Current Heart Failure Reports

, Volume 12, Issue 6, pp 339–349 | Cite as

Evolving Approaches to Genetic Evaluation of Specific Cardiomyopathies

  • Loon Yee Louis Teo
  • Rocio T. Moran
  • W. H. Wilson Tang
Biomarkers of Heart Failure (W H W Tang, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Biomarkers of Heart Failure


The understanding of the genetic basis of cardiomyopathy has expanded significantly over the past 2 decades. The increasing availability, shortening diagnostic time, and lowering costs of genetic testing have provided researchers and physicians with the opportunity to identify the underlying genetic determinants for thousands of genetic disorders, including inherited cardiomyopathies, in effort to improve patient morbidities and mortality. As such, genetic testing has advanced from basic scientific research to clinical application and has been incorporated as part of patient evaluations for suspected inherited cardiomyopathies. Genetic evaluation framework of inherited cardiomyopathies typically encompasses careful evaluation of family history, genetic counseling, clinical screening of family members, and if appropriate, molecular genetic testing. This review summarizes the genetics, current guideline recommendations, and evidence supporting the genetic evaluation framework of five hereditary forms of cardiomyopathy: dilated cardiomyopathy (DCM), hypertrophic cardiomyopathy (HCM), arrhythmogenic right ventricular cardiomyopathy (ARVC), restrictive cardiomyopathy (RCM), and left ventricular noncompaction (LVNC).


Genetic evaluation Cardiomyopathy Hereditary Genetic testing Evolving approaches 


Compliance with Ethical Standards

Conflict of Interest

Loon Yee Louis Teo and Rocio T. Moran declare that they have no conflict of interest.

W. H. Wilson Tang declares grants from the National Institutes of Health during the conduct of this study.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.


Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Maron BJ, Towbin JA, Thiene G, et al. Contemporary definitions and classification of the cardiomyopathies: an American Heart Association scientific statement from the Council on Clinical Cardiology, Heart Failure and Transplantation Committee; Quality of Care and Outcomes Research and Functional Genomics and Translational Biology Interdisciplinary Working Groups; and Council on Epidemiology and Prevention. Circulation. 2006;113:1807–16.CrossRefPubMedGoogle Scholar
  2. 2.
    Maisch B, Noutsias M, Ruppert V, et al. Cardiomyopathies: classification, diagnosis and treatment. Heart Fail Clin. 2012;8(1):53–78.CrossRefPubMedGoogle Scholar
  3. 3.
    Cahill TJ, Ashrafian H, Watkins H. Genetic cardiomyopathies causing heart failure. Circ Res. 2013;113(6):660–75.CrossRefPubMedGoogle Scholar
  4. 4.
    Watkins H, Ashrafian H, Redwood C. Inherited cardiomyopathies. N Engl J Med. 2011;364:1643–56.CrossRefPubMedGoogle Scholar
  5. 5.••
    Ackerman MJ, Priori SG, Willems S, et al. HRS/EHRA expert consensus statement on the state of genetic testing for the channelopathies and cardiomyopathies this document was developed as a partnership between the Heart Rhythm Society (HRS) and the European Heart Rhythm Association (EHRA). Heart Rhythm. 2011;8(8):1308–39. Official practice guidelines outlining important considerations for genetic evaluation of channelopathies and inherited arrhythmias.CrossRefPubMedGoogle Scholar
  6. 6.••
    Hershberger RE, Lindenfeld J, Mestroni L, et al. Genetic evaluation of cardiomyopathy--a Heart Failure Society of America practice guideline. J Card Fail. 2009;15(2):83–97. Official practice guidelines from the Heart Failure Society of America, outlining important considerations for genetic evaluation of cardiomyopathies.CrossRefPubMedGoogle Scholar
  7. 7.
    Charron P, Arad M, Arbustini E, Basso C, et al. Genetic counselling and testing in cardiomyopathies: a position statement of the European Society of Cardiology Working Group on Myocardial and Pericardial Diseases. Eur Heart J. 2010;31(22):2715–26.CrossRefPubMedGoogle Scholar
  8. 8.
    Mestroni L, Maisch B, McKenna WJ, et al. Guidelines for the study of familial dilated cardiomyopathies. Collaborative Research Group of the European Human and Capital Mobility Project on Familial Dilated Cardiomyopathy. Eur Heart J. 1999;20(2):93–102.CrossRefPubMedGoogle Scholar
  9. 9.
    Hershberger RE, Siegfried JD. Update 2011: clinical and genetic issues in familial dilated cardiomyopathy. J Am Coll Cardiol. 2011;57(16):1641–9.PubMedCentralCrossRefPubMedGoogle Scholar
  10. 10.
    Michels VV, Moll PP, Miller FA, et al. The frequency of familial dilated cardiomyopathy in a series of patients with idiopathic dilated cardiomyopathy. N Engl J Med. 1992;326:77–82.CrossRefPubMedGoogle Scholar
  11. 11.
    Grunig E, Tasman JA, Kucherer H, et al. Frequency and phenotypes of familial dilated cardiomyopathy. J Am Coll Cardiol. 1998;31:186–94.CrossRefPubMedGoogle Scholar
  12. 12.
    Baig MK, Goldman JH, Caforio AP, et al. Familial dilated cardiomyopathy: cardiac abnormalities are common in asymptomatic relatives and may represent early disease. J Am Coll Cardiol. 1998;31:195–201.CrossRefPubMedGoogle Scholar
  13. 13.
    Towbin JA, Bowles NE. The failing heart. Nature. 2002;415(6868):227–33.CrossRefPubMedGoogle Scholar
  14. 14.
    Teekakirikul P, Kelly MA, Rehm HL, et al. Inherited cardiomyopathies: molecular genetics and clinical genetic testing in the postgenomic era. J Mol Diagn. 2013;15(2):158–70.CrossRefPubMedGoogle Scholar
  15. 15.
    Towbin JA. Inherited cardiomyopathies. Circ J. 2014;78(10):2347–56.PubMedCentralCrossRefPubMedGoogle Scholar
  16. 16.
    Dellefave L, McNally EM. The genetics of dilated cardiomyopathy. Curr Opin Cardiol. 2010;25(3):198–204.PubMedCentralCrossRefPubMedGoogle Scholar
  17. 17.
    Schuster SC. Next-generation sequencing transforms today's biology. Nat Methods. 2008;5(1):16–8.CrossRefPubMedGoogle Scholar
  18. 18.
    Hall N. Advanced sequencing technologies and their wider impact in microbiology. J Exp Biol. 2007;210(Pt 9):1518–25.CrossRefPubMedGoogle Scholar
  19. 19.
  20. 20.
    National Center for Biotechnology Information.
  21. 21.
    Burkett EL, Hershberger RE. Clinical and genetic issues in familial dilated cardiomyopathy. J Am Coll Cardiol. 2005;45:969–81.CrossRefPubMedGoogle Scholar
  22. 22.
    Hershberger RE. Cardiovascular genetic medicine: evolving concepts, rationale, and implementation. J Cardiovasc Transl Res. 2008;1(2):137–43.CrossRefPubMedGoogle Scholar
  23. 23.
    Parks SB, Kushner JD, Nauman D, et al. Lamin A/C mutation analysis in a cohort of 324 unrelated patients with idiopathic or familial dilated cardiomyopathy. Am Heart J. 2008;156:161e169.CrossRefGoogle Scholar
  24. 24.
    McNair WP, Ku L, Taylor MR, et al. SCN5A mutation associated with dilated cardiomyopathy, conduction disorder, and arrhythmia. Circulation. 2004;110:2163e7.CrossRefGoogle Scholar
  25. 25.
    van Spaendonck-Zwarts KY, van Hessem L, Jongbloed JD, et al. Desmin-related myopathy. Clin Genet. 2011;80(4):354–66.CrossRefPubMedGoogle Scholar
  26. 26.
    van Berlo JH, de Voogt WG, van der Kooi AJ, et al. Metaanalysis of clinical characteristics of 299 carriers of LMNA gene mutations: do lamin A/C mutations portend a high risk of sudden death? J Mol Med. 2005;83:79–83.CrossRefPubMedGoogle Scholar
  27. 27.
    Meune C, Van Berlo JH, Anselme F, et al. Primary prevention of sudden death in patients with lamin A/C gene mutations. N Engl J Med. 2006;354:209–10.CrossRefPubMedGoogle Scholar
  28. 28.
    Herman DS, Lam L, Taylor MR, et al. Truncations of titin causing dilated cardiomyopathy. N Engl J Med. 2012;366(7):619–28.PubMedCentralCrossRefPubMedGoogle Scholar
  29. 29.
    Maron BJ, Gardin JM, Flack JM, et al. Prevalence of hypertrophic cardiomyopathy in a general population of young adults. Echocardiographic analysis of 4111 subjects in the CARDIA Study. Coronary Artery Risk Development in (Young) Adults. Circulation. 1995;92(4):785–9.CrossRefPubMedGoogle Scholar
  30. 30.
    Bos JM, Towbin JA, Ackerman MJ. Diagnostic, prognostic, and therapeutic implications of genetic testing for hypertrophic cardiomyopathy. J Am Coll Cardiol. 2009;54(3):201–11.CrossRefPubMedGoogle Scholar
  31. 31.
    Seidman CE, Seidman JG. Identifying sarcomere gene mutations in hypertrophic cardiomyopathy: a personal history. Circ Res. 2011;108(6):743–50.CrossRefPubMedGoogle Scholar
  32. 32.
    Roma-Rodrigues C, Fernandes AR. Genetics of hypertrophic cardiomyopathy: advances and pitfalls in molecular diagnosis and therapy. Appl Clin Genet. 2014;7:195–208.PubMedCentralPubMedGoogle Scholar
  33. 33.
    Richard P, Charron P, Carrier L, et al. Hypertrophic cardiomyopathy: distribution of disease genes, spectrum of mutations, and implications for a molecular diagnosis strategy. Circulation. 2003;107(17):2227–32.CrossRefPubMedGoogle Scholar
  34. 34.
    Watkins H, Thierfelder L, Hwang DS, et al. Sporadic hypertrophic cardiomyopathy due to de novo myosin mutations. J Clin Invest. 1992;90(5):1666–71.PubMedCentralCrossRefPubMedGoogle Scholar
  35. 35.
    Ingles J, Doolan A, Chiu C, Seidman J, et al. Compound and double mutations in patients with hypertrophic cardiomyopathy: implications for genetic testing and counselling. J Med Genet. 2005;42, e59.PubMedCentralCrossRefPubMedGoogle Scholar
  36. 36.
    Gersh BJ, Maron BJ, Bonow RO, et al. 2011 ACCF/AHA guideline for the diagnosis and treatment of hypertrophic cardiomyopathy: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Circulation. 2011;124(24):e783–831.CrossRefPubMedGoogle Scholar
  37. 37.
    Jarcho JA, McKenna WJ, Pare JA, et al. Mapping a gene for familial hypertrophic cardiomyopathy to chromosome 14q1. N Engl J Med. 1989;321:1372–8.CrossRefPubMedGoogle Scholar
  38. 38.
    Maron BJ, Maron MS, Semsarian C. Genetics of hypertrophic cardiomyopathy after 20 years: clinical perspectives. J Am Coll Cardiol. 2012;60:705–15.CrossRefPubMedGoogle Scholar
  39. 39.
    Olivotto I, Girolami F, Ackerman MJ, et al. Myofilament protein gene mutation screening and outcome of patients with hypertrophic cardiomyopathy. Mayo Clin Proc. 2008;83(6):630–8.CrossRefPubMedGoogle Scholar
  40. 40.
    Wordsworth S, Leal J, Blair E, et al. DNA testing for hypertrophic cardiomyopathy: a cost-effectiveness model. Eur Heart J. 2010;31:926–35.CrossRefPubMedGoogle Scholar
  41. 41.
    Basso C, Corrado D, Marcus FI, et al. Arrhythmogenic right ventricular cardiomyopathy. Lancet. 2009;373:1289–300.CrossRefPubMedGoogle Scholar
  42. 42.
    Gemayel C, Pelliccia A, Thompson PD. Arrhythmogenic right ventricular cardiomyopathy. J Am Coll Cardiol. 2001;38:1773.CrossRefPubMedGoogle Scholar
  43. 43.
    Bauce B, Frigo G, Marcus FI, et al. Comparison of clinical features of arrhythmogenic right ventricular cardiomyopathy in men versus women. Am J Cardiol. 2008;102:1252e1257.CrossRefGoogle Scholar
  44. 44.
    Iyer VR, Chin AJ. Arrhythmogenic right ventricular cardiomyopathy/dysplasia (ARVC/D). Am J Med Genet Part C Semin Med Genet. 2013;163C:185–97.CrossRefPubMedGoogle Scholar
  45. 45.
    Marcus FI, McKenna WJ, Sherrill D, et al. Diagnosis of arrhythmogenic right ventricular cardiomyopathy/dysplasia: proposed modification of the task force criteria. Circulation. 2010;121:1533–41.PubMedCentralCrossRefPubMedGoogle Scholar
  46. 46.
    Murray B. Arrhythmogenic right ventricular dysplasia/cardiomyopathy (ARVD/C): a review of molecular and clinical literature. J Genet Counsel. 2012;21:497–504.CrossRefGoogle Scholar
  47. 47.
    Quarta G, Muir A, Pantazis A, et al. Familial evaluation in arrhythmogenic right ventricular cardiomyopathy: impact of genetics and revised task force criteria. Circulation. 2011;123(23):2701–9.CrossRefPubMedGoogle Scholar
  48. 48.
    Smith W. Members of CSANZ Cardiovascular Genetics Working Group. Guidelines for the diagnosis and management of arrhythmogenic right ventricular cardiomyopathy. Heart Lung Circ. 2011;20(12):757–60.CrossRefPubMedGoogle Scholar
  49. 49.
    Bauce B, Basso C, Rampazzo A, et al. Clinical profile of four families with arrhythmogenic right ventricular cardiomyopathy caused by dominant desmoplakin mutations. Eur Heart J. 2005;26:1666–75.CrossRefPubMedGoogle Scholar
  50. 50.
    Dalal D, Molin LH, Piccini J, et al. Clinical features of arrhythmogenic right ventricular dysplasia/cardiomyopathy associated with mutations in plakophilin-2. Circulation. 2006;113:1641–9.CrossRefPubMedGoogle Scholar
  51. 51.
    Marcus FI, Edson S, Towbin JA. Genetics of arrhythmogenic right ventricular cardiomyopathy: a practical guide for physicians. J Am Coll Cardiol. 2013;61(19):1945–8.CrossRefPubMedGoogle Scholar
  52. 52.
    Kapplinger JD, Landstrom AP, Salisbury BA, et al. Distinguishing arrhythmogenic right ventricular cardiomyopathy/dysplasia-associated mutations from background genetic noise. J Am Coll Cardiol. 2011;57:2317–27.CrossRefPubMedGoogle Scholar
  53. 53.
    Sen-Chowdhry S, Syrris P, McKenna WJ. Genetics of restrictive cardiomyopathy. Heart Fail Clin. 2010;6(2):179–86.CrossRefPubMedGoogle Scholar
  54. 54.
    Peled Y, Gramlich M, Yoskovitz G, et al. Titin mutation in familial restrictive cardiomyopathy. Int J Cardiol. 2014;171(1):24–30.CrossRefPubMedGoogle Scholar
  55. 55.
    Caleshu C, Sakhuja R, Nussbaum RL, et al. Furthering the link between the sarcomere and primary cardiomyopathies: restrictive cardiomyopathy associated with multiple mutations in genes previously associated with hypertrophic or dilated cardiomyopathy. Am J Med Genet A. 2011;155A(9):2229–35.CrossRefPubMedGoogle Scholar
  56. 56.
    Alfares AA, Kelly MA, McDermott G, et al. Results of clinical genetic testing of 2,912 probands with hypertrophic cardiomyopathy: expanded panels offer limited additional sensitivity. Genet Med. 2015. doi: 10.1038/gim.2014.205.PubMedGoogle Scholar
  57. 57.
    Huby AC, Mendsaikhan U, Takagi K, et al. Disturbance in Z-disk mechanosensitive proteins induced by a persistent mutant myopalladin causes familial restrictive cardiomyopathy. J Am Coll Cardiol. 2014;64(25):2765–76.CrossRefPubMedGoogle Scholar
  58. 58.
    Oechslin E, Jenni R. Left ventricular non-compaction revisited: a distinct phenotype with genetic heterogeneity? Eur Heart J. 2011;32(12):1446–56.CrossRefPubMedGoogle Scholar
  59. 59.
    Carrilho-Ferreira P, Almeida AG, Pinto FJ. Non-compaction cardiomyopathy: prevalence, prognosis, pathoetiology, genetics, and risk of cardioembolism. Curr Heart Fail Rep. 2014;11(4):393–403.CrossRefPubMedGoogle Scholar
  60. 60.
    Weiford BC, Subbarao VD, Mulhern KM. Noncompaction of the ventricular myocardium. Circulation. 2004;109:2965.CrossRefPubMedGoogle Scholar
  61. 61.
    Sen-Chowdhry S, McKenna WJ. Left ventricular noncompaction and cardiomyopathy: cause, contributor, or epiphenomenon? Curr Opin Cardiol. 2008;23:171–5.CrossRefPubMedGoogle Scholar
  62. 62.
    Hoedemaekers YM, Caliskan K, Michels M, et al. The importance of genetic counseling, DNA diagnostics, and cardiologic family screening in left ventricular noncompaction cardiomyopathy. Circ Cardiovasc Genet. 2010;3(3):232–9.CrossRefPubMedGoogle Scholar
  63. 63.
    Klaassen S, Probst S, Oechslin E, et al. Mutations in sarcomere protein genes in left ventricular noncompaction. Circulation. 2008;117:2893–901.CrossRefPubMedGoogle Scholar
  64. 64.
    Ho CY, Lakdawala NK, Cirino AL, et al. Diltiazem treatment for pre-clinical hypertrophic cardiomyopathy sarcomere mutation carriers: a pilot randomized trial to modify disease expression. JACC Heart Fail. 2015;3(2):180–8.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Loon Yee Louis Teo
    • 1
  • Rocio T. Moran
    • 2
  • W. H. Wilson Tang
    • 1
    • 3
  1. 1.Kaufman Center for Heart Failure, Department of Cardiovascular Medicine, Heart and Vascular InstituteCleveland ClinicClevelandUSA
  2. 2.Division of Genetics and GenomicsMetroHealth Medical CenterClevelandUSA
  3. 3.Center for Clinical GenomicsCleveland ClinicClevelandUSA

Personalised recommendations