Current Heart Failure Reports

, Volume 14, Issue 5, pp 434–443 | Cite as

Novel Biomarkers for the Risk Stratification of Heart Failure with Preserved Ejection Fraction

  • Jeremy Cypen
  • Tariq Ahmad
  • Jeffrey M. Testani
  • Adam D. DeVoreEmail author
Biomarkers of Heart Failure (W.H.W. Tang and J.L. Grodin, Section Editors)
Part of the following topical collections:
  1. Topical Collection on Biomarkers of Heart Failure


Purpose of Review

The use of biomarkers in heart failure (HF) is a rapidly changing field. The purpose of this review is to assess the current evidence of the use of biomarkers for risk stratification in patients with HF with preserved ejection fraction (HFpEF).

Recent Findings

Despite differences in pathophysiology between HF with reduced ejection fraction and HFpEF, traditional HF biomarkers such as brain natriuretic peptide and troponin retain prognostic value in most HFpEF-specific populations. Biomarkers of key pathophysiologic components of HFpEF, such as myocardial fibrosis, remodeling, and systemic inflammation are also valuable prognostic markers.


Further investigation into HF biomarkers may identify significant therapeutic targets for the treatment of HFpEF.


Heart failure Biomarkers Prognosis Risk stratification 



The authors would like to thank Erin Campbell, MS, for her editorial contributions to this manuscript. Ms. Campbell did not receive compensation for her contributions, apart from her employment at the institution where this study was conducted.

Compliance with Ethical Standards

Funding Sources

This manuscript was funded internally by the Duke Clinical Research Institute, Durham, NC.

Conflict of Interest

Jeremy Cypen and Tariq Ahmad declare that they have no conflicts of interest.

Adam D. DeVore reports grants from the American Heart Association, Amgen, Novartis, as well as consulting with Novartis.

Jeffrey M. Testani reports grants and personal fees from Otsuka, personal fees from Novartis, grants and personal fees from Sequana Medical, grants from Medtronic, grants and personal fees from Sanofi, grants from Boehringer Ingelheim, grants from the National Institutes of Health, grants from Corvidia medical, personal fees from GE Healthcare, personal fees from Cardionomic, grants and personal fees from The Foundry, grants from the US Food and Drug Administration, personal fees from Relypsa, and grants from Abbott. In addition, Dr. Testani has a patent Joint with Yale and Corvidia licensed.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.


Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Braunwald E. Heart failure. JACC Heart Fail. 2013;1:1–20.CrossRefPubMedGoogle Scholar
  2. 2.
    Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DE, Drazner MH, et al. 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association task force on practice guidelines. J Am Coll Cardiol. 2013;62:e147–239.CrossRefPubMedGoogle Scholar
  3. 3.
    McMurray JJV, Adamopoulos S, Anker SD, Auricchio A, Böhm M, Dickstein K, et al. ESC guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: the task force for the diagnosis and treatment of acute and chronic heart failure 2012 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association (HFA) of the ESC. Eur J Heart Fail. 2012;14:803–69.CrossRefPubMedGoogle Scholar
  4. 4.
    Massie BM, Carson PE, McMurray JJ, Komajda M, McKelvie R, Zile MR, et al. Irbesartan in patients with heart failure and preserved ejection fraction. N Engl J Med. 2008;359:2456–67.CrossRefPubMedGoogle Scholar
  5. 5.
    Edelmann F, Wachter R, Schmidt AG, Kraigher-Krainer E, Colantonio C, Kamke W, et al. Effect of spironolactone on diastolic function and exercise capacity in patients with heart failure with preserved ejection fraction: the Aldo-DHF randomized controlled trial. JAMA. 2013;309:781–91.CrossRefPubMedGoogle Scholar
  6. 6.
    Yusuf S, Pfeffer MA, Swedberg K, Granger CB, Held P, McMurray JJV, et al. Effects of candesartan in patients with chronic heart failure and preserved left-ventricular ejection fraction: the CHARM-preserved trial. Lancet. 2003;362:777–81.CrossRefPubMedGoogle Scholar
  7. 7.
    Cleland JGF, Tendera M, Adamus J, Freemantle N, Polonski L, Taylor J. The perindopril in elderly people with chronic heart failure (PEP-CHF) study. Eur Heart J. 2006;27:2338–45.CrossRefPubMedGoogle Scholar
  8. 8.
    Pitt B, Pfeffer MA, Assmann SF, Boineau R, Anand IS, Claggett B, et al. Spironolactone for heart failure with preserved ejection fraction. The New England Journal of Medicine. 2014;370(15):1383-92.Google Scholar
  9. 9.
    Paulus WJ, Tschöpe C. A novel paradigm for heart failure with preserved ejection fraction: comorbidities drive myocardial dysfunction and remodeling through coronary microvascular endothelial inflammation. J Am Coll Cardiol. 2013;62:263–71.CrossRefPubMedGoogle Scholar
  10. 10.
    Maisel AS, Krishnaswamy P, Nowak RM, McCord J, Hollander JE, Duc P, et al. Rapid measurement of B-type natriuretic peptide in the emergency diagnosis of heart failure. N Engl J Med. 2002;347:161–7.CrossRefPubMedGoogle Scholar
  11. 11.
    Januzzi JL Jr, Camargo CA, Anwaruddin S, Baggish AL, Chen AA, Krauser DG, et al. The N-terminal pro-BNP investigation of dyspnea in the emergency department (PRIDE) study. Am J Cardiol. 2005;95:948–54.CrossRefPubMedGoogle Scholar
  12. 12.
    Costello-Boerrigter LC, Boerrigter G, Redfield MM, Rodeheffer RJ, Urban LH, Mahoney DW, et al. Amino-terminal pro-B-type natriuretic peptide and B-type natriuretic peptide in the general community: determinants and detection of left ventricular dysfunction. J Am Coll Cardiol. 2006;47:345–53.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Ahmad T, O'Connor CM. Therapeutic implications of biomarkers in chronic heart failure. Clin Pharmacol Ther. 2013;94:468–79.CrossRefPubMedGoogle Scholar
  14. 14.
    Senthong V, Kirsop JL, Tang WH. Clinical phenotyping of heart failure with biomarkers: current and future perspectives. Curr Heart Fail Rep. 2017;14:106–16.CrossRefPubMedGoogle Scholar
  15. 15.
    • Zordoky BN, Sung MM, Ezekowitz J, Mandal R, Han B, Bjorndahl TC, et al. Metabolomic fingerprint of heart failure with preserved ejection fraction. PLoS One. 2015;10:e0124844. This paper first described the use of metabolomics to identify possible HF biomarkers using an unbiased "large-data" assay. CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Hunter WG, Kelly JP, McGarrah RW 3rd, Khouri MG, Craig D, Haynes C, et al. Metabolomic profiling identifies novel circulating biomarkers of mitochondrial dysfunction differentially elevated in heart failure with preserved versus reduced ejection fraction: evidence for shared metabolic impairments in clinical heart failure. J Am Heart Assoc. 2016;5:e003190.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Hage C, Michaëlsson E, Linde C, Donal E, Daubert JC, Gan LM, et al. Inflammatory biomarkers predict heart failure severity and prognosis in patients with heart failure with preserved ejection fraction. A holistic proteomic approach. Circ Cardiovasc Genet. 2017;10:e001633.CrossRefPubMedGoogle Scholar
  18. 18.
    Moe GW. B-type natriuretic peptide in heart failure. Curr Opin Cardiol. 2006;21:208–14.PubMedGoogle Scholar
  19. 19.
    Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DE, Colvin MM, et al. 2017 ACC/AHA/HFSA focused update of the 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology/American Heart Association task force on clinical practice guidelines and the Heart Failure Society of America. Circulation. 2017. pii: CIR.0000000000000509.Google Scholar
  20. 20.
    Maisel AS, McCord J, Nowak RM, Hollander JE, Wu AHB, Duc P, et al. Bedside B-type natriuretic peptide in the emergency diagnosis of heart failure with reduced or preserved ejection fraction. Results from the Breathing Not Properly Multinational Study. J Am Coll Cardiol. 2003;41:2010–7.CrossRefPubMedGoogle Scholar
  21. 21.
    Bursi F, Weston SA, Redfield MM, et al. Systolic and diastolic heart failure in the community. JAMA. 2006;296:2209–16.CrossRefPubMedGoogle Scholar
  22. 22.
    • Kang SH, Park JJ, Choi DJ, Yoon CH, Oh IY, Kang SM, et al. Prognostic value of NT-proBNP in heart failure with preserved versus reduced EF. Heart. 2015;101:1881–8. This observational analysis provides evidence for the equivalent prognostic importance of NT-proBNP in HFpEF patients despite differences in absolute levels relative to HFrEF patients. CrossRefPubMedGoogle Scholar
  23. 23.
    van Veldhuisen DJ, Linssen GCM, Jaarsma T, van Gilst WH, Hoes AW, Tijssen JG, et al. B-type natriuretic peptide and prognosis in heart failure patients with preserved and reduced ejection fraction. J Am Coll Cardiol. 2013;61:1498–506.CrossRefPubMedGoogle Scholar
  24. 24.
    von Haehling S, Filippatos GS, Papassotiriou J, Cicoira M, Jankowska EA, Doehner W, et al. Mid-regional pro-adrenomedullin as a novel predictor of mortality in patients with chronic heart failure. Eur J Heart Fail. 2010;12:484–91.CrossRefGoogle Scholar
  25. 25.
    von Haehling S, Jankowska EA, Morgenthaler NG, Vassanelli C, Zanolla L, Rozentryt P, et al. Comparison of midregional pro-atrial natriuretic peptide with N-terminal pro-B-type natriuretic peptide in predicting survival in patients with chronic heart failure. J Am Coll Cardiol. 2007;50:1973–80.CrossRefGoogle Scholar
  26. 26.
    Alehagen U, Dahlström U, Rehfeld JF, Goetze JP. Pro-A-type natriuretic peptide, proadrenomedullin, and N-terminal pro-B-type natriuretic peptide used in a multimarker strategy in primary health care in risk assessment of patients with symptoms of heart failure. J Card Fail. 2013;19:31–9.CrossRefPubMedGoogle Scholar
  27. 27.
    Shah RV, Truong QA, Gaggin HK, Pfannkuche J, Hartmann O, Januzzi JJL. Mid-regional pro-atrial natriuretic peptide and pro-adrenomedullin testing for the diagnostic and prognostic evaluation of patients with acute dyspnoea. Eur Heart J. 2012;33:2197–205.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Song W, Wang H, Wu Q. Atrial natriuretic peptide in cardiovascular biology and disease (NPPA). Gene. 2015;569:1–6.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Gaggin HK, Januzzi JL Jr. Biomarkers and diagnostics in heart failure. Biochim Biophys Acta. 1832;2013:2442–50.Google Scholar
  30. 30.
    Kitamura K, Eto T. Adrenomedullin—physiological regulator of the cardiovascular system or biochemical curiosity? Curr Opin Nephrol Hypertens. 1997:80–7.Google Scholar
  31. 31.
    Zabarovskaja S, Hage C, Linde C, Daubert JC, Donal E, Gabrielsen A, et al. Adaptive cardiovascular hormones in a spectrum of heart failure phenotypes. Int J Cardiol. 2015;189:6–11.CrossRefPubMedGoogle Scholar
  32. 32.
    Chen HH, Burnett JC Jr. C-type natriuretic peptide: the endothelial component of the natriuretic peptide system. J Cardiovasc Pharmacol. 1998;32(Suppl 3):S22–8.PubMedGoogle Scholar
  33. 33.
    Scotland RS, Ahluwalia A, Hobbs AJ. C-type natriuretic peptide in vascular physiology and disease. Pharmacol Ther. 2005;105:85–93.CrossRefPubMedGoogle Scholar
  34. 34.
    Zakeri R, Burnett JC Jr, Sangaralingham SJ. Urinary C-type natriuretic peptide: an emerging biomarker for heart failure and renal remodeling. Clin Chim Acta. 2015;443:108–13.CrossRefPubMedGoogle Scholar
  35. 35.
    Zakeri R, Sangaralingham SJ, Sandberg SM, Heublein DM, Scott CG, Burnett JC Jr. Urinary C-type natriuretic peptide: a new heart failure biomarker. JACC Heart Fail. 2013;1:170–7.CrossRefPubMedGoogle Scholar
  36. 36.
    Lok DJ, Klip IT, Voors AA, Lok SI, de la Porte Bruggink-André PW, Hillege HL, et al. Prognostic value of N-terminal pro C-type natriuretic peptide in heart failure patients with preserved and reduced ejection fraction. Eur J Heart Fail. 2014;16:958–66.CrossRefPubMedGoogle Scholar
  37. 37.
    Motiwala SR, Gaggin HK, Gandhi PU, Belcher A, Weiner RB, Baggish AL, et al. Concentrations of highly sensitive cardiac troponin-I predict poor cardiovascular outcomes and adverse remodeling in chronic heart failure. J Cardiovasc Transl Res. 2015;8:164–72.CrossRefPubMedGoogle Scholar
  38. 38.
    Peacock WF 4th, De Marco T, Fonarow GC, Diercks D, Wynne J, Apple FS, et al. Cardiac troponin and outcome in acute heart failure. N Engl J Med. 2008;358:2117–26.CrossRefPubMedGoogle Scholar
  39. 39.
    Latini R, Masson S, Anand IS, Missov E, Carlson M, Vago T, et al. Prognostic value of very low plasma concentrations of troponin T in patients with stable chronic heart failure. Circulation. 2007;116:1242–9.CrossRefPubMedGoogle Scholar
  40. 40.
    • Pandey A, Golwala H, Sheng S, DeVore AD, Hernandez AF, Bhatt DL, et al. Factors associated with and prognostic implications of cardiac troponin elevation in decompensated heart failure with preserved ejection fraction: findings from the American Heart Association Get With The Guidelines—Heart Failure program. JAMA Cardiol. 2017;2:136–45. This is a well-designed observational analysis of the prognostic role of elevated troponin levels in HFpEF patients with acutely decompensated HF. CrossRefPubMedGoogle Scholar
  41. 41.
    Okuyama R, Ishii J, Takahashi H, Kawai H, Muramatsu T, Harada M, et al. Combination of high-sensitivity troponin I and N-terminal pro-B-type natriuretic peptide predicts future hospital admission for heart failure in high-risk hypertensive patients with preserved left ventricular ejection fraction. Heart Vessel. 2017; doi: 10.1007/s00380-017-0948-9.
  42. 42.
    Sharma UC, Pokharel S, van Brakel TJ, van Berlo JH, Cleutjens JPM, Schroen B, et al. Galectin-3 marks activated macrophages in failure-prone hypertrophied hearts and contributes to cardiac dysfunction. Circulation. 2004;110:3121–8.CrossRefPubMedGoogle Scholar
  43. 43.
    Papaspyridonos M, McNeill E, de Bono JP, Smith A, Burnand KG, Channon KM, et al. Galectin-3 is an amplifier of inflammation in atherosclerotic plaque progression through macrophage activation and monocyte chemoattraction. Arterioscler Thromb Vasc Biol. 2008;28:433–40.CrossRefPubMedGoogle Scholar
  44. 44.
    Lok DJA, Van Der Meer P, de la Porte PW, Lipsic E, Van Wijngaarden J, Hillege HL, et al. Prognostic value of galectin-3, a novel marker of fibrosis, in patients with chronic heart failure: data from the DEAL-HF study. Clin Res Cardiol. 2010;99:323–8.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    van Kimmenade RR, Januzzi JL Jr, Ellinor PT, Sharma UC, Bakker JA, Low AF, et al. Utility of amino-terminal pro-brain natriuretic peptide, galectin-3, and apelin for the evaluation of patients with acute heart failure. J Am Coll Cardiol. 2006;48:1217–24.CrossRefPubMedGoogle Scholar
  46. 46.
    Felker GM, Fiuzat M, Shaw LK, Clare R, Whellan DJ, Bettari L, et al. Galectin-3 in ambulatory patients with heart failure: results from the HF-ACTION study. Circ Heart Fail. 2012;5:72–8.CrossRefPubMedGoogle Scholar
  47. 47.
    de Boer RA, Lok DJ, Jaarsma T, van der Meer P, Voors AA, Hillege HL, et al. Predictive value of plasma galectin-3 levels in heart failure with reduced and preserved ejection fraction. Ann Med. 2011;43:60–8.CrossRefPubMedGoogle Scholar
  48. 48.
    Edelmann F, Holzendorf V, Wachter R, Nolte K, Schmidt AG, Kraigher-Krainer E, et al. Galectin-3 in patients with heart failure with preserved ejection fraction: results from the Aldo-DHF trial. Eur J Heart Fail. 2015;17:214–23.CrossRefPubMedGoogle Scholar
  49. 49.
    Beltrami M, Ruocco G, Dastidar AG, Franci B, Lucani B, Aloia E, et al. Additional value of galectin-3 to BNP in acute heart failure patients with preserved ejection fraction. Clin Chim Acta. 2016;457:99–105.CrossRefPubMedGoogle Scholar
  50. 50.
    van der Velde AR, Gullestad L, Ueland T, Aukrust P, Guo Y, Adourian A, et al. Prognostic value of changes in galectin-3 levels over time in patients with heart failure: data from CORONA and COACH. Circ Heart Fail. 2013;6:219–26.CrossRefPubMedGoogle Scholar
  51. 51.
    Weinberg EO, Shimpo M, De Keulenaer GW, MacGillivray C, Tominaga S, Solomon SD, et al. Expression and regulation of ST2, an interleukin-1 receptor family member, in cardiomyocytes and myocardial infarction. Circulation. 2002;106:2961–6.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Sanada S, Hakuno D, Higgins LJ, Schreiter ER, McKenzie ANJ, Lee RT. IL-33 and ST2 comprise a critical biomechanically induced and cardioprotective signaling system. J Clin Invest. 2007;117:1538–49.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Januzzi JL Jr, Peacock WF, Maisel AS, Chae CU, Jesse RL, Baggish AL, et al. Measurement of the interleukin family member ST2 in patients with acute dyspnea: results from the PRIDE (Pro-Brain Natriuretic Peptide Investigation of Dyspnea in the Emergency Department) study. J Am Coll Cardiol. 2007;50:607–13.CrossRefPubMedGoogle Scholar
  54. 54.
    Manzano-Fernández S, Mueller T, Pascual-Figal D, Truong QA, Januzzi JL. Usefulness of soluble concentrations of interleukin family member ST2 as predictor of mortality in patients with acutely decompensated heart failure relative to left ventricular ejection fraction. Am J Cardiol. 2011;107:259–67.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Ky B, French B, McCloskey K, Rame JE, McIntosh E, Shahi P, et al. High-sensitivity ST2 for prediction of adverse outcomes in chronic heart failure. Circ Heart Fail. 2011;4:180–7.CrossRefPubMedGoogle Scholar
  56. 56.
    Rehman SU, Mueller T, Januzzi JL Jr. Characteristics of the novel interleukin family biomarker ST2 in patients with acute heart failure. J Am Coll Cardiol. 2008;52:1458–65.CrossRefPubMedGoogle Scholar
  57. 57.
    Aimo A, Vergaro G, Passino C, Ripoli A, Ky B, Miller WL, et al. Prognostic value of soluble suppression of tumorigenicity-2 in chronic heart failure: a meta-analysis. JACC Heart Fail. 2017;5:280–6.CrossRefPubMedGoogle Scholar
  58. 58.
    DeVore AD, McNulty S, Alenezi F, Ersboll M, Vader JM, Oh JK, et al. Impaired left ventricular global longitudinal strain in patients with heart failure with preserved ejection fraction: insights from the RELAX trial. Eur J Heart Fail. 2017; doi: 10.1002/ejhf.754.
  59. 59.
    Michalski B, Trzcińńński P, Kupczyńska K, Miśkowiec D, Pseczek Ł, Nawrot B, et al. The differences in the relationship between diastolic dysfunction, selected biomarkers and collagen turn-over in heart failure patients with preserved and reduced ejection fraction. Cardiol J. 2017;24:35–42.CrossRefPubMedGoogle Scholar
  60. 60.
    Martos R, Baugh J, Ledwidge M, O'Loughlin C, Murphy NF, Conlon C, et al. Diagnosis of heart failure with preserved ejection fraction: improved accuracy with the use of markers of collagen turnover. Eur J Heart Fail. 2009;11:191–7.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Sanchis L, Andrea R, Falces C, Llopis J, Morales-Ruiz M, López-Sobrino T, et al. Prognosis of new-onset heart failure outpatients and collagen biomarkers. Eur J Clin Investig. 2015;45:842–9.CrossRefGoogle Scholar
  62. 62.
    Chugh S, Ouzounian M, Lu Z, Mohamed S, Li W, Bousette N, et al. Pilot study identifying myosin heavy chain 7, desmin, insulin-like growth factor 7, and annexin A2 as circulating biomarkers of human heart failure. Proteomics. 2013;13:2324–34.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Gandhi PU, Gaggin HK, Redfield MM, Chen HH, Stevens SR, Anstrom KJ, et al. Insulin-like growth factor-binding protein-7 as a biomarker of diastolic dysfunction and functional capacity in heart failure with preserved ejection fraction. JACC Heart Fail. 2016;4:860–9.CrossRefPubMedGoogle Scholar
  64. 64.
    Anand IS, Latini R, Florea VG, Kuskowski MA, Rector T, Masson S, et al. C-reactive protein in heart failure: prognostic value and the effect of valsartan. Circulation. 2005;112:1428–34.CrossRefPubMedGoogle Scholar
  65. 65.
    Alonso-Martínez JL, Llorente-Diez B, Echegaray-Agara M, Olaz-Preciado F, Urbieta-Echezarreta M, González-Arencibia C. C-reactive protein as a predictor of improvement and readmission in heart failure. Eur J Heart Fail. 2002;4:331–6.CrossRefPubMedGoogle Scholar
  66. 66.
    Vitiello D, Harel F, Touyz RM, Sirois MG, Lavoie J, Myers J, et al. Changes in cardiopulmonary reserve and peripheral arterial function concomitantly with subclinical inflammation and oxidative stress in patients with heart failure with preserved ejection fraction. Int J Vasc Med. 2014;2014:917271.PubMedPubMedCentralGoogle Scholar
  67. 67.
    Koller L, Kleber M, Goliasch G, Sulzgruber P, Scharnagl H, Silbernagel G, et al. C-reactive protein predicts mortality in patients referred for coronary angiography and symptoms of heart failure with preserved ejection fraction. Eur J Heart Fail. 2014;16:758–66.CrossRefPubMedGoogle Scholar
  68. 68.
    Caruso R, De Chiara B, Campolo J, Verde A, Musca F, Belli O, et al. Neopterin levels are independently associated with cardiac remodeling in patients with chronic heart failure. Clin Biochem. 2013;46:94–8.CrossRefPubMedGoogle Scholar
  69. 69.
    Wietlicka-Kokoszanek I, Jablecka A, Smolarek I, Bogdanski P, Chmara E, Korzeniowska K, et al. Neopterin as a prognostic marker in patients with chronic heart failure. Med Sci Monit. 2010;16:CR232–7.PubMedGoogle Scholar
  70. 70.
    Yamamoto E, Hirata Y, Tokitsu T, Kusaka H, Tabata N, Tsujita K, et al. The clinical significance of plasma neopterin in heart failure with preserved left ventricular ejection fraction. ESC Heart Fail. 2016;3:53–9.CrossRefPubMedGoogle Scholar
  71. 71.
    Wollert KC, Kempf T. Growth differentiation factor 15 in heart failure: an update. Curr Heart Fail Rep. 2012;9:337–45.CrossRefPubMedGoogle Scholar
  72. 72.
    Kempf T, von Haehling S, Peter T, Allhoff T, Cicoira M, Doehner W, et al. Prognostic utility of growth differentiation factor-15 in patients with chronic heart failure. J Am Coll Cardiol. 2007;50:1054–60.CrossRefPubMedGoogle Scholar
  73. 73.
    Anand IS, Kempf T, Rector TS, Tapken H, Allhoff T, Jantzen F, et al. Serial measurement of growth-differentiation factor-15 in heart failure: relation to disease severity and prognosis in the Valsartan Heart Failure Trial. Circulation. 2010;122:1387–95.CrossRefPubMedGoogle Scholar
  74. 74.
    Sinning C, Kempf T, Schwarzl M, Lanfermann S, Ojeda F, Schnabel RB, et al. Biomarkers for characterization of heart failure—distinction of heart failure with preserved and reduced ejection fraction. Int J Cardiol. 2017;227:272–7.CrossRefPubMedGoogle Scholar
  75. 75.
    •• Izumiya Y, Hanatani S, Kimura Y, Takashio S, Yamamoto E, Kusaka H, et al. Growth differentiation factor-15 is a useful prognostic marker in patients with heart failure with preserved ejection fraction. Can J Cardiol. 2014;30:338–44. This prospective cohort study provides a thorough analysis of the prognostic value of GDF-15 in HFpEF patients. This paper is particularly valuable because it established a prognostic role for GDF-15 in HFpEF independent of left ventricular diastolic dysfunction. CrossRefPubMedGoogle Scholar
  76. 76.
    Santhanakrishnan R, Chong JP, Ng TP, Ling LH, Sim D, Toh G, et al. Growth differentiation factor 15, ST2, high-sensitivity troponin T, and N-terminal pro brain natriuretic peptide in heart failure with preserved vs. reduced ejection fraction. Eur J Heart Fail. 2012;14:1338–47.CrossRefPubMedGoogle Scholar
  77. 77.
    Chan MM, Santhanakrishnan R, Chong JPC, Chen Z, Tai BC, Liew OW, et al. Growth differentiation factor 15 in heart failure with preserved vs. reduced ejection fraction. Eur J Heart Fail. 2016;18:81–8.CrossRefPubMedGoogle Scholar
  78. 78.
    •• Gandhi PU, Testani JM, Ahmad T. The current and potential clinical relevance of heart failure biomarkers. Curr Heart Fail Rep. 2015;12:318–27. This is an excellent general review of the clinical relevance and importance of biomarkers in HF and the best place to start for anyone looking to learn more about the role of biomarkers in HF as a whole. CrossRefPubMedGoogle Scholar
  79. 79.
    Damman K, Voors AA, Navis G, van Veldhuisen DJ, Hillege HL. Current and novel renal biomarkers in heart failure. Heart Fail Rev. 2012;17:241–50.CrossRefPubMedGoogle Scholar
  80. 80.
    Lassus J, Harjola VP, Sund R, Siirilä-Waris K, Melin J, Peuhkurinen K, et al. Prognostic value of cystatin C in acute heart failure in relation to other markers of renal function and NT-proBNP. Eur Heart J. 2007;28:1841–7.CrossRefPubMedGoogle Scholar
  81. 81.
    van Deursen VM, Damman K, Voors AA, van der Wal MH, Jaarsma T, van Veldhuisen DJ, et al. Prognostic value of plasma neutrophil gelatinase-associated lipocalin for mortality in patients with heart failure. Circ Heart Fail. 2014;7:35–42.CrossRefPubMedGoogle Scholar
  82. 82.
    Damman K, Van Veldhuisen DJ, Navis G, Vaidya VS, Smilde TDJ, Westenbrink BD, et al. Tubular damage in chronic systolic heart failure is associated with reduced survival independent of glomerular filtration rate. Heart. 2010;96:1297–302.CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Watson CJ, Gupta SK, O'Connell E, Thum S, Glezeva N, Fendrich J, et al. MicroRNA signatures differentiate preserved from reduced ejection fraction heart failure. Eur J Heart Fail. 2015;17:405–15.CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Wong LL, Armugam A, Sepramaniam S, Karolina DS, Lim KY, Lim JY, et al. Circulating microRNAs in heart failure with reduced and preserved left ventricular ejection fraction. Eur J Heart Fail. 2015;17:393–404.CrossRefPubMedGoogle Scholar
  85. 85.
    Tiberio P, Callari M, Angeloni V, Daidone MG, Appierto V. Challenges in using circulating miRNAs as cancer biomarkers. Biomed Res Int. 2015;2015:731479.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Jeremy Cypen
    • 1
  • Tariq Ahmad
    • 3
  • Jeffrey M. Testani
    • 3
  • Adam D. DeVore
    • 1
    • 2
    Email author
  1. 1.Department of MedicineDuke University School of MedicineDurhamUSA
  2. 2.Duke Clinical Research InstituteDuke University School of MedicineDurhamUSA
  3. 3.Section of Cardiovascular MedicineYale University School of MedicineNew HavenUSA

Personalised recommendations