Advertisement

Current Heart Failure Reports

, Volume 14, Issue 6, pp 529–535 | Cite as

Pharmacogenomics of Bucindolol in Atrial Fibrillation and Heart Failure

  • Kishan S. ParikhEmail author
  • Jonathan P. Piccini
Genetics of Heart Failure (K Adams, Section Editor)
  • 243 Downloads
Part of the following topical collections:
  1. Topical Collection on Genetics of Heart Failure

Abstract

Purpose of Review

We explore the pharmacogenomics of the beta-blocker bucindolol by discussing relevant beta-1 adrenergic receptor (ADRB1) polymorphisms and recent beta-blocker studies. Through this, we will understand how bucindolol may help patients with atrial fibrillation and heart failure with reduced ejection fraction (AF-HFrEF), which carries poor prognosis.

Recent Findings

Retrospective study of the Heart Failure: A Controlled Trial Investigating Outcomes of Exercise Training trial revealed the interaction between the optimal beta-blocker dose and the ADRB1 Arg389 genotype for HFrEF clinical outcomes. Further, a combinatorial genotype analysis in the Beta-Blocker Evaluation of Survival Trial showed that the Arg389Arg genotype, but not the Gly carrier, was associated with 40% lower mortality risk with bucindolol. Finally, the AF-HFrEF subgroup with the ADRB1 Arg389Arg genotype had greater heart rate reduction and suggestion for mortality benefit.

Summary

Therapeutic response to beta-blockers varies by beta-blocker mechanism, ADRB1 Arg389 genotype, and clinical setting (AF, HFrEF, AF-HFrEF). The ongoing trial A Genotype-Directed Comparative Effectiveness Trial of Bucindolol and Toprol-XL for Prevention of Symptomatic Atrial Fibrillation/Atrial Flutter in Patients with Heart Failure prospectively identifies AF-HFrEF patients with favorable genotype for bucindolol to prevent AF recurrence.

Keywords

Pharmacogenomics Bucindolol Heart failure Atrial fibrillation 

Notes

Compliance with Ethical Standards

Conflict of Interest

Kishan S. Parikh declares no conflict of interest. Jonathan P. Piccini has received grants from ARCA Biopharma and Johnson & Johnson, Boston Scientific, ResMed, Gilead, St Jude Medical, and Spectranetics. Dr. Piccini is also a consultant for Amgen, Spectranetics, Medtronic, Allergan, and Janssen Pharmaceuticals.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Add bulleted/annotated references during proofs phase

  1. 1.
    Hunt SA, Abraham WT, Chin MH, et al. 2009 focused update incorporated into the ACC/AHA 2005 Guidelines for the Diagnosis and Management of Heart Failure in Adults: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines: developed in collaboration with the International Society for Heart and Lung Transplantation. Circulation. 2009;119(14):e391–479.CrossRefPubMedGoogle Scholar
  2. 2.
    January CT, Wann LS, Alpert JS, et al. 2014 AHA/ACC/HRS guideline for the management of patients with atrial fibrillation: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on practice guidelines and the Heart Rhythm Society. Circulation. 2014;130(23):2071–104.CrossRefPubMedGoogle Scholar
  3. 3.
    Bristow MR. Beta-adrenergic receptor blockade in chronic heart failure. Circulation. 2000;101(5):558–69.CrossRefPubMedGoogle Scholar
  4. 4.
    Sackner-Bernstein JD, Mancini DM. Rationale for treatment of patients with chronic heart failure with adrenergic blockade. JAMA. 1995;274(18):1462–7.CrossRefPubMedGoogle Scholar
  5. 5.
    Small KM, Wagoner LE, Levin AM, Kardia SL, Liggett SB. Synergistic polymorphisms of beta1- and alpha2C-adrenergic receptors and the risk of congestive heart failure. N Engl J Med. 2002;347(15):1135–42.CrossRefPubMedGoogle Scholar
  6. 6.
    Trulock KM, Narayan SM, Piccini JP. Rhythm control in heart failure patients with atrial fibrillation: contemporary challenges including the role of ablation. J Am Coll Cardiol. 2014;64(7):710–21.CrossRefPubMedGoogle Scholar
  7. 7.
    Van Gelder IC, Rienstra M, Crijns HJ, Olshansky B. Rate control in atrial fibrillation. Lancet. 2016;388(10046):818–28.CrossRefPubMedGoogle Scholar
  8. 8.
    Benjamin EJ, Levy D, Vaziri SM, D’Agostino RB, Belanger AJ, Wolf PA. Independent risk factors for atrial fibrillation in a population-based cohort. The Framingham Heart Study. JAMA. 1994;271(11):840–4.CrossRefPubMedGoogle Scholar
  9. 9.
    Olsson LG, Swedberg K, Ducharme A, et al. Atrial fibrillation and risk of clinical events in chronic heart failure with and without left ventricular systolic dysfunction: results from the Candesartan in Heart Failure—Assessment of Reduction in Mortality and Morbidity (CHARM) program. J Am Coll Cardiol. 2006;47(10):1997–2004.CrossRefPubMedGoogle Scholar
  10. 10.
    Kotecha D, Holmes J, Krum H, et al. Efficacy of beta blockers in patients with heart failure plus atrial fibrillation: an individual-patient data meta-analysis. Lancet. 2014;384(9961):2235–43.CrossRefPubMedGoogle Scholar
  11. 11.
    Cadrin-Tourigny J, Shohoudi A, Roy D et al. Decreased mortality with beta-blockers in patients with heart failure and coexisting atrial fibrillation: an AF-CHF substudy. JACC Heart Fail, 2017;5(2):99–106.  https://doi.org/10.1016/j.jchf.2016.10.015.
  12. 12.
    Swedberg K, Olsson LG, Charlesworth A, et al. Prognostic relevance of atrial fibrillation in patients with chronic heart failure on long-term treatment with beta-blockers: results from COMET. Eur Heart J. 2005;26(13):1303–8.CrossRefPubMedGoogle Scholar
  13. 13.
    Piccini JP, Allen LA. Heart failure complicated by atrial fibrillation: don’t bury the beta-blockers just yet. JACC Heart Fail, 2017;5(2):107-109.  https://doi.org/10.1016/j.jchf.2016.12.003.
  14. 14.
    Bristow MR, O'Connell JB, Gilbert EM, et al. Dose-response of chronic beta-blocker treatment in heart failure from either idiopathic dilated or ischemic cardiomyopathy. Bucindolol investigators. Circulation. 1994;89(4):1632–42.CrossRefPubMedGoogle Scholar
  15. 15.
    Hershberger RE, Wynn JR, Sundberg L, Bristow MR. Mechanism of action of bucindolol in human ventricular myocardium. J Cardiovasc Pharmacol. 1990;15(6):959–67.CrossRefPubMedGoogle Scholar
  16. 16.
    Black-Maier E, Steinberg BA, Piccini JP. Bucindolol hydrochloride in atrial fibrillation and concomitant heart failure. Expert Rev Cardiovasc Ther. 2015;13(6):627–36.CrossRefPubMedGoogle Scholar
  17. 17.
    Eichhorn EJ, Bedotto JB, Malloy CR, et al. Effect of beta-adrenergic blockade on myocardial function and energetics in congestive heart failure. Improvements in hemodynamic, contractile, and diastolic performance with bucindolol. Circulation. 1990;82(2):473–83.CrossRefPubMedGoogle Scholar
  18. 18.
    Beta-Blocker Evaluation of Survival Trial I. A trial of the beta-blocker bucindolol in patients with advanced chronic heart failure. N Engl J Med. 2001;344(22):1659–67.CrossRefGoogle Scholar
  19. 19.
    Fiuzat M, Neely ML, Starr AZ, et al. Association between adrenergic receptor genotypes and beta-blocker dose in heart failure patients: analysis from the HF-ACTION DNA substudy. Eur J Heart Fail. 2013;15(3):258–66.CrossRefPubMedGoogle Scholar
  20. 20.
    Charlab R, Zhang L. Pharmacogenomics: historical perspective and current status. Methods Mol Biol. 2013;1015:3–22.CrossRefPubMedGoogle Scholar
  21. 21.
    Parikh KS, Ahmad T, Fiuzat M. Potential applications of pharmacogenomics to heart failure therapies. Heart Fail Clin. 2014;10(4):599–606.CrossRefPubMedGoogle Scholar
  22. 22.
    O'Connor CM, Fiuzat M, Carson PE, et al. Combinatorial pharmacogenetic interactions of bucindolol and beta1, alpha2C adrenergic receptor polymorphisms. PLoS One. 2012;7(10):e44324.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Jeff JM, Donahue BS, Brown-Gentry K, et al. Genetic variation in the beta1-adrenergic receptor is associated with the risk of atrial fibrillation after cardiac surgery. Am Heart J. 2014;167(1):101–108 e101.CrossRefPubMedGoogle Scholar
  24. 24.
    Parvez B, Chopra N, Rowan S, et al. A common beta1-adrenergic receptor polymorphism predicts favorable response to rate-control therapy in atrial fibrillation. J Am Coll Cardiol. 2012;59(1):49–56.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Rau T, Dungen HD, Edelmann F, et al. Impact of the beta1-adrenoceptor Arg389Gly polymorphism on heart-rate responses to bisoprolol and carvedilol in heart-failure patients. Clin Pharmacol Ther. 2012;92(1):21–8.CrossRefPubMedGoogle Scholar
  26. 26.
    Bristow MR, Murphy GA, Krause-Steinrauf H, et al. An alpha2C-adrenergic receptor polymorphism alters the norepinephrine-lowering effects and therapeutic response of the beta-blocker bucindolol in chronic heart failure. Circ Heart Fail. 2010;3(1):21–8.CrossRefPubMedGoogle Scholar
  27. 27.
    Liggett SB, Mialet-Perez J, Thaneemit-Chen S, et al. A polymorphism within a conserved beta(1)-adrenergic receptor motif alters cardiac function and beta-blocker response in human heart failure. Proc Natl Acad Sci U S A. 2006;103(30):11288–93.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Taylor MR, Sun AY, Davis G, Fiuzat M, Liggett SB, Bristow MR. Race, common genetic variation, and therapeutic response disparities in heart failure. JACC Heart Fail. 2014;2(6):561–72.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Lanfear DE, Hrobowski TN, Peterson EL, et al. Association of beta-blocker exposure with outcomes in heart failure differs between African American and white patients. Circ Heart Fail. 2012;5(2):202–8.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Yancy CW, Fowler MB, Colucci WS, et al. Race and the response to adrenergic blockade with carvedilol in patients with chronic heart failure. N Engl J Med. 2001;344(18):1358–65.CrossRefPubMedGoogle Scholar
  31. 31.
    Sehnert AJ, Daniels SE, Elashoff M, et al. Lack of association between adrenergic receptor genotypes and survival in heart failure patients treated with carvedilol or metoprolol. J Am Coll Cardiol. 2008;52(8):644–51.CrossRefPubMedGoogle Scholar
  32. 32.
    Cresci S, Kelly RJ, Cappola TP, et al. Clinical and genetic modifiers of long-term survival in heart failure. J Am Coll Cardiol. 2009;54(5):432–44.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Aleong RG, Sauer WH, Robertson AD, Liggett SB, Bristow MR. Adrenergic receptor polymorphisms and prevention of ventricular arrhythmias with bucindolol in patients with chronic heart failure. Circ Arrhythm Electrophysiol. 2013;6(1):137–43.CrossRefPubMedGoogle Scholar
  34. 34.
    Aleong RG, Sauer WH, Sauer WH, et al. Prevention of atrial fibrillation by bucindolol is dependent on the beta (1)389 Arg/Gly adrenergic receptor polymorphism. JACC Heart Fail. 2013;1(4):338–44.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Kao DP, Davis G, Aleong R, et al. Effect of bucindolol on heart failure outcomes and heart rate response in patients with reduced ejection fraction heart failure and atrial fibrillation. Eur J Heart Fail. 2013;15(3):324–33.CrossRefPubMedGoogle Scholar
  36. 36.
    Lymperopoulos A, Negussie S, Walklett K. Beta1- and alpha2C-adrenergic receptor polymorphisms and the antiarrhythmic effect of bucindolol in heart failure with reduced ejection fraction. Pharmacogenomics. 2013;14(13):1545–9.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Duke Clinical Research InstituteDurhamUSA
  2. 2.Duke University Medical CenterDurhamUSA

Personalised recommendations