Advertisement

Current Heart Failure Reports

, Volume 12, Issue 3, pp 215–222 | Cite as

Venous Congestion, Endothelial and Neurohormonal Activation in Acute Decompensated Heart Failure: Cause or Effect?

  • Paolo C. Colombo
  • Amanda C. Doran
  • Duygu Onat
  • Ka Yuk Wong
  • Myra Ahmad
  • Hani N. Sabbah
  • Ryan T. Demmer
Decompensated Heart Failure (JE Ho, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Decompensated Heart Failure

Abstract

Venous congestion and endothelial and neurohormonal activation are known to occur in acute decompensated heart failure (ADHF), yet the temporal role of these processes in the pathophysiology of decompensation is not fully understood. Conventional wisdom presumes congestion to be a consequence of worsening cardiovascular function; however, the biomechanically driven effects of venous congestion are biologically plausible contributors to ADHF that remain largely unexplored in vivo. Recent experimental evidence from human models suggests that fluid accumulation and venous congestion are not simply consequences of poor cardiovascular function, but rather are fundamental pro-oxidant, pro-inflammatory, and hemodynamic stimuli that contribute to acute decompensation. The latest advances in the monitoring of volume status using implantable devices allow for the detection of venous congestion before symptoms arise. This may ultimately lead to improved treatment strategies including not only diuretics, but also specific, adjuvant interventions to counteract endothelial and neurohormonal activation during early preclinical decompensation.

Keywords

Endothelial Heart failure 

Notes

Acknowledgments

This study was supported by the A. L. Mailman Family Foundation, NIH Grant Number HL092144 and NIH Grant Number DE018739.

Compliance with Ethics Guidelines

Conflict of Interest

Paolo C. Colombo, Amanda C. Doran, Duygu Onat, Ka Yuk Wong, Myra Ahmad, Hani N. Sabbah, and Ryan T. Demmer declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Allen LA, Metra M, Milo-Cotter O, Filippatos G, Reisin LH, Bensimhon DR, et al. Improvements in signs and symptoms during hospitalization for acute heart failure follow different patterns and depend on the measurement scales used: an international, prospective registry to evaluate the evolution of Measures of Disease Severity in Acute Heart Failure (MEASURE-AHF). J Card Fail. 2008;14(9):777–84. doi: 10.1016/j.cardfail.2008.07.188.CrossRefPubMedCentralPubMedGoogle Scholar
  2. 2.
    Damman K, van Deursen VM, Navis G, Voors AA, van Veldhuisen DJ, Hillege HL. Increased central venous pressure is associated with impaired renal function and mortality in a broad spectrum of patients with cardiovascular disease. J Am Coll Cardiol. 2009;53(7):582–8. doi: 10.1016/j.jacc.2008.08.080.CrossRefPubMedGoogle Scholar
  3. 3.
    Felker GM, Adams Jr KF, Konstam MA, O’Connor CM, Gheorghiade M. The problem of decompensated heart failure: nomenclature, classification, and risk stratification. Am Heart J. 2003;145(2 Suppl):S18–25. doi: 10.1067/mhj.2003.150.CrossRefPubMedGoogle Scholar
  4. 4.
    Fonarow GC, Abraham WT, Albert NM, Gattis Stough W, Gheorghiade M, Greenberg BH, et al. Influence of a performance-improvement initiative on quality of care for patients hospitalized with heart failure: results of the Organized Program to Initiate Lifesaving Treatment in Hospitalized Patients with Heart Failure (OPTIMIZE-HF). Arch Intern Med. 2007;167(14):1493–502. doi: 10.1001/archinte.167.14.1493.CrossRefPubMedGoogle Scholar
  5. 5.
    Fonarow GC, Heywood JT, Heidenreich PA, Lopatin M, Yancy CW. Temporal trends in clinical characteristics, treatments, and outcomes for heart failure hospitalizations, 2002 to 2004: findings from Acute Decompensated Heart Failure National Registry (ADHERE). Am Heart J. 2007;153(6):1021–8. doi: 10.1016/j.ahj.2007.03.012.CrossRefPubMedGoogle Scholar
  6. 6.
    Gheorghiade M, Filippatos G, De Luca L, Burnett J. Congestion in acute heart failure syndromes: an essential target of evaluation and treatment. Am J Med. 2006;119(12 Suppl 1):S3–10. doi: 10.1016/j.amjmed.2006.09.011.CrossRefPubMedGoogle Scholar
  7. 7.
    Gheorghiade M, Gattis WA, O’Connor CM, Adams Jr KF, Elkayam U, Barbagelata A, et al. Effects of tolvaptan, a vasopressin antagonist, in patients hospitalized with worsening heart failure: a randomized controlled trial. JAMA. 2004;291(16):1963–71. doi: 10.1001/jama.291.16.1963.CrossRefPubMedGoogle Scholar
  8. 8.
    Gheorghiade M, Zannad F, Sopko G, Klein L, Pina IL, Konstam MA, et al. Acute heart failure syndromes: current state and framework for future research. Circulation. 2005;112(25):3958–68. doi: 10.1161/CIRCULATIONAHA.105.590091.CrossRefPubMedGoogle Scholar
  9. 9.
    Lucas C, Johnson W, Hamilton MA, Fonarow GC, Woo MA, Flavell CM, et al. Freedom from congestion predicts good survival despite previous class IV symptoms of heart failure. Am Heart J. 2000;140(6):840–7. doi: 10.1067/mhj.2000.110933.CrossRefPubMedGoogle Scholar
  10. 10.
    Cotter G, Metra M, Milo-Cotter O, Dittrich HC, Gheorghiade M. Fluid overload in acute heart failure—re-distribution and other mechanisms beyond fluid accumulation. Eur J Heart Fail. 2008;10(2):165–9. doi: 10.1016/j.ejheart.2008.01.007.CrossRefPubMedGoogle Scholar
  11. 11.
    Dorhout Mees EJ. Diastolic heart failure: a confusing concept. Heart Fail Rev. 2013;18(4):503–9. doi: 10.1007/s10741-012-9344-9.CrossRefPubMedGoogle Scholar
  12. 12.
    Felker GM, Cotter G. Unraveling the pathophysiology of acute heart failure: an inflammatory proposal. Am Heart J. 2006;151(4):765–7. doi: 10.1016/j.ahj.2005.07.004.CrossRefPubMedGoogle Scholar
  13. 13.
    Yu CM, Wang L, Chau E, Chan RH, Kong SL, Tang MO, et al. Intrathoracic impedance monitoring in patients with heart failure: correlation with fluid status and feasibility of early warning preceding hospitalization. Circulation. 2005;112(6):841–8. doi: 10.1161/CIRCULATIONAHA.104.492207.CrossRefPubMedGoogle Scholar
  14. 14.
    Tsutamoto T, Hisanaga T, Fukai D, Wada A, Maeda Y, Maeda K, et al. Prognostic value of plasma soluble intercellular adhesion molecule-1 and endothelin-1 concentration in patients with chronic congestive heart failure. Am J Cardiol. 1995;76(11):803–8.CrossRefPubMedGoogle Scholar
  15. 15.
    Andreassen AK, Nordoy I, Simonsen S, Ueland T, Muller F, Froland SS, et al. Levels of circulating adhesion molecules in congestive heart failure and after heart transplantation. Am J Cardiol. 1998;81(5):604–8.CrossRefPubMedGoogle Scholar
  16. 16.
    Klein RM, Breuer R, Mundhenke M, Schwartzkopff B, Strauer BE. Circulating adhesion molecules (cICAM-1, lcVCAM-1) in patients with suspected inflammatory heart muscle disease. Z Kardiol. 1998;87(2):84–93.CrossRefPubMedGoogle Scholar
  17. 17.
    Yin WH, Chen JW, Jen HL, Chiang MC, Huang WP, Feng AN, et al. The prognostic value of circulating soluble cell adhesion molecules in patients with chronic congestive heart failure. Eur J Heart Fail. 2003;5(4):507–16.CrossRefPubMedGoogle Scholar
  18. 18.
    Bonomini M, Reale M, Santarelli P, Stuard S, Settefrati N, Albertazzi A. Serum levels of soluble adhesion molecules in chronic renal failure and dialysis patients. Nephron. 1998;79(4):399–407.CrossRefPubMedGoogle Scholar
  19. 19.
    Munger MA, Johnson B, Amber IJ, Callahan KS, Gilbert EM. Circulating concentrations of proinflammatory cytokines in mild or moderate heart failure secondary to ischemic or idiopathic dilated cardiomyopathy. Am J Cardiol. 1996;77(9):723–7.CrossRefPubMedGoogle Scholar
  20. 20.
    Testa M, Yeh M, Lee P, Fanelli R, Loperfido F, Berman JW, et al. Circulating levels of cytokines and their endogenous modulators in patients with mild to severe congestive heart failure due to coronary artery disease or hypertension. J Am Coll Cardiol. 1996;28(4):964–71.CrossRefPubMedGoogle Scholar
  21. 21.
    Packer M. Is tumor necrosis factor an important neurohormonal mechanism in chronic heart failure? Circulation. 1995;92(6):1379–82.CrossRefPubMedGoogle Scholar
  22. 22.
    Carlstedt F, Lind L, Lindahl B. Proinflammatory cytokines, measured in a mixed population on arrival in the emergency department, are related to mortality and severity of disease. J Intern Med. 1997;242(5):361–5.CrossRefPubMedGoogle Scholar
  23. 23.
    Matsumoto M, Tsujino T, Lee-Kawabata M, Naito Y, Sakoda T, Ohyanagi M, et al. Serum interleukin-6 and C-reactive protein are markedly elevated in acute decompensated heart failure patients with left ventricular systolic dysfunction. Cytokine. 2010;49(3):264–8. doi: 10.1016/j.cyto.2009.11.006.CrossRefPubMedGoogle Scholar
  24. 24.
    Barreto DV, Barreto FC, Liabeuf S, Temmar M, Lemke HD, Tribouilloy C, et al. Plasma interleukin-6 is independently associated with mortality in both hemodialysis and pre-dialysis patients with chronic kidney disease. Kidney Int. 2010;77(6):550–6. doi: 10.1038/ki.2009.503.CrossRefPubMedGoogle Scholar
  25. 25.
    Descamps-Latscha B, Herbelin A, Nguyen AT, Roux-Lombard P, Zingraff J, Moynot A, et al. Balance between IL-1 beta, TNF-alpha, and their specific inhibitors in chronic renal failure and maintenance dialysis. Relationships with activation markers of T cells, B cells, and monocytes. J Immunol. 1995;154(2):882–92.PubMedGoogle Scholar
  26. 26.
    Francis SE, Holden H, Holt CM, Duff GW. Interleukin-1 in myocardium and coronary arteries of patients with dilated cardiomyopathy. J Mol Cell Cardiol. 1998;30(2):215–23. doi: 10.1006/jmcc.1997.0592.CrossRefPubMedGoogle Scholar
  27. 27.
    Sharma A, Hermann DD, Mehta RL. Clinical benefit and approach of ultrafiltration in acute heart failure. Cardiology. 2001;96(3–4):144–54.CrossRefPubMedGoogle Scholar
  28. 28.
    Rodeheffer RJ, Lerman A, Heublein DM, Burnett Jr JC. Increased plasma concentrations of endothelin in congestive heart failure in humans. Mayo Clin Proc. 1992;67(8):719–24.CrossRefPubMedGoogle Scholar
  29. 29.
    Cottone S, Mule G, Guarneri M, Palermo A, Lorito MC, Riccobene R, et al. Endothelin-1 and F2-isoprostane relate to and predict renal dysfunction in hypertensive patients. Nephrol Dial Transplant. 2009;24(2):497–503. doi: 10.1093/ndt/gfn489.CrossRefPubMedGoogle Scholar
  30. 30.
    Dzau VJ, Colucci WS, Hollenberg NK, Williams GH. Relation of the renin-angiotensin-aldosterone system to clinical state in congestive heart failure. Circulation. 1981;63(3):645–51.CrossRefPubMedGoogle Scholar
  31. 31.
    Lauten A, Ferrari M, Goebel B, Rademacher W, Schumm J, Uth O, et al. Microvascular tissue perfusion is impaired in acutely decompensated heart failure and improves following standard treatment. Eur J Heart Fail. 2011;13(7):711–7. doi: 10.1093/eurjhf/hfr043.CrossRefPubMedGoogle Scholar
  32. 32.
    Paton AM, Lever AF, Oliver NW, Medina A, Briggs JD, Morton JJ, et al. Plasma angiotensin II, renin, renin-substrate and aldosterone concentrations in acute renal failure in man. Clin Nephrol. 1975;3(1):18–23.PubMedGoogle Scholar
  33. 33.
    Francis GS, Benedict C, Johnstone DE, Kirlin PC, Nicklas J, Liang CS, et al. Comparison of neuroendocrine activation in patients with left ventricular dysfunction with and without congestive heart failure. A substudy of the Studies of Left Ventricular Dysfunction (SOLVD). Circulation. 1990;82(5):1724–9.CrossRefPubMedGoogle Scholar
  34. 34.
    Milo O, Cotter G, Kaluski E, Brill A, Blatt A, Krakover R, et al. Comparison of inflammatory and neurohormonal activation in cardiogenic pulmonary edema secondary to ischemic versus nonischemic causes. Am J Cardiol. 2003;92(2):222–6.CrossRefPubMedGoogle Scholar
  35. 35.
    White M, Ducharme A, Ibrahim R, Whittom L, Lavoie J, Guertin MC, et al. Increased systemic inflammation and oxidative stress in patients with worsening congestive heart failure: improvement after short-term inotropic support. Clin Sci (Lond). 2006;110(4):483–9. doi: 10.1042/CS20050317.CrossRefGoogle Scholar
  36. 36.
    Gutierrez E, Flammer AJ, Lerman LO, Elizaga J, Lerman A, Fernandez-Aviles F. Endothelial dysfunction over the course of coronary artery disease. Eur Heart J. 2013;34(41):3175–81. doi: 10.1093/eurheartj/eht351.CrossRefPubMedCentralPubMedGoogle Scholar
  37. 37.
    Marti CN, Gheorghiade M, Kalogeropoulos AP, Georgiopoulou VV, Quyyumi AA, Butler J. Endothelial dysfunction, arterial stiffness, and heart failure. J Am Coll Cardiol. 2012;60(16):1455–69. doi: 10.1016/j.jacc.2011.11.082.CrossRefPubMedGoogle Scholar
  38. 38.
    Rajendran P, Rengarajan T, Thangavel J, Nishigaki Y, Sakthisekaran D, Sethi G, et al. The vascular endothelium and human diseases. Int J Biol Sci. 2013;9(10):1057–69. doi: 10.7150/ijbs.7502.CrossRefPubMedCentralPubMedGoogle Scholar
  39. 39.
    Zhou J, Li YS, Chien S. Shear stress-initiated signaling and its regulation of endothelial function. Arterioscler Thromb Vasc Biol. 2014;34(10):2191–8. doi: 10.1161/ATVBAHA.114.303422.CrossRefPubMedGoogle Scholar
  40. 40.
    Mitchell JA, Ali F, Bailey L, Moreno L, Harrington LS. Role of nitric oxide and prostacyclin as vasoactive hormones released by the endothelium. Exp Physiol. 2008;93(1):141–7. doi: 10.1113/expphysiol.2007.038588.CrossRefPubMedGoogle Scholar
  41. 41.
    Cannon 3rd RO. Role of nitric oxide in cardiovascular disease: focus on the endothelium. Clin Chem. 1998;44(8 Pt 2):1809–19.PubMedGoogle Scholar
  42. 42.
    Drexler H. Nitric oxide synthases in the failing human heart: a doubled-edged sword? Circulation. 1999;99(23):2972–5.CrossRefPubMedGoogle Scholar
  43. 43.
    Starling RC. Inducible nitric oxide synthase in severe human heart failure: impact of mechanical unloading. J Am Coll Cardiol. 2005;45(9):1425–7. doi: 10.1016/j.jacc.2005.02.021.CrossRefPubMedGoogle Scholar
  44. 44.
    Boo YC. Shear stress stimulates phosphorylation of protein kinase A substrate proteins including endothelial nitric oxide synthase in endothelial cells. Exp Mol Med. 2006;38(4):453. doi: 10.1038/emm.2006.53.CrossRefPubMedGoogle Scholar
  45. 45.
    Jin ZG, Ueba H, Tanimoto T, Lungu AO, Frame MD, Berk BC. Ligand-independent activation of vascular endothelial growth factor receptor 2 by fluid shear stress regulates activation of endothelial nitric oxide synthase. Circ Res. 2003;93(4):354–63. doi: 10.1161/01.RES.0000089257.94002.96.CrossRefPubMedGoogle Scholar
  46. 46.
    Hsieh HJ, Liu CA, Huang B, Tseng AH, Wang DL. Shear-induced endothelial mechanotransduction: the interplay between reactive oxygen species (ROS) and nitric oxide (NO) and the pathophysiological implications. J Biomed Sci. 2014;21:3. doi: 10.1186/1423-0127-21-3.CrossRefPubMedCentralPubMedGoogle Scholar
  47. 47.
    Hasdai D, Holmes Jr DR, Garratt KN, Edwards WD, Lerman A. Mechanical pressure and stretch release endothelin-1 from human atherosclerotic coronary arteries in vivo. Circulation. 1997;95(2):357–62.CrossRefPubMedGoogle Scholar
  48. 48.
    Delli Gatti C, Osto E, Kouroedov A, Eto M, Shaw S, Volpe M, et al. Pulsatile stretch induces release of angiotensin II and oxidative stress in human endothelial cells: effects of ACE inhibition and AT1 receptor antagonism. Clin Exp Hypertens. 2008;30(7):616–27. doi: 10.1080/10641960802443183.CrossRefPubMedGoogle Scholar
  49. 49.
    Cheng JJ, Wung BS, Chao YJ, Wang DL. Cyclic strain enhances adhesion of monocytes to endothelial cells by increasing intercellular adhesion molecule-1 expression. Hypertension. 1996;28(3):386–91.CrossRefPubMedGoogle Scholar
  50. 50.
    Kawai M, Naruse K, Komatsu S, Kobayashi S, Nagino M, Nimura Y, et al. Mechanical stress-dependent secretion of interleukin 6 by endothelial cells after portal vein embolization: clinical and experimental studies. J Hepatol. 2002;37(2):240–6.CrossRefPubMedGoogle Scholar
  51. 51.
    Wang BW, Chang H, Lin S, Kuan P, Shyu KG. Induction of matrix metalloproteinases-14 and -2 by cyclical mechanical stretch is mediated by tumor necrosis factor-alpha in cultured human umbilical vein endothelial cells. Cardiovasc Res. 2003;59(2):460–9.CrossRefPubMedGoogle Scholar
  52. 52.
    Davies PF. Hemodynamic shear stress and the endothelium in cardiovascular pathophysiology. Nat Clin Pract Cardiovasc Med. 2009;6(1):16–26. doi: 10.1038/ncpcardio1397.CrossRefPubMedCentralPubMedGoogle Scholar
  53. 53.
    Canty Jr TG, Boyle Jr EM, Farr A, Morgan EN, Verrier ED, Pohlman TH. Oxidative stress induces NF-kappaB nuclear translocation without degradation of IkappaBalpha. Circulation. 1999;100(19 Suppl):II361–4.PubMedGoogle Scholar
  54. 54.
    Boyle Jr EM, Canty Jr TG, Morgan EN, Yun W, Pohlman TH, Verrier ED. Treating myocardial ischemia-reperfusion injury by targeting endothelial cell transcription. Ann Thorac Surg. 1999;68(5):1949–53.CrossRefPubMedGoogle Scholar
  55. 55.
    Hung TH, Charnock-Jones DS, Skepper JN, Burton GJ. Secretion of tumor necrosis factor-alpha from human placental tissues induced by hypoxia-reoxygenation causes endothelial cell activation in vitro: a potential mediator of the inflammatory response in preeclampsia. Am J Pathol. 2004;164(3):1049–61.CrossRefPubMedCentralPubMedGoogle Scholar
  56. 56.
    Sorescu GP, Song H, Tressel SL, Hwang J, Dikalov S, Smith DA, et al. Bone morphogenic protein 4 produced in endothelial cells by oscillatory shear stress induces monocyte adhesion by stimulating reactive oxygen species production from a nox1-based NADPH oxidase. Circ Res. 2004;95(8):773–9. doi: 10.1161/01.RES.0000145728.22878.45.CrossRefPubMedGoogle Scholar
  57. 57.
    Sumpio BE, Riley JT, Dardik A. Cells in focus: endothelial cell. Int J Biochem Cell Biol. 2002;34(12):1508–12.CrossRefPubMedGoogle Scholar
  58. 58.
    Onat D, Jelic S, Schmidt AM, Pile-Spellman J, Homma S, Padeletti M, et al. Vascular endothelial sampling and analysis of gene transcripts: a new quantitative approach to monitor vascular inflammation. J Appl Physiol. 2007;103(5):1873–8. doi: 10.1152/japplphysiol.00367.2007.CrossRefPubMedGoogle Scholar
  59. 59.
    Colombo PC, Banchs JE, Celaj S, Talreja A, Lachmann J, Malla S, et al. Endothelial cell activation in patients with decompensated heart failure. Circulation. 2005;111(1):58–62. doi: 10.1161/01.CIR.0000151611.89232.3B.CrossRefPubMedGoogle Scholar
  60. 60.
    Colombo PC, Rastogi S, Onat D, Zaca V, Gupta RC, Jorde UP, et al. Activation of endothelial cells in conduit veins of dogs with heart failure and veins of normal dogs after vascular stretch by acute volume loading. J Card Fail. 2009;15(5):457–63. doi: 10.1016/j.cardfail.2008.12.006.CrossRefPubMedGoogle Scholar
  61. 61.••
    Colombo PC, Onat D, Harxhi A, Demmer RT, Hayashi Y, Jelic S, et al. Peripheral venous congestion causes inflammation, neurohormonal, and endothelial cell activation. Eur Heart J. 2014;35(7):448–54. doi: 10.1093/eurheartj/eht456. This recent article provides mechanistic in vivo evidence for a link between peripheral venous congestion and activation of the inflammatory/oxidative program within endothelial cells of humans.CrossRefPubMedCentralPubMedGoogle Scholar
  62. 62.
    Colombo PC, Onat D, Harxhi A, Hayashi Y, Wong KY, Uriel N, et al. Acute venous congestion enhances vasoconstriction, inflammation, endothelial activation and oxidative stress in compensated ambulatory patients with systolic heart failure on an optimized medical regimen. Circulation (AHA abstract). 2014.Google Scholar
  63. 63.
    Hawk C, Hayashu Y, Kin J, Chudasama N, Ramnauth DS, Wong KY, et al. Peripheral venous congestion causes time- and dose-dependent release of endothelin-1 in humans. Circulation (AHA abstract). 2014.Google Scholar
  64. 64.••
    Cui J, McQuillan P, Moradkhan R, Pagana C, Sinoway LI. Sympathetic responses during saline infusion into the veins of an occluded limb. J Physiol. 2009;587(Pt 14):3619–28. doi: 10.1113/jphysiol.2009.173237. This important article demonstrates that peripheral venous congestion is sufficient to evoke systemic sympathetic activation.CrossRefPubMedCentralPubMedGoogle Scholar
  65. 65.
    Cui J, McQuillan PM, Blaha C, Kunselman AR, Sinoway LI. Limb venous distension evokes sympathetic activation via stimulation of the limb afferents in humans. Am J Physiol Heart Circ Physiol. 2012;303(4):H457–63. doi: 10.1152/ajpheart.00236.2012.CrossRefPubMedCentralPubMedGoogle Scholar
  66. 66.
    Cui J, Leuenberger UA, Gao Z, Sinoway LI. Sympathetic and cardiovascular responses to venous distension in an occluded limb. Am J Physiol Regul Integr Comp Physiol. 2011;301(6):R1831–7. doi: 10.1152/ajpregu.00170.2011.CrossRefPubMedCentralPubMedGoogle Scholar
  67. 67.••
    Cui J, Gao Z, Blaha C, Herr MD, Mast J, Sinoway LI. Distension of central great vein decreases sympathetic outflow in humans. Am J Physiol Heart Circ Physiol. 2013;305(3):H378–85. doi: 10.1152/ajpheart.00019.2013. This important study demonstrated that central saline infusion leads to activation of the sympathetic response, increase in blood pressure and decrease in MSNA levels. CrossRefPubMedCentralPubMedGoogle Scholar
  68. 68.
    Mann DL. Mechanisms and models in heart failure: a combinatorial approach. Circulation. 1999;100(9):999–1008.CrossRefPubMedGoogle Scholar
  69. 69.
    Masoumi A, Ortiz F, Radhakrishnan J, Schrier RW, Colombo PC. Mineralocorticoid receptor antagonists as diuretics: can congestive heart failure learn from liver failure? Heart Fail Rev. 2014. doi: 10.1007/s10741-014-9467-2.Google Scholar
  70. 70.
    Vlachopoulos C, Dima I, Aznaouridis K, Vasiliadou C, Ioakeimidis N, Aggeli C, et al. Acute systemic inflammation increases arterial stiffness and decreases wave reflections in healthy individuals. Circulation. 2005;112(14):2193–200. doi: 10.1161/CIRCULATIONAHA.105.535435.CrossRefPubMedGoogle Scholar
  71. 71.
    Chen X, Rahman MA, Floras JS. Effects of forearm venous occlusion on peroneal muscle sympathetic nerve activity in healthy subjects. Am J Cardiol. 1995;76(3):212–4.CrossRefPubMedGoogle Scholar
  72. 72.
    Colombo PC, Onat D, Sabbah HN. Acute heart failure as “acute endothelitis”—interaction of fluid overload and endothelial dysfunction. Eur J Heart Fail. 2008;10(2):170–5. doi: 10.1016/j.ejheart.2007.12.007.CrossRefPubMedGoogle Scholar
  73. 73.•
    Abraham WT, Adamson PB, Bourge RC, Aaron MF, Costanzo MR, Stevenson LW, et al. Wireless pulmonary artery haemodynamic monitoring in chronic heart failure: a randomised controlled trial. Lancet. 2011;377(9766):658–66. doi: 10.1016/S0140-6736(11)60101-3. This landmark study introduces the advantages of long term invasive hemodynamic monitoring in heart failure.CrossRefPubMedGoogle Scholar
  74. 74.•
    Adamson PB, Abraham WT, Bourge RC, Costanzo MR, Hasan A, Yadav C, et al. Wireless pulmonary artery pressure monitoring guides management to reduce decompensation in heart failure with preserved ejection fraction. Circ Heart Fail. 2014;7(6):935–44. doi: 10.1161/CIRCHEARTFAILURE.113.001229. This recent article demonstrates the successful use of invasive hemodynamic monitoring for the long term management of heart failure in order to prevent heart failure hospitalizations.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Paolo C. Colombo
    • 1
  • Amanda C. Doran
    • 1
  • Duygu Onat
    • 2
  • Ka Yuk Wong
    • 3
  • Myra Ahmad
    • 3
  • Hani N. Sabbah
    • 4
  • Ryan T. Demmer
    • 5
  1. 1.Division of Cardiology, College of Physicians & Surgeons, Department of MedicineColumbia UniversityNew YorkUSA
  2. 2.Division of Cardiology, College of Physicians & Surgeons, Department of MedicineColumbia UniversityNew YorkUSA
  3. 3.Division of Cardiology, College of Physicians & Surgeons, Department of MedicineColumbia UniversityNew YorkUSA
  4. 4.Division of Cardiovascular Medicine, Department of MedicineHenry Ford Heart and Vascular InstituteDetroitUSA
  5. 5.Department of Epidemiology, Mailman School of Public HealthColumbia UniversityNew YorkUSA

Personalised recommendations