Advertisement

Current Heart Failure Reports

, Volume 14, Issue 6, pp 519–528 | Cite as

Visceral Congestion in Heart Failure: Right Ventricular Dysfunction, Splanchnic Hemodynamics, and the Intestinal Microenvironment

  • Vincenzo B. Polsinelli
  • Arjun Sinha
  • Sanjiv J. ShahEmail author
Prevention of Heart Failure (M Sutton, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Prevention of Heart Failure

Abstract

Purpose of Review

Visceral venous congestion of the gut may play a key role in the pathogenesis of right-sided heart failure (HF) and cardiorenal syndromes. Here, we review the role of right ventricular (RV) dysfunction, visceral congestion, splanchnic hemodynamics, and the intestinal microenvironment in the setting of right-sided HF. We review recent literature on this topic, outline possible mechanisms of disease pathogenesis, and discuss potential therapeutics.

Recent Findings

There are several mechanisms linking RV–gut interactions via visceral venous congestion which could result in (1) hypoxia and acidosis in enterocytes, which may lead to enhanced sodium–hydrogen exchanger 3 (NHE3) expression with increased sodium and fluid retention; (2) decreased luminal pH in the intestines, which could lead to alteration of the gut microbiome which could increase gut permeability and inflammation; (3) alteration of renal hemodynamics with triggering of the cardiorenal syndrome; and (4) altered phosphate metabolism resulting in increased pulmonary artery stiffening, thereby increasing RV afterload. A wide variety of therapeutic interventions that act on the RV, pulmonary vasculature, intestinal microenvironment, and the kidney could alter these pathways and should be tested in patients with right-sided HF.

Summary

The RV–gut axis is an important aspect of HF pathogenesis that deserves more attention. Modulation of the pathways interconnecting the right heart, visceral congestion, and the intestinal microenvironment could be a novel avenue of intervention for right-sided HF.

Keywords

Heart failure Right ventricle Venous congestion Intestine Sodium–hydrogen exchanger 3 Microbiome 

Notes

Acknowledgments

National Institutes of Health R01 HL107577 and R01 HL 127028, and American Heart Association no. 16SFRN28780016 and no. 15CVGPSD27260148.

Compliance with Ethical Standards

Conflict of Interest

V.B.P. and A.S. each declare no potential conflicts of interest.

S.J.S. has received grant support from Actelion, AstraZeneca, Corvia, and Novartis; and consulting fees from Actelion, AstraZeneca, Bayer, Boehringer-Ingelheim, Cardiora, Ironwood, Merck, Novartis, Pfizer, and Sanofi.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Spinarova L, Meluzin J, Toman J, Hude P, Krejci J, Vitovec J. Right ventricular dysfunction in chronic heart failure patients. Eur J Heart Fail. 2005;7(4):485–9.CrossRefPubMedGoogle Scholar
  2. 2.
    Puwanant S, Priester TC, Mookadam F, Bruce CJ, Redfield MM, Chandrasekaran K. Right ventricular function in patients with preserved and reduced ejection fraction heart failure. Eur J Echocardiogr. 2009;10(6):733–7.CrossRefPubMedGoogle Scholar
  3. 3.
    Gorter TM, Hoendermis ES, van Veldhuisen DJ, Voors AA, Lam CS, Geelhoed B, et al. Right ventricular dysfunction in heart failure with preserved ejection fraction: a systematic review and meta-analysis. Eur J Heart Fail. 2016;18:1472–87.CrossRefPubMedGoogle Scholar
  4. 4.
    Bosch L, Lam CSP, Gong L, Chan SP, Sim D, Yeo D, et al. Right ventricular dysfunction in left-sided heart failure with preserved versus reduced ejection fraction. Eur J Heart Fail. 2017.  https://doi.org/10.1002/ejhf.873.
  5. 5.
    Burke MA, Katz DH, Beussink L, Selvaraj S, Gupta DK, Fox J, et al. Prognostic importance of pathophysiologic markers in patients with heart failure and preserved ejection fraction. Circ Heart Fail. 2014;7(2):288–99.CrossRefPubMedGoogle Scholar
  6. 6.
    Drazner MH, Rame JE, Stevenson LW, Dries DL. Prognostic importance of elevated jugular venous pressure and a third heart sound in patients with heart failure. N Engl J Med. 2001;345(8):574–81.CrossRefPubMedGoogle Scholar
  7. 7.
    Lam CS, Roger VL, Rodeheffer RJ, Borlaug BA, Enders FT, Redfield MM. Pulmonary hypertension in heart failure with preserved ejection fraction: a community-based study. J Am Coll Cardiol. 2009;53(13):1119–26.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Mullens W, Abrahams Z, Francis GS, Sokos G, Taylor DO, Starling RC, et al. Importance of venous congestion for worsening of renal function in advanced decompensated heart failure. J Am Coll Cardiol. 2009;53(7):589–96.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Valentova M, von Haehling S, Krause C, Ebner N, Steinbeck L, Cramer L, et al. Cardiac cachexia is associated with right ventricular failure and liver dysfunction. Int J Cardiol. 2013;169(3):219–24.CrossRefPubMedGoogle Scholar
  10. 10.
    • Valentova M, von Haehling S, Bauditz J, Doehner W, Ebner N, Bekfani T, et al. Intestinal congestion and right ventricular dysfunction: a link with appetite loss, inflammation, and cachexia in chronic heart failure. Eur Heart J. 2016;37(21):1684–91. This is a recent article that found that visceral (intestinal) congestion is the strongest factor associated with cardiac cachexia in heart failure patients. CrossRefPubMedGoogle Scholar
  11. 11.
    Sandek A, Bauditz J, Swidsinski A, Buhner S, Weber-Eibel J, von Haehling S, et al. Altered intestinal function in patients with chronic heart failure. J Am Coll Cardiol. 2007;50(16):1561–9.CrossRefPubMedGoogle Scholar
  12. 12.
    Valentova M, von Haehling S, Anker SD, Sandek A. Cardiac hepatopathy versus end-stage liver disease: two different entities. J Am Coll Cardiol. 2014;63(17):1809–10.CrossRefPubMedGoogle Scholar
  13. 13.
    Charalambous BM, Stephens RC, Feavers IM, Montgomery HE. Role of bacterial endotoxin in chronic heart failure: the gut of the matter. Shock. 2007;28(1):15–23.CrossRefPubMedGoogle Scholar
  14. 14.
    Kim MS, Kato TS, Farr M, Wu C, Givens RC, Collado E, et al. Hepatic dysfunction in ambulatory patients with heart failure: application of the MELD scoring system for outcome prediction. J Am Coll Cardiol. 2013;61(22):2253–61.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Heianza Y, Ma W, Manson JE, Rexrode KM, Qi L. Gut microbiota metabolites and risk of major adverse cardiovascular disease events and death: a systematic review and meta-analysis of prospective studies. J Am Heart Assoc. 2017;6(7):e004947.Google Scholar
  16. 16.
    Koutsos A, Tuohy KM, Lovegrove JA. Apples and cardiovascular health—is the gut microbiota a core consideration? Nutrients. 2015;7(6):3959–98.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Li D, Kirsop J, Tang WH. Listening to our gut: contribution of gut microbiota and cardiovascular risk in diabetes pathogenesis. Curr Diab Rep. 2015;15(9):63.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Mafra D, Lobo JC, Barros AF, Koppe L, Vaziri ND, Fouque D. Role of altered intestinal microbiota in systemic inflammation and cardiovascular disease in chronic kidney disease. Future Microbiol. 2014;9(3):399–410.CrossRefPubMedGoogle Scholar
  19. 19.
    Manco M, Putignani L, Bottazzo GF. Gut microbiota, lipopolysaccharides, and innate immunity in the pathogenesis of obesity and cardiovascular risk. Endocr Rev. 2010;31(6):817–44.CrossRefPubMedGoogle Scholar
  20. 20.
    Miele L, Giorgio V, Alberelli MA, De Candia E, Gasbarrini A, Grieco A. Impact of gut microbiota on obesity, diabetes, and cardiovascular disease risk. Curr Cardiol Rep. 2015;17(12):120.CrossRefPubMedGoogle Scholar
  21. 21.
    Sanduzzi Zamparelli M, Compare D, Coccoli P, Rocco A, Nardone OM, Marrone G, et al. The metabolic role of gut microbiota in the development of nonalcoholic fatty liver disease and cardiovascular disease. Int J Mol Sci. 2016;17(8):E1225.Google Scholar
  22. 22.
    Serino M, Blasco-Baque V, Nicolas S, Burcelin R. Far from the eyes, close to the heart: dysbiosis of gut microbiota and cardiovascular consequences. Curr Cardiol Rep. 2014;16(11):540.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Tang WH, Hazen SL. The contributory role of gut microbiota in cardiovascular disease. J Clin Invest. 2014;124(10):4204–11.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Tang WH, Kitai T, Hazen SL. Gut microbiota in cardiovascular health and disease. Circ Res. 2017;120(7):1183–96.CrossRefPubMedGoogle Scholar
  25. 25.
    Tuohy KM, Fava F, Viola R. The way to a man’s heart is through his gut microbiota’—dietary pro- and prebiotics for the management of cardiovascular risk. Proc Nutr Soc. 2014;73(2):172–85.CrossRefPubMedGoogle Scholar
  26. 26.
    Ussher JR, Lopaschuk GD, Arduini A. Gut microbiota metabolism of L-carnitine and cardiovascular risk. Atherosclerosis. 2013;231(2):456–61.CrossRefPubMedGoogle Scholar
  27. 27.
    Yamashita T, Kasahara K, Emoto T, Matsumoto T, Mizoguchi T, Kitano N, et al. Intestinal immunity and gut microbiota as therapeutic targets for preventing atherosclerotic cardiovascular diseases. Circ J. 2015;79(9):1882–90.CrossRefPubMedGoogle Scholar
  28. 28.
    Bookstein C, DePaoli AM, Xie Y, Niu P, Musch MW, Rao MC, et al. Na+/H+ exchangers, NHE-1 and NHE-3, of rat intestine. Expression and localization. J Clin Invest. 1994;93(1):106–13.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Kiela PR, Guner YS, Xu H, Collins JF, Ghishan FK. Age- and tissue-specific induction of NHE3 by glucocorticoids in the rat small intestine. Am J Physiol Cell Physiol. 2000;278(4):C629–37.PubMedGoogle Scholar
  30. 30.
    Broere N, Chen M, Cinar A, Singh AK, Hillesheim J, Riederer B, et al. Defective jejunal and colonic salt absorption and altered Na(+)/H (+) exchanger 3 (NHE3) activity in NHE regulatory factor 1 (NHERF1) adaptor protein-deficient mice. Pflugers Arch. 2009;457(5):1079–91.CrossRefPubMedGoogle Scholar
  31. 31.
    Gawenis LR, Stien X, Shull GE, Schultheis PJ, Woo AL, Walker NM, et al. Intestinal NaCl transport in NHE2 and NHE3 knockout mice. Am J Physiol Gastrointest Liver Physiol. 2002;282(5):G776–84.CrossRefPubMedGoogle Scholar
  32. 32.
    Musch MW, Lucioni A, Chang EB. Aldosterone regulation of intestinal Na absorption involves SGK-mediated changes in NHE3 and Na+ pump activity. Am J Physiol Gastrointest Liver Physiol. 2008;295(5):G909–19.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Lucioni A, Womack C, Musch MW, Rocha FL, Bookstein C, Chang EB. Metabolic acidosis in rats increases intestinal NHE2 and NHE3 expression and function. Am J Physiol Gastrointest Liver Physiol. 2002;283(1):G51–6.CrossRefPubMedGoogle Scholar
  34. 34.
    Giral H, Cranston D, Lanzano L, Caldas Y, Sutherland E, Rachelson J, et al. NHE3 regulatory factor 1 (NHERF1) modulates intestinal sodium-dependent phosphate transporter (NaPi-2b) expression in apical microvilli. J Biol Chem. 2012;287(42):35047–56.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Glover LE, Lee JS, Colgan SP. Oxygen metabolism and barrier regulation in the intestinal mucosa. J Clin Invest. 2016;126(10):3680–8.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Pluznick JA. Novel SCFA receptor, the microbiota, and blood pressure regulation. Gut Microbes. 2014;5(2):202–7.CrossRefPubMedGoogle Scholar
  37. 37.
    Pluznick JL, Protzko RJ, Gevorgyan H, Peterlin Z, Sipos A, Han J, et al. Olfactory receptor responding to gut microbiota-derived signals plays a role in renin secretion and blood pressure regulation. Proc Natl Acad Sci U S A. 2013;110(11):4410–5.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Natarajan N, Hori D, Flavahan S, Steppan J, Flavahan NA, Berkowitz DE, et al. Microbial short chain fatty acid metabolites lower blood pressure via endothelial G-protein coupled receptor 41. Physiol Genomics. 2016;48(11):826-834.Google Scholar
  39. 39.
    Organ CL, Otsuka H, Bhushan S, Wang Z, Bradley J, Trivedi R, et al. Choline diet and its gut microbe-derived metabolite, trimethylamine N-oxide, exacerbate pressure overload-induced heart failure. Circ Heart Fail. 2016;9(1):e002314.CrossRefPubMedGoogle Scholar
  40. 40.
    Senthong V, Wang Z, Li XS, Fan Y, Wu Y, Tang WH, et al. Intestinal microbiota-generated metabolite trimethylamine-N-oxide and 5-year mortality risk in stable coronary artery disease: the contributory role of intestinal microbiota in a COURAGE-like patient cohort. J Am Heart Assoc 2016;5(6):e002816.Google Scholar
  41. 41.
    Senthong V, Li XS, Hudec T, Coughlin J, Wu Y, Levison B, et al. Plasma trimethylamine N-oxide, a gut microbe-generated phosphatidylcholine metabolite, is associated with atherosclerotic burden. J Am Coll Cardiol. 2016;67(22):2620–8.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Tang WH, Wang Z, Fan Y, Levison B, Hazen JE, Donahue LM, et al. Prognostic value of elevated levels of intestinal microbe-generated metabolite trimethylamine-N-oxide in patients with heart failure: refining the gut hypothesis. J Am Coll Cardiol. 2014;64(18):1908–14.CrossRefPubMedGoogle Scholar
  43. 43.
    Marques FZ, Nelson E, Chu PY, Horlock D, Fiedler A, Ziemann M, et al. High-Fiber Diet and Acetate Supplementation Change the Gut Microbiota and Prevent the Development of Hypertension and Heart Failure in Hypertensive Mice. Circulation. 2017;135(10):964–77.CrossRefPubMedGoogle Scholar
  44. 44.
    Tang WH, Wang Z, Kennedy DJ, Wu Y, Buffa JA, Agatisa-Boyle B, et al. Gut microbiota-dependent trimethylamine N-oxide (TMAO) pathway contributes to both development of renal insufficiency and mortality risk in chronic kidney disease. Circ Res. 2015;116(3):448–55.CrossRefPubMedGoogle Scholar
  45. 45.
    Tang WH, Wang Z, Li XS, Fan Y, Li DS, Wu Y, et al. Increased trimethylamine N-oxide portends high mortality risk independent of glycemic control in patients with type 2 diabetes mellitus. Clin Chem. 2017;63(1):297–306.CrossRefPubMedGoogle Scholar
  46. 46.
    •• Zhu W, Gregory JC, Org E, Buffa JA, Gupta N, Wang Z, et al. Gut microbial metabolite TMAO enhances platelet hyperreactivity and thrombosis risk. Cell. 2016;165(1):111–24. This paper describes the mechanistic link between the gut-derived microbial metabolite TMAO, enhanced platelet reactivity, and thrombosis risk. CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Zhu W, Wang Z, Tang WHW, Hazen SL. Gut microbe-generated trimethylamine N-oxide from dietary choline is prothrombotic in subjects. Circulation. 2017;135(17):1671–3.CrossRefPubMedGoogle Scholar
  48. 48.
    Vlachogiannakos J, Saveriadis AS, Viazis N, Theodoropoulos I, Foudoulis K, Manolakopoulos S, et al. Intestinal decontamination improves liver haemodynamics in patients with alcohol-related decompensated cirrhosis. Aliment Pharmacol Ther. 2009;29(9):992–9.CrossRefPubMedGoogle Scholar
  49. 49.
    Dong T, Aronsohn A, Gautham Reddy K, Te HS. Rifaximin decreases the incidence and severity of acute kidney injury and hepatorenal syndrome in cirrhosis. Dig Dis Sci. 2016.Google Scholar
  50. 50.
    Ponziani FR, Gerardi V, Pecere S, D'Aversa F, Lopetuso L, Zocco MA, et al. Effect of rifaximin on gut microbiota composition in advanced liver disease and its complications. World J Gastroenterol. 2015;21(43):12322–33.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Sandek A, Bjarnason I, Volk HD, Crane R, Meddings JB, Niebauer J, et al. Studies on bacterial endotoxin and intestinal absorption function in patients with chronic heart failure. Int J Cardiol. 2012;157(1):80–5.CrossRefPubMedGoogle Scholar
  52. 52.
    Sandek A, Anker SD, von Haehling S. The gut and intestinal bacteria in chronic heart failure. Curr Drug Metab. 2009;10(1):22–8.CrossRefPubMedGoogle Scholar
  53. 53.
    Sandek A, Rauchhaus M, Anker SD, von Haehling S. The emerging role of the gut in chronic heart failure. Curr Opin Clin Nutr Metab Care. 2008;11(5):632–9.CrossRefPubMedGoogle Scholar
  54. 54.
    Nikolaou M, Parissis J, Yilmaz MB, Seronde MF, Kivikko M, Laribi S, et al. Liver function abnormalities, clinical profile, and outcome in acute decompensated heart failure. Eur Heart J. 2013;34(10):742–9.CrossRefPubMedGoogle Scholar
  55. 55.
    Pasini E, Aquilani R, Testa C, Baiardi P, Angioletti S, Boschi F, et al. Pathogenic gut flora in patients with chronic heart failure. JACC Heart Fail. 2016;4(3):220–7.CrossRefPubMedGoogle Scholar
  56. 56.
    Poelzl G, Ess M, Von der Heidt A, Rudnicki M, Frick M, Ulmer H. Concomitant renal and hepatic dysfunctions in chronic heart failure: clinical implications and prognostic significance. Eur J Intern Med. 2013;24(2):177–82.CrossRefPubMedGoogle Scholar
  57. 57.
    Sandek A, Swidsinski A, Schroedl W, Watson A, Valentova M, Herrmann R, et al. Intestinal blood flow in patients with chronic heart failure: a link with bacterial growth, gastrointestinal symptoms, and cachexia. J Am Coll Cardiol. 2014;64(11):1092–102.CrossRefPubMedGoogle Scholar
  58. 58.
    Mullens W, Abrahams Z, Skouri HN, Francis GS, Taylor DO, Starling RC, et al. Elevated intra-abdominal pressure in acute decompensated heart failure: a potential contributor to worsening renal function? J Am Coll Cardiol. 2008;51(3):300–6.CrossRefPubMedGoogle Scholar
  59. 59.
    Kalogeropoulos AP, Tang WH, Hsu A, Felker GM, Hernandez AF, Troughton RW, et al. High-sensitivity C-reactive protein in acute heart failure: insights from the ASCEND-HF trial. J Card Fail. 2014;20(5):319–26.CrossRefPubMedGoogle Scholar
  60. 60.
    Cetin S, Dunklebarger J, Li J, Boyle P, Ergun O, Qureshi F, et al. Endotoxin differentially modulates the basolateral and apical sodium/proton exchangers (NHE) in enterocytes. Surgery. 2004;136(2):375–83.CrossRefPubMedGoogle Scholar
  61. 61.
    Rosenkranz S, Gibbs JS, Wachter R, De Marco T, Vonk-Noordegraaf A, Vachiery JL. Left ventricular heart failure and pulmonary hypertension. Eur Heart J. 2016;37(12):942–54.CrossRefPubMedGoogle Scholar
  62. 62.
    Dixon DD, Trivedi A, Shah SJ. Combined post- and pre-capillary pulmonary hypertension in heart failure with preserved ejection fraction. Heart Fail Rev. 2016;21(3):285–97.CrossRefPubMedGoogle Scholar
  63. 63.
    Thenappan T, Prins KW, Cogswell R, Shah SJ. Pulmonary hypertension secondary to heart failure with preserved ejection fraction. Can J Cardiol. 2015;31(4):430–9.CrossRefPubMedGoogle Scholar
  64. 64.
    Unger ED, Dubin RF, Deo R, Daruwalla V, Friedman JL, Medina C, et al. Association of chronic kidney disease with abnormal cardiac mechanics and adverse outcomes in patients with heart failure and preserved ejection fraction. Eur J Heart Fail. 2016;18(1):103–12.CrossRefPubMedGoogle Scholar
  65. 65.
    Westerhof N, Westerhof BE. A review of methods to determine the functional arterial parameters stiffness and resistance. J Hypertens. 2013;31(9):1769–75.CrossRefPubMedGoogle Scholar
  66. 66.
    Pool LR, Wolf M. FGF23 and nutritional metabolism. Annu Rev Nutr. 2017;37:247–68.CrossRefPubMedGoogle Scholar
  67. 67.
    Wahl P, Wolf M. FGF23 in chronic kidney disease. Adv Exp Med Biol. 2012;728:107–25.CrossRefPubMedGoogle Scholar
  68. 68.
    Akmal M, Barndt RR, Ansari AN, Mohler JG, Massry SG, Excess PTH. In CRF induces pulmonary calcification, pulmonary hypertension and right ventricular hypertrophy. Kidney Int. 1995;47(1):158–63.CrossRefPubMedGoogle Scholar
  69. 69.
    Block GA, Rosenbaum DP, Leonsson-Zachrisson M, Astrand M, Johansson S, Knutsson M, et al. Effect of tenapanor on serum phosphate in patients receiving hemodialysis. J Am Soc Nephrol. 2017;28(6):1933–42.CrossRefPubMedGoogle Scholar
  70. 70.
    Liu LC, Dorhout B, van der Meer P, Teerlink JR, Voors AA. Omecamtiv mecarbil: a new cardiac myosin activator for the treatment of heart failure. Expert Opin Investig Drugs. 2016;25(1):117–27.CrossRefPubMedGoogle Scholar
  71. 71.
    Khan SS, Cuttica MJ, Beussink-Nelson L, Kozyleva A, Sanchez C, Mkrdichian H, et al. Effects of ranolazine on exercise capacity, right ventricular indices, and hemodynamic characteristics in pulmonary arterial hypertension: a pilot study. Pulm Circ. 2015;5(3):547–56.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Shah SJ, Blair JE, Filippatos GS, Macarie C, Ruzyllo W, Korewicki J, et al. Effects of istaroxime on diastolic stiffness in acute heart failure syndromes: results from the hemodynamic, echocardiographic, and neurohormonal effects of istaroxime, a novel intravenous inotropic and lusitropic agent: a randomized controlled trial in patients hospitalized with heart failure (HORIZON-HF) trial. Am Heart J. 2009;157(6):1035–41.CrossRefPubMedGoogle Scholar
  73. 73.
    Craig ML. Management of right ventricular failure in the era of ventricular assist device therapy. Curr Heart Fail Rep. 2011;8(1):65–71.CrossRefPubMedGoogle Scholar
  74. 74.
    Kapur NK, Bader YH. Percutaneous circulatory assist devices for right ventricular failure. Interv. Cardiol Clin. 2013;2(3):445–56.Google Scholar
  75. 75.
    Guazzi M, Samaja M, Arena R, Vicenzi M, Guazzi MD. Long-term use of sildenafil in the therapeutic management of heart failure. J Am Coll Cardiol. 2007;50(22):2136–44.CrossRefPubMedGoogle Scholar
  76. 76.
    Guazzi M, Vicenzi M, Arena R, Guazzi MD. PDE5 inhibition with sildenafil improves left ventricular diastolic function, cardiac geometry, and clinical status in patients with stable systolic heart failure: results of a 1-year, prospective, randomized, placebo-controlled study. Circ Heart Fail. 2011;4(1):8–17.CrossRefPubMedGoogle Scholar
  77. 77.
    Bonderman D, Ghio S, Felix SB, Ghofrani HA, Michelakis E, Mitrovic V, et al. Riociguat for patients with pulmonary hypertension caused by systolic left ventricular dysfunction: a phase IIb double-blind, randomized, placebo-controlled, dose-ranging hemodynamic study. Circulation. 2013;128(5):502–11.CrossRefPubMedGoogle Scholar
  78. 78.
    Johansson S, Rosenbaum DP, Knutsson M, Leonsson-Zachrisson MA. Phase 1 study of the safety, tolerability, pharmacodynamics, and pharmacokinetics of tenapanor in healthy Japanese volunteers. Clin Exp Nephrol. 2017;21(3):407–16.CrossRefPubMedGoogle Scholar
  79. 79.
    • Spencer AG, Labonte ED, Rosenbaum DP, Plato CF, Carreras CW, Leadbetter MR, et al. Intestinal inhibition of the Na+/H+ exchanger 3 prevents cardiorenal damage in rats and inhibits Na+ uptake in humans. Sci Transl Med. 2014;6(227):227ra36. Spencer et al. describe the protective beneficial effect of gut NHE3 inhibition on cardiorenal damage in rats. CrossRefPubMedGoogle Scholar
  80. 80.
    Packer M, Anker SD, Butler J, Filippatos G, Zannad F. Effects of sodium-glucose cotransporter 2 inhibitors for the treatment of patients with heart failure: proposal of a novel mechanism of action. JAMA Cardiol. 2017;2(9):1025–9.CrossRefPubMedGoogle Scholar
  81. 81.
    Turner JR, Black ED. NHE3-dependent cytoplasmic alkalinization is triggered by Na(+)-glucose cotransport in intestinal epithelia. Am J Physiol Cell Physiol. 2001;281(5):C1533–41.PubMedGoogle Scholar
  82. 82.
    Ghosh P. The stress polarity pathway: AMPK ‘GIV’-es protection against metabolic insults. Aging (Albany NY). 2017;9(2):303–14.Google Scholar
  83. 83.
    Shih CJ, YL W, Chao PW, Kuo SC, Yang CY, Li SY, et al. Association between use of oral anti-diabetic drugs and the risk of sepsis: a nested case-control study. Sci Rep. 2015;5:15260.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Vincenzo B. Polsinelli
    • 1
  • Arjun Sinha
    • 1
  • Sanjiv J. Shah
    • 1
    Email author
  1. 1.Division of Cardiology, Department of MedicineNorthwestern University Feinberg School of MedicineChicagoUSA

Personalised recommendations