Advertisement

Current Heart Failure Reports

, Volume 12, Issue 6, pp 367–378 | Cite as

Current Approach to Decongestive Therapy in Acute Heart Failure

  • Pieter Martens
  • Petra Nijst
  • Wilfried Mullens
Decompensated Heart Failure (D Aronso, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Decompensated Heart Failure

Abstract

Congestion, defined by elevated cardiac filling pressures, is the major driver of hospitalization in acute decompensated heart failure. Careful clinical assessment should allow to determine whether volume overload or volume misdistribution is the predominating mechanism of congestion. Differentiation is imperative because therapy differs. If volume overloads prevails, loop diuretics are considered the mainstay therapy. However, early use of combinational therapy with diuretics acting more proximal or distal in the nephron could allow for a more profound natriuresis and diuresis. A stepped guided pharmacological treatment should focus on achieving complete decongestion, because persistent congestion is a major driver of readmission. If diuretic strategies remain unsuccessful, ultrafiltration should be considered. Ultrafiltration should be used with caution in the setting of worsening of renal function. When volume misdistribution and impaired venous capacitance predominate the picture of congestion, unloading—more than diuretics—with arteriolar and venous vasodilators might mitigate the clinical picture of congestion. This review offers a thorough overview and practical insight in the use of current and potential decongestive therapies.

Keywords

Decongestive therapy Cardiac filling Heart failure Combinational therapy Ultrafiltration Congestion 

Abbreviations

ADHF

Acute decompensated heart failure

WRF

Worsening of renal function

PCWP

Pulmonary capillary wedge pressure

CRT

Cardiac resynchronization therapy

BID

Bis in Die

NT-proBNP

N-terminal pro-brain natriuretic peptide

MRA

Mineralocorticoid receptor antagonist

SGLT2

Sodium-glucose linked transporter 2

ISDN

Isosorbide dinitrate

UF

Ultrafiltration

AVP

Arginine vasopressin

Notes

Acknowledgments

Pieter Martens, Petra Nijst and Wilfried Mullens are researchers for the Limburg Clinical Research Program (LCRP) UHasselt-ZOL-Jessa, supported by the foundation Limburg Sterk Merk (LSM), Hasselt University, Ziekenhuis Oost-Limburg, and Jessa Hospital.

Compliance with Ethical Standards

Conflict of Interest

Pieter Martens, Petra Nijst, and Wilfried Mullens declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

  1. 1.
    McMurray JJ, Adamopoulos S, Anker SD, et al. ESC guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: The Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2012 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association (HFA) of the ESC. Eur J Heart Fail. 2012;14(8):803–69.CrossRefPubMedGoogle Scholar
  2. 2.
    Adams Jr KF, Fonarow GC, Emerman CL, et al. Characteristics and outcomes of patients hospitalized for heart failure in the United States: rationale, design, and preliminary observations from the first 100,000 cases in the Acute Decompensated Heart Failure National Registry (ADHERE). Am Heart J. 2005;149(2):209–16.CrossRefPubMedGoogle Scholar
  3. 3.
    Gheorghiade M, Vaduganathan M, Fonarow GC, Bonow RO. Rehospitalization for heart failure: problems and perspectives. J Am Coll Cardiol. 2013;61(4):391–403.CrossRefPubMedGoogle Scholar
  4. 4.
    Heidenreich PA, Albert NM, Allen LA, et al. Forecasting the impact of heart failure in the United States: a policy statement from the American Heart Association. Circ Heart Fail. 2013;6(3):606–19.PubMedCentralCrossRefPubMedGoogle Scholar
  5. 5.
    Yancy CW, Jessup M, Bozkurt B, et al. 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2013;62(16):e147–239.CrossRefPubMedGoogle Scholar
  6. 6.
    Fonarow GC, Abraham WT, Albert NM, et al. Association between performance measures and clinical outcomes for patients hospitalized with heart failure. JAMA. 2007;297(1):61–70.CrossRefPubMedGoogle Scholar
  7. 7.
    Fonarow GC, Stough WG, Abraham WT, et al. Characteristics, treatments, and outcomes of patients with preserved systolic function hospitalized for heart failure: a report from the OPTIMIZE-HF Registry. J Am Coll Cardiol. 2007;50(8):768–77.CrossRefPubMedGoogle Scholar
  8. 8.
    Gheorghiade M, Pang PS. Acute heart failure syndromes. J Am Coll Cardiol. 2009;53(7):557–73.CrossRefPubMedGoogle Scholar
  9. 9.
    Drazner MH, Rame JE, Stevenson LW, Dries DL. Prognostic importance of elevated jugular venous pressure and a third heart sound in patients with heart failure. N Engl J Med. 2001;345(8):574–81.CrossRefPubMedGoogle Scholar
  10. 10.
    Kociol RD, McNulty SE, Hernandez AF, et al. Markers of decongestion, dyspnea relief, and clinical outcomes among patients hospitalized with acute heart failure. Circ Heart Fail. 2013;6(2):240–5.CrossRefPubMedGoogle Scholar
  11. 11.
    Stevenson LW, Perloff JK. The limited reliability of physical signs for estimating hemodynamics in chronic heart failure. JAMA. 1989;261(6):884–8.CrossRefPubMedGoogle Scholar
  12. 12.
    Chaudhry SI, Wang Y, Concato J, Gill TM, Krumholz HM. Patterns of weight change preceding hospitalization for heart failure. Circulation. 2007;116(14):1549–54.PubMedCentralCrossRefPubMedGoogle Scholar
  13. 13.
    Abraham WT, Adamson PB, Bourge RC, et al. Wireless pulmonary artery haemodynamic monitoring in chronic heart failure: a randomised controlled trial. Lancet. 2011;377(9766):658–66.CrossRefPubMedGoogle Scholar
  14. 14.
    Colombo PC, Doran AC, Onat D, et al. Venous congestion, endothelial and neurohormonal activation in acute decompensated heart failure: cause or effect? Curr Heart Fail Rep. 2015;12(3):215–22.CrossRefPubMedGoogle Scholar
  15. 15.
    Mullens W, Abrahams Z, Francis GS, et al. Importance of venous congestion for worsening of renal function in advanced decompensated heart failure. J Am Coll Cardiol. 2009;53(7):589–96.PubMedCentralCrossRefPubMedGoogle Scholar
  16. 16.
    Verbrugge FH, Dupont M, Steels P, et al. Abdominal contributions to cardiorenal dysfunction in congestive heart failure. J Am Coll Cardiol. 2013;62(6):485–95.CrossRefPubMedGoogle Scholar
  17. 17.
    Maisel AS, Krishnaswamy P, Nowak RM, et al. Rapid measurement of B-type natriuretic peptide in the emergency diagnosis of heart failure. N Engl J Med. 2002;347(3):161–7.CrossRefPubMedGoogle Scholar
  18. 18.
    van Veldhuisen DJ, Linssen GC, Jaarsma T, et al. B-type natriuretic peptide and prognosis in heart failure patients with preserved and reduced ejection fraction. J Am Coll Cardiol. 2013;61(14):1498–506.CrossRefPubMedGoogle Scholar
  19. 19.
    Abraham WT, Compton S, Haas G, et al. Intrathoracic impedance vs daily weight monitoring for predicting worsening heart failure events: results of the Fluid Accumulation Status Trial (FAST). Congest Heart Fail. 2011;17(2):51–5.CrossRefPubMedGoogle Scholar
  20. 20.
    Vollmann D, Nagele H, Schauerte P, et al. Clinical utility of intrathoracic impedance monitoring to alert patients with an implanted device of deteriorating chronic heart failure. Eur Heart J. 2007;28(15):1835–40.CrossRefPubMedGoogle Scholar
  21. 21.
    Yu CM, Wang L, Chau E, et al. Intrathoracic impedance monitoring in patients with heart failure: correlation with fluid status and feasibility of early warning preceding hospitalization. Circulation. 2005;112(6):841–8.CrossRefPubMedGoogle Scholar
  22. 22.
    Conraads VM, Tavazzi L, Santini M, et al. Sensitivity and positive predictive value of implantable intrathoracic impedance monitoring as a predictor of heart failure hospitalizations: the SENSE-HF trial. Eur Heart J. 2011;32(18):2266–73.CrossRefPubMedGoogle Scholar
  23. 23.
    van Veldhuisen DJ, Braunschweig F, Conraads V, et al. Intrathoracic impedance monitoring, audible patient alerts, and outcome in patients with heart failure. Circulation. 2011;124(16):1719–26.CrossRefPubMedGoogle Scholar
  24. 24.
    Duchenne J, Verbrugge FH, Dupont M, et al. Implementation of transmural disease management in patients admitted with advanced heart failure. Acta Cardiol. 2014;69(2):145–54.PubMedGoogle Scholar
  25. 25.
    Lala A, McNulty SE, Mentz RJ, et al. Relief and recurrence of congestion during and after hospitalization for acute heart failure: insights from DOSE-AHF and CARRESS-HF. Circ Heart Fail. 2015.Google Scholar
  26. 26.
    Testani JM, Chen J, McCauley BD, Kimmel SE, Shannon RP. Potential effects of aggressive decongestion during the treatment of decompensated heart failure on renal function and survival. Circulation. 2010;122(3):265–72.PubMedCentralCrossRefPubMedGoogle Scholar
  27. 27.
    Testani JM, Coca SG, Shannon RP, Kimmel SE, Cappola TP. Influence of renal dysfunction phenotype on mortality in the setting of cardiac dysfunction: analysis of three randomized controlled trials. Eur J Heart Fail. 2011;13(11):1224–30.PubMedCentralCrossRefPubMedGoogle Scholar
  28. 28.
    Di SS, De BB, Bongiovanni C, Marino R, Ferri E, Alfei B. Use of BNP and bioimpedance to drive therapy in heart failure patients. Congest Heart Fail. 2010;16 Suppl 1:S56–61.Google Scholar
  29. 29.
    Verbrugge FH, Nijst P, Dupont M, Penders J, Tang WH, Mullens W. Urinary composition during decongestive treatment in heart failure with reduced ejection fraction. Circ Heart Fail. 2014;7(5):766–72.CrossRefPubMedGoogle Scholar
  30. 30.
    Zordoky BN, Sung MM, Ezekowitz J, et al. Metabolomic fingerprint of heart failure with preserved ejection fraction. PLoS One. 2015;10(5):e0124844.PubMedCentralCrossRefPubMedGoogle Scholar
  31. 31.
    Brater DC. Diuretic therapy. N Engl J Med. 1998;339(6):387–95.CrossRefPubMedGoogle Scholar
  32. 32.
    Brater DC. Diuretic therapy in congestive heart failure. Congest Heart Fail. 2000;6(4):197–201.PubMedGoogle Scholar
  33. 33.
    Cosin J, Diez J. Torasemide in chronic heart failure: results of the TORIC study. Eur J Heart Fail. 2002;4(4):507–13.CrossRefPubMedGoogle Scholar
  34. 34.
    Muller K, Gamba G, Jaquet F, Hess B. Torasemide vs. furosemide in primary care patients with chronic heart failure NYHA II to IV--efficacy and quality of life. Eur J Heart Fail. 2003;5(6):793–801.CrossRefPubMedGoogle Scholar
  35. 35.
    Murray MD, Deer MM, Ferguson JA, et al. Open-label randomized trial of torsemide compared with furosemide therapy for patients with heart failure. Am J Med. 2001;111(7):513–20.CrossRefPubMedGoogle Scholar
  36. 36.
    DiNicolantonio JJ. Should torsemide be the loop diuretic of choice in systolic heart failure? Futur Cardiol. 2012;8(5):707–28.CrossRefGoogle Scholar
  37. 37.
    Felker GM, Lee KL, Bull DA, et al. Diuretic strategies in patients with acute decompensated heart failure. N Engl J Med. 2011;364(9):797–805.PubMedCentralCrossRefPubMedGoogle Scholar
  38. 38.
    Hasselblad V, Gattis SW, Shah MR, et al. Relation between dose of loop diuretics and outcomes in a heart failure population: results of the ESCAPE trial. Eur J Heart Fail. 2007;9(10):1064–9.PubMedCentralCrossRefPubMedGoogle Scholar
  39. 39.
    Testani JM, Brisco MA, Turner JM, et al. Loop diuretic efficiency: a metric of diuretic responsiveness with prognostic importance in acute decompensated heart failure. Circ Heart Fail. 2014;7(2):261–70.PubMedCentralCrossRefPubMedGoogle Scholar
  40. 40.
    Valente MA, Voors AA, Damman K, et al. Diuretic response in acute heart failure: clinical characteristics and prognostic significance. Eur Heart J. 2014;35(19):1284–93.CrossRefPubMedGoogle Scholar
  41. 41.
    Davison BA, Metra M, Cotter G, et al. Worsening heart failure following admission for acute heart failure: a pooled analysis of the PROTECT and RELAX-AHF studies. JACC Heart Fail. 2015;3(5):395–403.CrossRefPubMedGoogle Scholar
  42. 42.
    Felker GM, Mentz RJ. Diuretics and ultrafiltration in acute decompensated heart failure. J Am Coll Cardiol. 2012;59(24):2145–53.CrossRefPubMedGoogle Scholar
  43. 43.
    ter Maaten JM, Valente MA, Damman K, Hillege HL, Navis G, Voors AA. Diuretic response in acute heart failure-pathophysiology, evaluation, and therapy. Nat Rev Cardiol. 2015;12(3):184–92.CrossRefPubMedGoogle Scholar
  44. 44.
    Jentzer JC, DeWald TA, Hernandez AF. Combination of loop diuretics with thiazide-type diuretics in heart failure. J Am Coll Cardiol. 2010;56(19):1527–34.CrossRefPubMedGoogle Scholar
  45. 45.
    US national library of medicine, https://clinicaltrials.gov/ct2/show/NCT01647932. 7-7-2015.
  46. 46.
    Hensen J, Abraham WT, Durr JA, Schrier RW. Aldosterone in congestive heart failure: analysis of determinants and role in sodium retention. Am J Nephrol. 1991;11(6):441–6.CrossRefPubMedGoogle Scholar
  47. 47.
    Van Vliet AA, Donker AJ, Nauta JJ, Verheugt FW. Spironolactone in congestive heart failure refractory to high-dose loop diuretic and low-dose angiotensin-converting enzyme inhibitor. Am J Cardiol. 1993;71(3):21A–8A.CrossRefPubMedGoogle Scholar
  48. 48.
    Bansal S, Lindenfeld J, Schrier RW. Sodium retention in heart failure and cirrhosis: potential role of natriuretic doses of mineralocorticoid antagonist? Circ Heart Fail. 2009;2(4):370–6.CrossRefPubMedGoogle Scholar
  49. 49.
    Gines P, Cardenas A, Arroyo V, Rodes J. Management of cirrhosis and ascites. N Engl J Med. 2004;350(16):1646–54.CrossRefPubMedGoogle Scholar
  50. 50.
    Boron WF. Acid-base transport by the renal proximal tubule. J Am Soc Nephrol. 2006;17(9):2368–82.CrossRefPubMedGoogle Scholar
  51. 51.
    Seifter JL. Integration of acid-base and electrolyte disorders. N Engl J Med. 2014;371(19):1821–31.CrossRefPubMedGoogle Scholar
  52. 52.
    Knauf H, Mutschler E. Sequential nephron blockade breaks resistance to diuretics in edematous states. J Cardiovasc Pharmacol. 1997;29(3):367–72.CrossRefPubMedGoogle Scholar
  53. 53.
    US national library of medicine, https://clinicaltrials.gov/ct2/show/NCT01973335. 7-7-2015.
  54. 54.
    Cefalu WT, Leiter LA, Yoon KH, et al. Efficacy and safety of canagliflozin versus glimepiride in patients with type 2 diabetes inadequately controlled with metformin (CANTATA-SU): 52 week results from a randomised, double-blind, phase 3 non-inferiority trial. Lancet. 2013;382(9896):941–50.CrossRefPubMedGoogle Scholar
  55. 55.
    Cohn JN, Franciosa JA, Francis GS, et al. Effect of short-term infusion of sodium nitroprusside on mortality rate in acute myocardial infarction complicated by left ventricular failure: results of a Veterans Administration cooperative study. N Engl J Med. 1982;306(19):1129–35.CrossRefPubMedGoogle Scholar
  56. 56.
    Cotter G, Metzkor E, Kaluski E, et al. Randomised trial of high-dose isosorbide dinitrate plus low-dose furosemide versus high-dose furosemide plus low-dose isosorbide dinitrate in severe pulmonary oedema. Lancet. 1998;351(9100):389–93.CrossRefPubMedGoogle Scholar
  57. 57.
    Wakai A, McCabe A, Kidney R, et al. Nitrates for acute heart failure syndromes. Cochrane Database Syst Rev. 2013;8, CD005151.PubMedGoogle Scholar
  58. 58.
    Mullens W, Abrahams Z, Francis GS, et al. Sodium nitroprusside for advanced low-output heart failure. J Am Coll Cardiol. 2008;52(3):200–7.CrossRefPubMedGoogle Scholar
  59. 59.
    Intravenous nesiritide vs nitroglycerin for treatment of decompensated congestive heart failure: a randomized controlled trial. JAMA 2002;287(12):1531-1540.Google Scholar
  60. 60.
    Colucci WS, Elkayam U, Horton DP, et al. Intravenous nesiritide, a natriuretic peptide, in the treatment of decompensated congestive heart failure. Nesiritide Study Group. N Engl J Med. 2000;343(4):246–53.CrossRefPubMedGoogle Scholar
  61. 61.
    O’Connor CM, Starling RC, Hernandez AF, et al. Effect of nesiritide in patients with acute decompensated heart failure. N Engl J Med. 2011;365(1):32–43.CrossRefPubMedGoogle Scholar
  62. 62.
    Gottlieb SS, Stebbins A, Voors AA, et al. Effects of nesiritide and predictors of urine output in acute decompensated heart failure: results from ASCEND-HF (Acute Study of Clinical Effectiveness of Nesiritide and Decompensated Heart Failure). J Am Coll Cardiol. 2013;62(13):1177–83.CrossRefPubMedGoogle Scholar
  63. 63.
    Anker SD, Ponikowski P, Mitrovic V, Peacock WF, Filippatos G. Ularitide for the treatment of acute decompensated heart failure: from preclinical to clinical studies. Eur Heart J. 2015;36(12):715–23.PubMedCentralCrossRefPubMedGoogle Scholar
  64. 64.
    Elsner D, Muders F, Muntze A, Kromer EP, Forssmann WG, Riegger GA. Efficacy of prolonged infusion of urodilatin [ANP-(95-126)] in patients with congestive heart failure. Am Heart J. 1995;129(4):766–73.CrossRefPubMedGoogle Scholar
  65. 65.
    Kentsch M, Ludwig D, Drummer C, Gerzer R, Muller-Esch G. Haemodynamic and renal effects of urodilatin bolus injections in patients with congestive heart failure. Eur J Clin Investig. 1992;22(10):662–9.CrossRefGoogle Scholar
  66. 66.
    Kentsch M, Ludwig D, Drummer C, Gerzer R, Muller-Esch G. Haemodynamic and renal effects of urodilatin in healthy volunteers. Eur J Clin Investig. 1992;22(5):319–25.CrossRefGoogle Scholar
  67. 67.
    Mitrovic V, Luss H, Nitsche K, et al. Effects of the renal natriuretic peptide urodilatin (ularitide) in patients with decompensated chronic heart failure: a double-blind, placebo-controlled, ascending-dose trial. Am Heart J. 2005;150(6):1239.CrossRefPubMedGoogle Scholar
  68. 68.
    Mitrovic V, Seferovic PM, Simeunovic D, et al. Haemodynamic and clinical effects of ularitide in decompensated heart failure. Eur Heart J. 2006;27(23):2823–32.CrossRefPubMedGoogle Scholar
  69. 69.
    US national library of medicine, https://clinicaltrials.gov/ct2/show/NCT01661634. 2015. 9-7-2015.
  70. 70.
    Tolwani A. Continuous renal-replacement therapy for acute kidney injury. N Engl J Med. 2012;367(26):2505–14.CrossRefPubMedGoogle Scholar
  71. 71.
    Kazory A. Cardiorenal syndrome: ultrafiltration therapy for heart failure--trials and tribulations. Clin J Am Soc Nephrol. 2013;8(10):1816–28.PubMedCentralCrossRefPubMedGoogle Scholar
  72. 72.
    Ross EA, Kazory A. Ultrafiltration therapy for cardiorenal syndrome: physiologic basis and contemporary options. Blood Purif. 2012;34(2):149–57.CrossRefPubMedGoogle Scholar
  73. 73.
    Guazzi MD, Agostoni P, Perego B, et al. Apparent paradox of neurohumoral axis inhibition after body fluid volume depletion in patients with chronic congestive heart failure and water retention. Br Heart J. 1994;72(6):534–9.PubMedCentralCrossRefPubMedGoogle Scholar
  74. 74.
    Costanzo MR, Guglin ME, Saltzberg MT, et al. Ultrafiltration versus intravenous diuretics for patients hospitalized for acute decompensated heart failure. J Am Coll Cardiol. 2007;49(6):675–83.CrossRefPubMedGoogle Scholar
  75. 75.
    US national library of medicine, https://clinicaltrials.gov/ct2/show/NCT01474200. 9-7-2015.
  76. 76.
    Giamouzis G, Butler J, Starling RC, et al. Impact of dopamine infusion on renal function in hospitalized heart failure patients: results of the Dopamine in Acute Decompensated Heart Failure (DAD-HF) Trial. J Card Fail. 2010;16(12):922–30.CrossRefPubMedGoogle Scholar
  77. 77.
    Chen HH, Anstrom KJ, Givertz MM, et al. Low-dose dopamine or low-dose nesiritide in acute heart failure with renal dysfunction: the ROSE acute heart failure randomized trial. JAMA. 2013;310(23):2533–43.PubMedCentralCrossRefPubMedGoogle Scholar
  78. 78.
    Triposkiadis FK, Butler J, Karayannis G, et al. Efficacy and safety of high dose versus low dose furosemide with or without dopamine infusion: the Dopamine in Acute Decompensated Heart Failure II (DAD-HF II) trial. Int J Cardiol. 2014;172(1):115–21.CrossRefPubMedGoogle Scholar
  79. 79.
    Verbrugge FH, Steels P, Grieten L, Nijst P, Tang WH, Mullens W. Hyponatremia in acute decompensated heart failure: depletion versus dilution. J Am Coll Cardiol. 2015;65(5):480–92.CrossRefPubMedGoogle Scholar
  80. 80.
    Goldsmith SR, Gheorghiade M. Vasopressin antagonism in heart failure. J Am Coll Cardiol. 2005;46(10):1785–91.CrossRefPubMedGoogle Scholar
  81. 81.
    Berl T. Vasopressin antagonists. N Engl J Med. 2015;372(23):2207–16.CrossRefPubMedGoogle Scholar
  82. 82.
    Konstam MA, Gheorghiade M, Burnett Jr JC, et al. Effects of oral tolvaptan in patients hospitalized for worsening heart failure: the EVEREST Outcome Trial. JAMA. 2007;297(12):1319–31.CrossRefPubMedGoogle Scholar
  83. 83.
    Torres VE, Chapman AB, Devuyst O, et al. Tolvaptan in patients with autosomal dominant polycystic kidney disease. N Engl J Med. 2012;367(25):2407–18.PubMedCentralCrossRefPubMedGoogle Scholar
  84. 84.
    US national library of medicine, https://clinicaltrials.gov/ct2/show/NCT01644331. 11-7-2015.
  85. 85.
    US national library of medicine, https://clinicaltrials.gov/ct2/show/NCT01584557. 11-7-2015.
  86. 86.
    Aronson D, Burger AJ. Neurohormonal prediction of mortality following admission for decompensated heart failure. Am J Cardiol. 2003;91(2):245–8.CrossRefPubMedGoogle Scholar
  87. 87.
    McMurray JJ, Teerlink JR, Cotter G, et al. Effects of tezosentan on symptoms and clinical outcomes in patients with acute heart failure: the VERITAS randomized controlled trials. JAMA. 2007;298(17):2009–19.CrossRefPubMedGoogle Scholar
  88. 88.
    Vallon V, Miracle C, Thomson S. Adenosine and kidney function: potential implications in patients with heart failure. Eur J Heart Fail. 2008;10(2):176–87.PubMedCentralCrossRefPubMedGoogle Scholar
  89. 89.
    Ponikowski P, Mitrovic V, O’Connor CM, et al. Haemodynamic effects of rolofylline in the treatment of patients with heart failure and impaired renal function. Eur J Heart Fail. 2010;12(11):1238–46.CrossRefPubMedGoogle Scholar
  90. 90.
    Massie BM, O’Connor CM, Metra M, et al. Rolofylline, an adenosine A1-receptor antagonist, in acute heart failure. N Engl J Med. 2010;363(15):1419–28.CrossRefPubMedGoogle Scholar
  91. 91.
    Pitt B, Gheorghiade M. Geographic variation in heart failure trials: time for scepticism? Eur J Heart Fail. 2014;16(6):601–2.CrossRefPubMedGoogle Scholar
  92. 92.
    Teichman SL, Unemori E, Teerlink JR, Cotter G, Metra M. Relaxin: review of biology and potential role in treating heart failure. Curr Heart Fail Rep. 2010;7(2):75–82.PubMedCentralCrossRefPubMedGoogle Scholar
  93. 93.
    Teerlink JR, Cotter G, Davison BA, et al. Serelaxin, recombinant human relaxin-2, for treatment of acute heart failure (RELAX-AHF): a randomised, placebo-controlled trial. Lancet. 2013;381(9860):29–39.CrossRefPubMedGoogle Scholar
  94. 94.
    US national library of medicine, https://clinicaltrials.gov/ct2/show/NCT01870778. 12-7-2015.
  95. 95.
    Cuffe MS, Califf RM, Adams Jr KF, et al. Short-term intravenous milrinone for acute exacerbation of chronic heart failure: a randomized controlled trial. JAMA. 2002;287(12):1541–7.CrossRefPubMedGoogle Scholar
  96. 96.
    Elkayam U, Tasissa G, Binanay C, et al. Use and impact of inotropes and vasodilator therapy in hospitalized patients with severe heart failure. Am Heart J. 2007;153(1):98–104.CrossRefPubMedGoogle Scholar
  97. 97.
    Cohn JN, Goldstein SO, Greenberg BH, et al. A dose-dependent increase in mortality with vesnarinone among patients with severe heart failure. Vesnarinone Trial Investigators. N Engl J Med. 1998;339(25):1810–6.CrossRefPubMedGoogle Scholar
  98. 98.
    Hampton JR, van Veldhuisen DJ, Kleber FX, et al. Randomised study of effect of ibopamine on survival in patients with advanced severe heart failure. Second Prospective Randomised Study of Ibopamine on Mortality and Efficacy (PRIME II) Investigators. Lancet. 1997;349(9057):971–7.CrossRefPubMedGoogle Scholar
  99. 99.
    Lubsen J, Just H, Hjalmarsson AC, et al. Effect of pimobendan on exercise capacity in patients with heart failure: main results from the Pimobendan in Congestive Heart Failure (PICO) trial. Heart. 1996;76(3):223–31.PubMedCentralCrossRefPubMedGoogle Scholar
  100. 100.
    Packer M, Carver JR, Rodeheffer RJ, et al. Effect of oral milrinone on mortality in severe chronic heart failure. The PROMISE Study Research Group. N Engl J Med. 1991;325(21):1468–75.CrossRefPubMedGoogle Scholar
  101. 101.
    Metra M, Eichhorn E, Abraham WT, et al. Effects of low-dose oral enoximone administration on mortality, morbidity, and exercise capacity in patients with advanced heart failure: the randomized, double-blind, placebo-controlled, parallel group ESSENTIAL trials. Eur Heart J. 2009;30(24):3015–26.PubMedCentralCrossRefPubMedGoogle Scholar
  102. 102.
    Oliva F, Latini R, Politi A, et al. Intermittent 6-month low-dose dobutamine infusion in severe heart failure: DICE multicenter trial. Am Heart J. 1999;138(2 Pt 1):247–53.CrossRefPubMedGoogle Scholar
  103. 103.
    Hasenfuss G, Teerlink JR. Cardiac inotropes: current agents and future directions. Eur Heart J. 2011;32(15):1838–45.CrossRefPubMedGoogle Scholar
  104. 104.
    Teerlink JR. A novel approach to improve cardiac performance: cardiac myosin activators. Heart Fail Rev. 2009;14(4):289–98.PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Pieter Martens
    • 1
    • 2
  • Petra Nijst
    • 1
    • 2
  • Wilfried Mullens
    • 1
    • 3
  1. 1.Department of CardiologyZiekenhuis Oost-LimburgGenkBelgium
  2. 2.Doctoral School for Medicine and Life SciencesHasselt UniversityDiepenbeekBelgium
  3. 3.Biomedical Research Institute, Faculty of Medicine and Life SciencesHasselt UniversityDiepenbeekBelgium

Personalised recommendations