000350.PubMedCrossRefGoogle Scholar
  2. 2.
    Gheorghiade M, Adams KF, Cleland JG, Cotter G, Felker GM, Filippatos GS, et al. Phase III clinical trial end points in acute heart failure syndromes: a virtual roundtable with the Acute Heart Failure Syndromes International Working Group. Am Heart J. 2009;157(6):957–70.  https://doi.org/10.1016/j.ahj.2009.04.010.PubMedCrossRefGoogle Scholar
  3. 3.
    Chirinos JA, Zamani P. The nitrate-nitrite-NO pathway and its implications for heart failure and preserved ejection fraction. Curr Heart Fail Rep. 2016;13(1):47–59.  https://doi.org/10.1007/s11897-016-0277-9.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Lundberg JO, Carlstrom M, Larsen FJ, Weitzberg E. Roles of dietary inorganic nitrate in cardiovascular health and disease. Cardiovasc Res. 2011;89:525–32.PubMedCrossRefGoogle Scholar
  5. 5.
    Maher AR, Milsom AB, Gunaruwan P, Abozguia K, Ahmed I, Weaver RA, et al. Hypoxic modulation of exogenous nitrite-induced vasodilation in humans. Important article demonstrating the increased conversion of nitrite to NO in the context of hypoxia. Circulation. 2008;117:670–7.PubMedCrossRefGoogle Scholar
  6. 6.
    Modin A, Bjorne H, Herulf M, et al. Nitrite-derived nitric oxide: a possible mediator of ‘acidic-metabolic’ vasodilation. Important article demonstrating the increased conversion of nitrite to NO in the context of acidemia. Acta Physiol Scand. 2001;171:9–16.PubMedGoogle Scholar
  7. 7.
    Gheorghiade M, Marti CN, Sabbah HN, Roessig L, Greene SJ, Böhm M, et al. Soluble guanylate cyclase: a potential therapeutic target for heart failure. Heart Fail Rev. 2013;18:123–34.  https://doi.org/10.1007/s10741-012-9323-1.PubMedCrossRefGoogle Scholar
  8. 8.
    • Greene SJ, Gheorghiade M, Borlaug BA, et al. The cGMP signaling pathway as a therapeutic target in heart failure with preserved ejection fraction. J Am Heart Assoc. 2013;2(6):e000536.  https://doi.org/10.1161/JAHA.113.000536. This review details the role and alterations of the cGMP pathway in the HFpEF patient and highlights potential therapeutic strategies targeting this crucial pathway PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Paulus WJ, Vantrimpont PJ, Shah AM. Acute effects of nitric oxide on left ventricular relaxation and diastolic distensibility in humans. Assessment by bicoronary sodium nitroprusside infusion. Circulation. 1994;89(5):2070–8.PubMedCrossRefGoogle Scholar
  10. 10.
    Varin R, Mulder P, Tamion F, et al. Improvement of endothelial function by chronic angiotensin-converting enzyme inhibition in heart failure : role of nitric oxide, prostanoids, oxidant stress, and bradykinin. Circulation. 2000;102(3):351–6.PubMedCrossRefGoogle Scholar
  11. 11.
    Kojda G, Kottenberg K, Nix P, Schluter KD, Piper HM, Noack E. Low increase in cGMP induced by organic nitrates and nitrovasodilators improves contractile response of rat ventricular myocytes. Circ Res. 1996;78(1):91–101.PubMedCrossRefGoogle Scholar
  12. 12.
    Paulus WJ, Bronzwaer JG. Nitric oxide’s role in the heart: control of beating or breathing? Am J Physiol Heart Circ Physiol. 2004;287(1):H8–13.PubMedCrossRefGoogle Scholar
  13. 13.
    Munzel T, Gori T, Bruno RM, Taddei S. Is oxidative stress a therapeutic target in cardiovascular disease? Eur Heart J. 2010;31:2741–8.  https://doi.org/10.1093/eurheartj/ehq396.PubMedCrossRefGoogle Scholar
  14. 14.
    Evgenov OV, Pacher P, Schmidt PM, Haskó G, Schmidt HHHW, Stasch JP. NO independent stimulators and activators of soluble guanylate cyclase: discovery and therapeutic potential. Nat Rev Drug Discov. 2006;5:755–68.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Munzel T, Genth-Zotz S, Hink U. Targeting heme-oxidized soluble guanylate cyclase: solution for all cardiorenal problems in heart failure? Hypertension. 2007;49:974–6.PubMedCrossRefGoogle Scholar
  16. 16.
    Vanhoutte PM, Shimokawa H, Tang EH, Feletou M. Endothelial dysfunction and vascular disease. Acta Physiol (Oxf). 2009;196(2):193–222.  https://doi.org/10.1111/apha.12646.CrossRefGoogle Scholar
  17. 17.
    Schmidt HH, Hofmann F, Stasch JP. Handbook of experimental pharmacology. cGMP generators, effectors and therapeutic implications. Handb Exp Pharmacol. 2009;191:v–vi.Google Scholar
  18. 18.
    Ben Driss A, Devaux C, Henrion D, et al. Hemodynamic stresses induce endothelial dysfunction and remodeling of pulmonary artery in experimental compensated heart failure. Circulation. 2000;101(23):2764–70.PubMedCrossRefGoogle Scholar
  19. 19.
    Moraes DL, Colucci WS, Givertz MM. Secondary pulmonary hypertension in chronic heart failure: the role of the endothelium in pathophysiology and management. Circulation. 2000;102(14):1718–23.PubMedCrossRefGoogle Scholar
  20. 20.
    Blair JE, Manuchehry A, Chana A, et al. Prognostic markers in heart failure—congestion, neurohormones, and the cardiorenal syndrome. Acute Card Care. 2007;9(4):207–13.PubMedCrossRefGoogle Scholar
  21. 21.
    Treasure CB, Vita JA, Cox DA, Fish RD, Gordon JB, Mudge GH, et al. Endothelium-dependent dilation of the coronary microvasculature is impaired in dilated cardiomyopathy. Circulation. 1990;81(3):772–9.PubMedCrossRefGoogle Scholar
  22. 22.
    Maxwell AJ, Schauble E, Bernstein D, Cooke JP. Limb blood flow during exercise is dependent on nitric oxide. Circulation. 1998;98(4):369–74.PubMedCrossRefGoogle Scholar
  23. 23.
    Prasad A, Higano ST, Al Suwaidi J, et al. Abnormal coronary microvascular endothelial function in humans with asymptomatic left ventricular dysfunction. Am Heart J. 2003;146(3):549–54.  https://doi.org/10.1016/S0002-8703(03)00364-8.PubMedCrossRefGoogle Scholar
  24. 24.
    Katz SD, Hryniewicz K, Hriljac I, Balidemaj K, Dimayuga C, Hudaihed A, et al. Vascular endothelial dysfunction and mortality risk in patients with chronic heart failure. Circulation. 2005;111(3):310–4.  https://doi.org/10.1161/01.CIR.0000153349.77489.CF.PubMedCrossRefGoogle Scholar
  25. 25.
    Fischer D, Rossa S, Landmesser U, Spiekermann S, Engberding N, Hornig B, et al. Endothelial dysfunction in patients with chronic heart failure is independently associated with increased incidence of hospitalization, cardiac transplantation, or death. Eur Heart J. 2005;26(1):65–9.  https://doi.org/10.1093/eurheartj/ehi001.PubMedCrossRefGoogle Scholar
  26. 26.
    Meyer B, Mortl D, Strecker K, et al. Flow-mediated vasodilation predicts outcome in patients with chronic heart failure: comparison with B-type natriuretic peptide. J Am Coll Cardiol. 2005;46(6):1011–8.  https://doi.org/10.1016/j.jacc.2005.04.060.PubMedCrossRefGoogle Scholar
  27. 27.
    Mathier MA, Rose GA, Fifer MA, et al. Coronary endothelial dysfunction in patients with acute-onset idiopathic dilated cardiomyopathy. J Am Coll Cardiol. 1998;32(1):216–24.PubMedCrossRefGoogle Scholar
  28. 28.
    Hambrecht R, Fiehn E, Weigl C, Gielen S, Hamann C, Kaiser R, et al. Regular physical exercise corrects endothelial dysfunction and improves exercise capacity in patients with chronic heart failure. Circulation. 1998;98(24):2709–15.PubMedCrossRefGoogle Scholar
  29. 29.
    Elkayam U, Roth A, Mehra A, Ostrzega E, Shotan A, Kulick D, et al. Randomized study to evaluate the relation between oral isosorbide dinitrate dosing interval and the development of early tolerance to its effect on left ventricular filling pressure in patients with chronic heart failure. Circulation. 1991;84:2040–8.PubMedCrossRefGoogle Scholar
  30. 30.
    Mehra A, Ostrzega E, Shotan A, Johnson JV, Elkayam U. Persistent hemodynamic improvement with short-term nitrate therapy in patients with chronic congestive heart failure already treated with captopril. Am J Cardiol. 1992;70:1310–4.PubMedCrossRefGoogle Scholar
  31. 31.
    Ito N, Bartunek J, Spitzer KW, Lorell BH. Effects of the nitric oxide donor sodium nitroprusside on intracellular pH and contraction in hypertrophied myocytes. Circulation. 1997;95:2303–11.PubMedCrossRefGoogle Scholar
  32. 32.
    Shah AM, Spurgeon HA, Sollott SJ, Talo A, Lakatta EG. 8-bromo-cGMP reduces the myofilament response to Ca2+ in intact cardiac myocytes. Circ Res. 1994;74:970–8.PubMedCrossRefGoogle Scholar
  33. 33.
    Elkayam U, Johnson JV, Shotan A, Bokhari S, Solodky A, Canetti M, et al. Double-blind, placebo controlled study to evaluate the effect of organic nitrates in patients with chronic heart failure treated with angiotensin-converting enzyme inhibition. Circulation. 1999;99:2652–7.PubMedCrossRefGoogle Scholar
  34. 34.
    Cohn JN, Johnson G, Ziesche S, et al. A comparison of enalapril with hydralazine-isosorbide dinitrate in the treatment of chronic congestive heart failure. N Engl J Med. 1991;325:303–10.PubMedCrossRefGoogle Scholar
  35. 35.
    Cohn JN, Archibald DG, Ziesche S, Franciosa JA, Harston WE, Tristani FE, et al. Effect of vasodilator therapy on mortality in chronic congestive heart failure. Results of a Veterans Administration Cooperative Study. N Engl J Med. 1986;314:1547–52.PubMedCrossRefGoogle Scholar
  36. 36.
    Schwarz M, Katz SD, Demopoulos L, Hirsch H, Yuen JL, Jondeau G, et al. Enhancement of endothelium-dependent vasodilation by low-dose nitroglycerin in patients with congestive heart failure. Circulation. 1994;89:1609–14.PubMedCrossRefGoogle Scholar
  37. 37.
    Leier CV, Huss P, Magorien RD, Unverferth DV. Improved exercise capacity and differing arterial and venous tolerance during chronic isosorbide dinitrate therapy for congestive heart failure. Circulation. 1983;67:817–22.PubMedCrossRefGoogle Scholar
  38. 38.
    Taylor AL, Ziesche S, Yancy C, et al. Combination of isosorbide dinitrate and hydralazine in blacks with heart failure. N Engl J Med. 2004;351(20):2049–57.PubMedCrossRefGoogle Scholar
  39. 39.
    Redfield MM, Anstrom KJ, Levine JA, et al. Isosorbide mononitrate in heart failure with preserved ejection fraction. N Engl J Med. 2015;373(24):2314–24.  https://doi.org/10.1056/NEJMoa1510774.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Munzel T, Daiber A, Mulsch A. Explaining the phenomenon of nitrate tolerance. Circ Res. 2005;97:618–28.PubMedCrossRefGoogle Scholar
  41. 41.
    Gupta D, Georgiopoulou VV, Kalogeropoulos AP, Marti CN, Yancy CW, Gheorghiade M, et al. Nitrate therapy for heart failure: benefits and strategies to overcome tolerance. JACC Heart Fail. 2013;1(3):183–91.  https://doi.org/10.1016/j.jchf.2013.03.003.PubMedCrossRefGoogle Scholar
  42. 42.
    Elkayam U, Bitar F. Effects of nitrates and hydralazine in heart failure: clinical evidence before the African American Heart Failure Trial. Am J Cardiol. 2005;96:37i–43i.PubMedCrossRefGoogle Scholar
  43. 43.
    Hare JM. Nitroso-redox balance in the cardiovascular system. N Engl J Med. 2004;351:2112–4.PubMedCrossRefGoogle Scholar
  44. 44.
    Kurz S, Hink U, Nickenig G, Borthayre AB, Harrison DG, Munzel T. Evidence for a causal role of the renin-angiotensin system in nitrate tolerance. Circulation. 1999;99:3181–7.PubMedCrossRefGoogle Scholar
  45. 45.
    Katz SD. Mechanisms and Implications of endothelial dysfunction in congestive heart failure. Curr Opin Cardiol. 1997;12:259–64.PubMedCrossRefGoogle Scholar
  46. 46.
    Pizzulli L, Hagendorff A, Zirbes M, Fehske W, Ewig S, Jung W, et al. Influence of captopril on nitroglycerin-mediated vasodilation and development of nitrate tolerance in arterial and venous circulation. Am Heart J. 1996;131:342–9.PubMedCrossRefGoogle Scholar
  47. 47.
    Watanabe H, Kakihana M, Ohtsuka S, Sugishita Y. Preventive effects of angiotensin-converting enzyme inhibitors on nitrate tolerance during continuous transdermal application of nitroglycerin in patients with chronic heart failure. Jpn Circ J. 1998;62:353–8.PubMedCrossRefGoogle Scholar
  48. 48.
    Stork T, Eichstadt H, Mockel M, Gareis R, Bodemann T, Muller R. Hemodynamic action of captopril in coronary patients with heart failure tolerant to nitroglycerin. Clin Cardiol. 1997;20:999–1004.PubMedCrossRefGoogle Scholar
  49. 49.
    Desideri G, Grassi D, Croce G, et al. Different effects of angiotensin converting enzyme inhibitors on endothelin-1 and nitric oxide balance in human vascular endothelial cells: evidence of an oxidant-sensitive pathway. Mediat Inflamm. 2008;2008:305087.CrossRefGoogle Scholar
  50. 50.
    Dakak N, Makhoul N, Flugelman MY, Merdler A, Shehadeh H, Schneeweiss A, et al. Failure of captopril to prevent nitrate tolerance in congestive heart failure secondary to coronary artery disease. Am J Cardiol. 1990;66:608–13.PubMedCrossRefGoogle Scholar
  51. 51.
    Parker JD, Parker JO. Effect of therapy with an angiotensin-converting enzyme inhibitor on hemodynamic and counterregulatory responses during continuous therapy with nitroglycerin. J Am Coll Cardiol. 1993;21:1445–53.PubMedCrossRefGoogle Scholar
  52. 52.
    Dupuis J, Lalonde G, Bichet D, Rouleau JL. Captopril does not prevent nitroglycerin tolerance in heart failure. Can J Cardiol. 1990;6:281–6.PubMedGoogle Scholar
  53. 53.
    Chirkov YY, De Sciscio M, Sverdlov AL, et al. Hydralazine does not ameliorate nitric oxide resistance in chronic heart failure. Cardiovasc Drugs Ther. 2010;24:131–7.PubMedCrossRefGoogle Scholar
  54. 54.
    Parker JD, Parker AB, Farrell B, Parker JO. The effect of hydralazine on the development of tolerance to continuous nitroglycerin. J Pharmacol Exp Ther. 1997;280:866–75.PubMedGoogle Scholar
  55. 55.
    Masuyama H, Tsuruda T, Sekita Y, Hatakeyama K, Imamura T, Kato J, et al. Pressure-independent effects of pharmacological stimulation of soluble guanylate cyclase on fibrosis in pressure-overloaded rat heart. Hypertens Res. 2009;32(7):597–603.  https://doi.org/10.1038/hr.2009.64.PubMedCrossRefGoogle Scholar
  56. 56.
    Jones ES, Kemp-Harper B, Stasch JP, Schmidt H, Widdop RE. Cardioprotective effects in aged spontaneously hypertensive rats due to chronic stimulation/activation of sGC without hypotension. BMC Pharmacol 2009: 9(Suppl 1):P29 (abstr). doi:  https://doi.org/10.1186/1471-2210-9-S1-P29
  57. 57.
    Sharkovska Y, Kalk P, Lawrenz B, Godes M, Hoffmann LS, Wellkisch K, et al. Nitric oxide-independent stimulation of soluble guanylate cyclase reduces organ damage in experimental low-renin and high-renin models. J Hypertens. 2010;28(8):1666–75.  https://doi.org/10.1097/HJH.0b013e32833b558c.PubMedCrossRefGoogle Scholar
  58. 58.
    Boerrigter G, Costello-Boerrigter LC, Cataliotti A, Tsuruda T, Harty GJ, Lapp H, et al. Cardiorenal and humoral properties of a novel direct soluble guanylate cyclase stimulator BAY 41-2272 in experimental congestive heart failure. Circulation. 2003;107(5):686–9.PubMedCrossRefGoogle Scholar
  59. 59.
    Benz K, Orth SR, Simonaviciene A, Linz W, Schindler U, Rütten H, et al. Blood pressure-independent effect of long term treatment with the soluble heme-independent guanylyl cyclase activator HMR1766 on progression in a model of non inflammatory chronic renal damage. Kidney Blood Press Res. 2007;30(4):224–33.PubMedCrossRefGoogle Scholar
  60. 60.
    Stasch JP, Hobbs AJ. NO-independent, haem-dependent soluble guanylate cyclase stimulators. Handb Exp Pharmacol. 2009;191:277–308.  https://doi.org/10.1007/978-3-540-68964-5_13.CrossRefGoogle Scholar
  61. 61.
    Fraccarollo D, Galuppo P, Motschenbacher S, et al. Soluble guanylyl cyclase activation improves progressive cardiac remodeling and failure after myocardial infarction. Cardioprotection over ACE inhibition. Basic Res Cardiol. 2014;109(4):421.  https://doi.org/10.1007/s00395-014-0421-1.PubMedCrossRefGoogle Scholar
  62. 62.
    Lapp H, Mitrovic V, Franz N, Heuer H, et al. Cinaciguat (BAY 58–2667) improves cardiopulmonary hemodynamics in patients with acute decompensated heart failure. Circulation. 2009;119(21):2781–8.  https://doi.org/10.1161/CIRCULATIONAHA.108.800292.PubMedCrossRefGoogle Scholar
  63. 63.
    Erdmann E, Semigran MJ, Nieminen MS, Gheorghiade M, Agrawal R, Mitrovic V, et al. Cinaciguat, a soluble guanylate cyclase activator, unloads the heart but also causes hypotension in acute decompensated heart failure. Eur Heart J. 2013;34(1):57–67.  https://doi.org/10.1093/eurheartj/ehs196.PubMedCrossRefGoogle Scholar
  64. 64.
    Gheorghiade M, Erdmann E, Ferrari R, Filippatos G, Levy PD, Maggioni A, et al. Treatment of acute decompensated heart failure with the soluble guanylate cyclase activator cinaciguat: the COMPOSE program—three randomized, controlled, phase IIb studies. J Card Fail. 2011;17(11):971.  https://doi.org/10.1016/j.cardfail.2011.10.004.CrossRefGoogle Scholar
  65. 65.
    Ghofrani HA, D'Armini AM, Grimminger F, et al. Riociguat for the treatment of chronic thromboembolic pulmonary hypertension. N Engl J Med. 2013;369(4):319–29.  https://doi.org/10.1056/NEJMoa1209657.PubMedCrossRefGoogle Scholar
  66. 66.
    Simonneau G, D’Armini AM, Ghofrani HA, Grimminger F, Hoeper MM, Jansa P, et al. Riociguat for the treatment of the chronic thromboembolic pulmonary hypertension: a long-term extension study (CHEST-2). Eur Respir J. 2015;45(5):1293–302.  https://doi.org/10.1183/09031936.00087114.PubMedCrossRefGoogle Scholar
  67. 67.
    Bonderman D, Ghio S, Felix SB, et al. Riociguat for patients with pulmonary hypertension due to systolic left ventricular dysfunction: a phase IIb double-blind, randomized, placebo-controlled, dose-ranging hemodynamic study. Circulation. 2013;128(5):502–11.  https://doi.org/10.1161/CIRCULATIONAHA.113.001458.PubMedCrossRefGoogle Scholar
  68. 68.
    Bonderman D, Pretsch I, Steringer-Mascherbauer R, Jansa P, Rosenkranz S, Tufaro C, et al. Acute hemodynamic of riociguat in patients with pulmonary hypertension associated with diastolic heart failure (DILATE-1): a randomized, double-blind, placebo-controlled, single-dose study. Chest. 2014;146(5):1274–85.  https://doi.org/10.1378/chest.14-0106.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Gheorghiade M, Greene SJ, Butler J, et al. Effect of vericiguat, a soluble guanylate cyclase stimulator on natriuretic peptide levels in patients with worsening chronic heart failure and reduced ejection fraction: the SOCRATES-REDUCED Randomized Trial. JAMA. 2015;314(21):2251–62.  https://doi.org/10.1001/jama.2015.15734.PubMedCrossRefGoogle Scholar
  70. 70.
    • Pieske B, Maggioni AP, CSP L, et al. Vericiguat in patients with chronic heart failure and preserved ejection fraction: results of the SOluble guanylate Cyclase stimulatoR in heArt failure patientS with PRESERVED EF (SOCRATES-PRESERVED) study. Eur Heart J. 2017;38(15):1119–27.  https://doi.org/10.1093/eurheartj/ehw593. This recently published trial is one of the first major trials to suggest possible benefit of sGC stimulators in the HFpEF population warranting further studies at higher doses to potentially uncover a therapy to modify long term outcomes in this patient population PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    clinicaltrials.gov. Bethesda (MD). National Library of Medicine (US). Identifier NCT02861534. A study of vericiguat in participants with heart failure with reduced ejection fraction (HFrEF) (MK-1242-001) (VICTORIA). Available from: https://clinicaltrials.gov/ct2/show/NCT02861534
  72. 72.
    Mullershausen F, Russwurm M, Koesling D, Friebe A. In vivo reconstitution of the negative feedback in nitric oxide/cGMP signaling: role of phosphodiesterase type 5 phosphorylation. Mol Biol Cell. 2004;15:4023–30.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Borlaug BA, Melenovsky V, Marhin T, Fitzgerald P, Kass DA. Sildenafil inhibits beta-adrenergic-stimulated cardiac contractility in humans. Circulation. 2005;112:2642–9.PubMedCrossRefGoogle Scholar
  74. 74.
    Takimoto E, Champion HC, Li M, Belardi D, Ren S, Rodriguez ER, et al. Chronic inhibition of cyclic GMP phosphodiesterase 5A prevents and reverses cardiac hypertrophy. Nat Med. 2005;11:214–22.PubMedCrossRefGoogle Scholar
  75. 75.
    Katz SD, Balidemaj K, Homma S, Wu H, Wang J, Maybaum S. Acute type 5 phosphodiesterase inhibition with sildenafil enhances flow-mediated vasodilation in patients with chronic heart failure. J Am Coll Cardiol. 2000;36:845–51.PubMedCrossRefGoogle Scholar
  76. 76.
    Guazzi M, Samaja M, Arena R, Vicenzi M, Guazzi MD. Long-term use of sildenafil in the therapeutic management of heart failure. J Am Coll Cardiol. 2007;50:2136–44.PubMedCrossRefGoogle Scholar
  77. 77.
    Guazzi M, Vicenzi M, Arena R. Phosphodiesterase 5 inhibition with sildenafil reverses exercise oscillatory breathing in chronic heart failure: a long-term cardiopulmonary exercise testing placebo-controlled study. Eur J Heart Fail. 2012;14:82–90.  https://doi.org/10.1093/eurjhf/hfr147.PubMedCrossRefGoogle Scholar
  78. 78.
    Lewis GD, Shah R, Shahzad K, Camuso JM, Pappagianopoulos PP, Hung J, et al. Sildenafil improves exercise capacity and quality of life in patients with systolic heart failure and secondary pulmonary hypertension. Circulation. 2007;116:1555–62.PubMedCrossRefGoogle Scholar
  79. 79.
    Guazzi M, Vicenzi M, Arena R, Guazzi MD. PDE5 inhibition with sildenafil improves left ventricular diastolic function, cardiac geometry, and clinical status in patients with stable systolic heart failure: results of a 1-year, prospective, randomized, placebo-controlled study. Circ Heart Fail. 2011;4:8–17.  https://doi.org/10.1161/CIRCHEARTFAILURE.110.944694.PubMedCrossRefGoogle Scholar
  80. 80.
    Redfield MM, Chen HH, Borlaug BA, et al. Effect of phosphodiesterase-5 inhibition on exercise capacity and clinical status in heart failure with preserved ejection fraction: a randomized trial. JAMA. 2013;309(12):1268–77.  https://doi.org/10.1001/jama.2013.2024.PubMedCrossRefGoogle Scholar
  81. 81.
    Guazzi M, Vicenzi M, Arena R, Guazzi MD. Pulmonary hypertension in heart failure with preserved ejection fraction: a target of phosphodiesterase-5 inhibition in a 1-year study. Circulation. 2011;124:16f4–174.  https://doi.org/10.1161/CIRCULATIONAHA.110.983866.CrossRefGoogle Scholar
  82. 82.
    Castro LR, Verde I, Cooper DM, Fischmeister R. Cyclic guanosine monophosphate compartmentation in rat cardiac myocytes. Circulation. 2006;113:2221–8.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Takimoto E, Belardi D, Tocchetti CG, Vahebi S, Cormaci G, Ketner EA, et al. Compartmentalization of cardiac beta-adrenergic inotropy modulation by phosphodiesterase type 5. Circulation. 2007;115:2159–67.PubMedCrossRefGoogle Scholar
  84. 84.
    Soderling SH, Bayuga SJ, Beavo JA. Identification and characterization of a novel family of cyclic nucleotide phosphodiesterases. J Biol Chem. 1998;273:15553–8.PubMedCrossRefGoogle Scholar
  85. 85.
    Fisher DA, Smith JF, Pillar JS, St Denis SH, Cheng JB. Isolation and characterization of PDE9A, a novel human cGMP-specific phosphodiesterase. J Biol Chem. 1998;273:15559–64.PubMedCrossRefGoogle Scholar
  86. 86.
    Lee DI, Zhu G, Sasaki T, Cho GS, Hamdani N, Holewinski R, et al. Phosphodiesterase 9A controls nitric-oxide independent cGMP and hypertrophic heart disease. Nature. 2015;519(7544):472–6.  https://doi.org/10.1038/nature14332.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Menendez JT. The mechanism of action of LCZ696. Card Fail Rev. 2016;2(1):40–6.  https://doi.org/10.15420/cfr.2016:1:1.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Packer M, Califf RM, Konstam MA, et al. Comparison of omapatrilat and enalapril in patients with chronic heart failure: the Omapatrilat Versus Enalapril Randomized Trial of Utility in Reducing Events (OVERTURE). Circulation. 2002;106(8):920–6.PubMedCrossRefGoogle Scholar
  89. 89.
    Kostis JB, Packer M, Black HR, Schmieder R, Henry D, Levy E. Omapatrilat and enalapril in patients with hypertension: the Omapatrilat Cardiovascular Treatment vs. Enalapril (OCTAVE) trial. Am J Hypertens. 2004;17(2):103–11.PubMedCrossRefGoogle Scholar
  90. 90.
    McMurray JJ, Packer M, Desai AS, et al. Angiotensin-neprilysin inhibition versus enalapril in heart failure. N Engl J Med. 2014;371(11):993–1004.  https://doi.org/10.1056/NEJMoa1409077.PubMedCrossRefGoogle Scholar
  91. 91.
    Solomon SD, Rizkala AR, Gong J, Wang W, Anand IS, Ge J, et al. Angiotensin receptor Neprilysin inhibition in heart failure with preserved ejection fraction. JACC Heart Fail. Jul 2017;5(7):471–82.  https://doi.org/10.1016/j.jchf.2017.04.013.PubMedCrossRefGoogle Scholar
  92. 92.
    Bhella PS, Prasad A, Heinicke K, Hastings JL, Arbab-Zadeh A, Adams-Huet B, et al. Abnormal haemodynamic response to exercise in heart failure with preserved ejection fraction. Eur J Heart Fail. 2011;13:1296–304.  https://doi.org/10.1093/eurjhf/hfr133.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Weber T, Wassertheurer S, O’Rourke MF, et al. Pulsatile hemodynamics in patients with exertional dyspnea: potentially of value in the diagnostic evaluation of suspected heart failure with preserved ejection fraction. J Am Coll Cardiol. 2013;61:1874–83.  https://doi.org/10.1016/j.jacc.2013.02.013.PubMedCrossRefGoogle Scholar
  94. 94.
    Haykowsky MJ, Brubaker PH, John JM, Stewart KP, Morgan TM, Kitzman DW. Determinants of exercise intolerance in elderly heart failure patients with preserved ejection fraction. J Am Coll Cardiol. 2011;58:265–74.  https://doi.org/10.1016/j.jacc.2011.02.055.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Kitzman DW, Nicklas B, Kraus WE, Lyles MF, Eggebeen J, Morgan TM, et al. Skeletal muscle abnormalities and exercise intolerance in older patients with heart failure and preserved ejection fraction. Am J Physiol Heart Circ Physiol. 2014;306:H1364–70.  https://doi.org/10.1152/ajpheart.00004.2014.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Zamani P, Rawat D, Shiva-Kumar P, Geraci S, Bhuva R, Konda P, et al. The effect of inorganic nitrate on exercise capacity in heart failure with preserved ejection fraction. Circulation. 2015;131:371–80.  https://doi.org/10.1161/CIRCULATIONAHA.114.012957.PubMedCrossRefGoogle Scholar
  97. 97.
    Carlstrom M, Persson AE, Larsson E, Hezel M, Scheffer PG, Teerlink T, et al. Dietary nitrate attenuates oxidative stress, prevents cardiac and renal injuries, and reduces blood pressure in salt-induced hypertension. Cardiovasc Res. 2011;89:574–85.  https://doi.org/10.1093/cvr/cvq366.PubMedCrossRefGoogle Scholar
  98. 98.
    Kapil V, Khambata RS, Robertson A, Caulfield MJ, Ahluwalia A. Dietary nitrate provides sustained blood pressure lowering in hypertensive patients: a randomized, phase 2, double-blind, placebo-controlled study. Hypertension. 2015;65:320–7.  https://doi.org/10.1161/HYPERTENSIONAHA.114.04675.PubMedCrossRefGoogle Scholar
  99. 99.
    Bahra M, Kapil V, Pearl V, Ghosh S, Ahluwalia A. Inorganic nitrate ingestion improves vascular compliance but does not alter flow-mediated dilatation in healthy volunteers. Nitric Oxide. 2012;26:197–202.  https://doi.org/10.1016/j.niox.2012.01.004.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Gilchrist M, Winyard PG, Aizawa K, Anning C, Shore A, Benjamin N. Effect of dietary nitrate on blood pressure, endothelial function, and insulin sensitivity in type 2 diabetes. Free Radic Biol Med. 2013;60:89–97.  https://doi.org/10.1016/j.freeradbiomed.2013.01.024.PubMedCrossRefGoogle Scholar
  101. 101.
    clinicaltrials.gov. Bethesda (MD). National Library of Medicine (US). Identifier NCT02742129. Improve Exercise Capacity in HFpEF (INDIE-HFpEF) . Available from: https://clinicaltrials.gov/ct2/show/NCT02742129
  102. 102.
    Antoniades C, Bakogiannis C, Leeson P, Guzik TJ, Zhang MH, Tousoulis D, et al. Rapid, direct effects of statin treatment on arterial redox state and nitric oxide bioavailability in human atherosclerosis via tetrahydrobiopterin-mediated endothelial nitric oxide synthase coupling. Circulation. 2011;124:335–45.  https://doi.org/10.1161/CIRCULATIONAHA.110.985150.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Laufs U. Beyond lipid-lowering: effects of statins on endothelial nitric oxide. Eur J Clin Pharmacol. 2003;58:719–31.PubMedCrossRefGoogle Scholar
  104. 104.
    Dimmeler S, Fleming I, Fisslthaler B, et al. Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation. Nature. 1999;399:601–5.PubMedCrossRefGoogle Scholar
  105. 105.
    Tousoulis D, Antoniades C, Vassiliadou C, Toutouza M, Pitsavos C, Tentolouris C, et al. Effects of combined administration of low dose atorvastatin and vitamin E on inflammatory markers and endothelial function in patients with heart failure. Eur J Heart Fail. 2005;7:1126–32.PubMedCrossRefGoogle Scholar
  106. 106.
    Sharma K, Unmet Needs KDA. In cardiovascular science and medicine: heart failure with preserved ejection fraction: mechanisms, clinical features, and therapies. Circ Res. 2014;115(1):79–96.  https://doi.org/10.1161/CIRCRESAHA.115.302922.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Haykowsky MJ, Brubaker PH, Stewart KP, Morgan TM, Eggebeen J, Kitzman DW. Effect of endurance training on the determinants of peak exercise oxygen consumption in elderly patients with stable compensated heart failure and preserved ejection fraction. J Am Coll Cardiol. 2012;60:120–8.  https://doi.org/10.1016/j.jacc.2012.02.055.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Edelmann F, Gelbrich G, Dungen HD, et al. Exercise training improves exercise capacity and diastolic function in patients with heart failure with preserved ejection fraction: results of the Ex-DHF (exercise training in diastolic heart failure) pilot study. J Am Coll Cardiol. 2011;58:1780–91.  https://doi.org/10.1016/j.jacc.2011.06.054.PubMedCrossRefGoogle Scholar
  109. 109.
    Kitzman DW, Brubaker PH, Morgan TM, Stewart KP, Little WC. Exercise training in older patients with heart failure and preserved ejection fraction: a randomized, controlled, single-blind trial. Circ Heart Fail. 2010;3:659–67.  https://doi.org/10.1161/CIRCHEARTFAILURE.110.958785.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Kitzman DW, Brubaker PH, Herrington DM, Morgan TM, Stewart KP, Hundley WG, et al. Effect of endurance exercise training on endothelial function and arterial stiffness in older patients with heart failure and preserved ejection fraction: a randomized, controlled, single-blind trial. J Am Coll Cardiol. 2013;62:584–92.  https://doi.org/10.1016/j.jacc.2013.04.033.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Cruz L, Ryan JJ. Nitric oxide signaling in heart failure with preserved ejection fraction. JACC Basic Transl Sci. 2017;2(3):341–3.  https://doi.org/10.1016/j.jacbts.2017.05.004.CrossRefGoogle Scholar
  112. 112.
    Munzel T, Kurz S, Rajagopalan S, et al. Hydralazine prevents nitroglycerin tolerance by inhibiting activation of a membrane-bound NADH oxidase. A new action for an old drug. J Clin Invest. 1996;98:1465–70.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Cheng JW. A review of isosorbide dinitrate and hydralazine in the management of heart failure in black patients, with a focus on a new fixed-dose combination. Clin Ther. 2006;28:666–78.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Prabhjot Singh
    • 1
  • Shilpa Vijayakumar
    • 1
  • Andreas Kalogeroupoulos
    • 1
  • Javed Butler
    • 1
    Email author
  1. 1.Department of MedicineUniversity of MississippiJacksonUSA

Personalised recommendations